Holomorphic relative Hopf modules over the irreducible quantum flag manifolds

Andrey Krutov

Institute of Mathematics, Czech Academy of Sciences
GAČR project 20-17488Y

42th Winter School Geometry and Physics Srni, Czech Republic
 17 Jan 2022

The talk is based on
國 F. Díaz García, A. Krutov, R. Ó Buachalla, P. Somberg,
K. R. Strung (2021), Holomorphic relative Hopf modules over the irreducible quantum flag manifolds.
Lett. Math. Phys., 111(1), 24 p.
arXiv:2005.09652 [math.QA]

Hopf Algebras

An associative algebra over \mathbb{K} is a 3-tuple (A, m, η)

Hopf Algebras

An associative algebra over \mathbb{K} is a 3-tuple (A, m, η)

A coassociative coalgebra over \mathbb{K} is a 3-tuple (A, Δ, ε)

Hopf Algebras

An associative algebra over \mathbb{K} is a 3-tuple (A, m, η)

A coassociative coalgebra over \mathbb{K} is a 3-tuple (A, Δ, ε)

A Hopf algebra over \mathbb{K} is a 6-tuple $(A, m, \eta, \Delta, \varepsilon, S), S: A \rightarrow A$

$$
m \circ(S \otimes \mathrm{id}) \circ \Delta=\eta \circ \varepsilon=m \circ(\mathrm{id} \otimes S) \circ \Delta
$$

Example

Let G be a group, $A=\mathbb{K} G$. For $g \in G$, we have

$$
\Delta g=g \otimes g, \quad \varepsilon(g)=1, \quad S(g)=g^{-1}
$$

Example

Let G be a group, $A=\mathbb{K} G$. For $g \in G$, we have

$$
\begin{aligned}
\Delta g=g \otimes g, & \varepsilon(g)=1, \quad S(g)=g^{-1} \\
U(\mathfrak{g}) & \longleftrightarrow \quad \mathcal{O}(G)
\end{aligned}
$$

Notation

Let H be a Hopf algebra

- $\varepsilon: H \rightarrow \mathbb{C}$
- $\Delta: H \rightarrow H \otimes H, \Delta h=\sum_{i} x_{i} \otimes y_{i}=h_{(1)} \otimes h_{(2)}$
- $S: H \rightarrow H$

Notation

Let H be a Hopf algebra

- $\varepsilon: H \rightarrow \mathbb{C}$
- $\Delta: H \rightarrow H \otimes H, \Delta h=\sum_{i} x_{i} \otimes y_{i}=h_{(1)} \otimes h_{(2)}$
- $S: H \rightarrow H$
- $\triangleleft: V \otimes H \rightarrow V$ denote a right H-action on V
- $\triangleright: H \otimes V \rightarrow V$ denote a left H-action on V

Notation

Let H be a Hopf algebra

- $\varepsilon: H \rightarrow \mathbb{C}$
- $\Delta: H \rightarrow H \otimes H, \Delta h=\sum_{i} x_{i} \otimes y_{i}=h_{(1)} \otimes h_{(2)}$
- $S: H \rightarrow H$
- $\triangleleft: V \otimes H \rightarrow V$ denote a right H-action on V
- $\triangleright: H \otimes V \rightarrow V$ denote a left H-action on V
- $\Delta_{R}: V \rightarrow V \otimes H$ denotes a right H-coation of V

$$
\Delta_{R} v=\sum v_{i} \otimes h_{i}=v_{(0)} \otimes v_{(1)}, \quad v_{i} \in V, h_{i} \in H
$$

- $\Delta_{L}: V \rightarrow H \otimes V$ denotes a left H-coaction of V

$$
\Delta_{L} v=\sum h_{i} \otimes v_{i}=v_{(-1)} \otimes v_{(0)}, \quad v_{i} \in V, h_{i} \in H
$$

Let $H^{+}:=H \cap \operatorname{ker} \varepsilon$ and $h^{+}=h-\varepsilon(h) 1$ for $h \in H$.

Differential Calculus

A differential calculus over an algebra B is a dg-algebra $\left(\Omega^{\bullet} \simeq \bigoplus_{k \in \mathbb{Z}_{\geq 0}} \Omega^{k}, \mathrm{~d}\right)$ which is generated in degree 0 as a dg-algebra and such that $\Omega^{0}=B$.

$$
\mathrm{d}^{2}=0, \quad \mathrm{~d}(\omega \wedge \mu)=\mathrm{d} \omega \wedge \mu+(-1)^{\operatorname{deg} \mu} \omega \wedge \mathrm{d} \mu
$$

Differential Calculus

A differential calculus over an algebra B is a dg-algebra $\left(\Omega^{\bullet} \simeq \bigoplus_{k \in \mathbb{Z}_{\geq 0}} \Omega^{k}, \mathrm{~d}\right)$ which is generated in degree 0 as a dg-algebra and such that $\Omega^{0}=B$.

$$
\mathrm{d}^{2}=0, \quad \mathrm{~d}(\omega \wedge \mu)=\mathrm{d} \omega \wedge \mu+(-1)^{\operatorname{deg} \mu} \omega \wedge \mathrm{d} \mu
$$

A differential $*$-calculus is a DC equipped with a conjugate linear involutive map $*: \Omega^{\bullet} \rightarrow \Omega^{\bullet}$ satisfying

$$
\begin{gathered}
\mathrm{d}\left(\omega^{*}\right)=(\mathrm{d} \omega)^{*}, \\
(\omega \wedge \mu)^{*}=(-1)^{k l} \mu^{*} \wedge \omega^{*}, \quad \text { for all } \omega \in \Omega^{k}, \mu \in \Omega^{l} .
\end{gathered}
$$

Differential Calculus

A differential calculus over an algebra B is a dg-algebra $\left(\Omega^{\bullet} \simeq \bigoplus_{k \in \mathbb{Z}_{\geq 0}} \Omega^{k}, \mathrm{~d}\right)$ which is generated in degree 0 as a dg-algebra and such that $\Omega^{0}=B$.

$$
\mathrm{d}^{2}=0, \quad \mathrm{~d}(\omega \wedge \mu)=\mathrm{d} \omega \wedge \mu+(-1)^{\operatorname{deg} \mu} \omega \wedge \mathrm{d} \mu
$$

A differential $*$-calculus is a DC equipped with a conjugate linear involutive map $*: \Omega^{\bullet} \rightarrow \Omega^{\bullet}$ satisfying

$$
\begin{gathered}
\mathrm{d}\left(\omega^{*}\right)=(\mathrm{d} \omega)^{*}, \\
(\omega \wedge \mu)^{*}=(-1)^{k l} \mu^{*} \wedge \omega^{*}, \quad \text { for all } \omega \in \Omega^{k}, \mu \in \Omega^{l} .
\end{gathered}
$$

Note that if $\left(\Omega^{\bullet}, \mathrm{d}\right)$ is a differential $*$-calculus over B, then B is a *-algebra.

Covariant DC

Let A be a Hopf algebra. A left A-comodule algebra B is a left A-comodule which is also an algebra, such that the comodule structure map

$$
\Delta_{L}: B \rightarrow A \otimes B
$$

is an algebra map.

Covariant DC

Let A be a Hopf algebra. A left A-comodule algebra B is a left A-comodule which is also an algebra, such that the comodule structure map

$$
\Delta_{L}: B \rightarrow A \otimes B
$$

is an algebra map.
A differential calculus $\left(\Omega^{\bullet}(B), \mathrm{d}\right)$ over a right A-comdule algebra B is covariant if there exists a map
$\Delta_{L}: \Omega^{\bullet}(B) \rightarrow A \otimes \Omega^{\bullet}(B)$ such that

$$
\Delta_{L}(\mathrm{~d} \omega)=(\mathrm{id} \otimes \mathrm{~d}) \circ \Delta_{L}(\omega), \quad \text { for all } \omega \in \Omega^{\bullet}(B)
$$

Quantum homogeneous spaces

Let $\pi: A \rightarrow H$ be a surjective Hopf algebra map between Hopf algebras A and H.

Quantum homogeneous spaces

Let $\pi: A \rightarrow H$ be a surjective Hopf algebra map between Hopf algebras A and H. Then a homogeneous right H-coaction is given by the maps

$$
\begin{equation*}
\Delta_{R}:=(\mathrm{id} \otimes \pi) \circ \Delta: A \rightarrow A \otimes H \tag{1}
\end{equation*}
$$

Quantum homogeneous spaces

Let $\pi: A \rightarrow H$ be a surjective Hopf algebra map between Hopf algebras A and H. Then a homogeneous right H-coaction is given by the maps

$$
\begin{equation*}
\Delta_{R}:=(\mathrm{id} \otimes \pi) \circ \Delta: A \rightarrow A \otimes H \tag{1}
\end{equation*}
$$

The associated quantum homogeneous space is defined to be the space of coinvariant elements

$$
\begin{equation*}
B=A^{\operatorname{co}(H)}:=\left\{b \in A \mid \Delta_{R} b=b \otimes 1\right\} \tag{2}
\end{equation*}
$$

Connections

For Ω^{\bullet} a DC over an algebra B and \mathcal{F} a finitely generated projective left B-module, a connection on \mathcal{F} is a \mathbb{C}-linear map

$$
\nabla: \mathcal{F} \rightarrow \Omega^{1} \otimes_{B} \mathcal{F}
$$

satisfying

$$
\nabla(b f)=\mathrm{d} b \otimes f+b \nabla f, \quad \text { for all } b \in B, f \in \mathcal{F}
$$

Connections

For Ω^{\bullet} a DC over an algebra B and \mathcal{F} a finitely generated projective left B-module, a connection on \mathcal{F} is a \mathbb{C}-linear map

$$
\nabla: \mathcal{F} \rightarrow \Omega^{1} \otimes_{B} \mathcal{F}
$$

satisfying

$$
\nabla(b f)=\mathrm{d} b \otimes f+b \nabla f, \quad \text { for all } b \in B, f \in \mathcal{F}
$$

Any connection can be extended to $\nabla: \Omega^{\bullet} \otimes_{B} \mathcal{F} \rightarrow \Omega^{\bullet} \otimes_{B} \mathcal{F}$

$$
\nabla(\omega \otimes f)=\mathrm{d} \omega \otimes f+(-1)^{\operatorname{deg} \omega} \omega \wedge \nabla f
$$

Connections

For Ω^{\bullet} a DC over an algebra B and \mathcal{F} a finitely generated projective left B-module, a connection on \mathcal{F} is a \mathbb{C}-linear map

$$
\nabla: \mathcal{F} \rightarrow \Omega^{1} \otimes_{B} \mathcal{F}
$$

satisfying

$$
\nabla(b f)=\mathrm{d} b \otimes f+b \nabla f, \quad \text { for all } b \in B, f \in \mathcal{F}
$$

Any connection can be extended to $\nabla: \Omega^{\bullet} \otimes_{B} \mathcal{F} \rightarrow \Omega^{\bullet} \otimes_{B} \mathcal{F}$

$$
\nabla(\omega \otimes f)=\mathrm{d} \omega \otimes f+(-1)^{\operatorname{deg} \omega} \omega \wedge \nabla f
$$

The curvature of a connection is a left B-module map $\nabla^{2}: \mathcal{F} \rightarrow \Omega^{2} \otimes_{B} \mathcal{F}$.

Connections

For Ω^{\bullet} a DC over an algebra B and \mathcal{F} a finitely generated projective left B-module, a connection on \mathcal{F} is a \mathbb{C}-linear map

$$
\nabla: \mathcal{F} \rightarrow \Omega^{1} \otimes_{B} \mathcal{F}
$$

satisfying

$$
\nabla(b f)=\mathrm{d} b \otimes f+b \nabla f, \quad \text { for all } b \in B, f \in \mathcal{F}
$$

Any connection can be extended to $\nabla: \Omega^{\bullet} \otimes_{B} \mathcal{F} \rightarrow \Omega^{\bullet} \otimes_{B} \mathcal{F}$

$$
\nabla(\omega \otimes f)=\mathrm{d} \omega \otimes f+(-1)^{\operatorname{deg} \omega} \omega \wedge \nabla f
$$

The curvature of a connection is a left B-module map $\nabla^{2}: \mathcal{F} \rightarrow \Omega^{2} \otimes_{B} \mathcal{F}$. A connection is said to be flat if $\nabla^{2}=0$.

Connections

For Ω^{\bullet} a DC over an algebra B and \mathcal{F} a finitely generated projective left B-module, a connection on \mathcal{F} is a \mathbb{C}-linear map

$$
\nabla: \mathcal{F} \rightarrow \Omega^{1} \otimes_{B} \mathcal{F}
$$

satisfying

$$
\nabla(b f)=\mathrm{d} b \otimes f+b \nabla f, \quad \text { for all } b \in B, f \in \mathcal{F}
$$

Any connection can be extended to $\nabla: \Omega^{\bullet} \otimes_{B} \mathcal{F} \rightarrow \Omega^{\bullet} \otimes_{B} \mathcal{F}$

$$
\nabla(\omega \otimes f)=\mathrm{d} \omega \otimes f+(-1)^{\operatorname{deg} \omega} \omega \wedge \nabla f
$$

The curvature of a connection is a left B-module map $\nabla^{2}: \mathcal{F} \rightarrow \Omega^{2} \otimes_{B} \mathcal{F}$. A connection is said to be flat if $\nabla^{2}=0$. Since $\nabla^{2}(\omega \otimes f)=\omega \wedge \nabla^{2}(f)$, a connection is flat if and only if the pair $\left(\Omega^{\bullet} \otimes_{B} \mathcal{F}, \nabla\right)$ is a complex.

Complex stucture

A complex structure $\Omega^{(\bullet \bullet \bullet)}$, for a differential $*$-calculus $\left(\Omega^{\bullet}, \mathrm{d}\right)$, is an \mathbb{N}_{0}^{2}-algebra grading $\bigoplus_{(a, b) \in \mathbb{N}_{0}^{2}} \Omega^{(a, b)}$ for Ω^{\bullet} such that, for all $(a, b) \in \mathbb{N}_{0}^{2}$:
(1) $\Omega^{k}=\bigoplus_{a+b=k} \Omega^{(a, b)}$,
(2) $\left(\Omega^{(a, b)}\right)^{*}=\Omega^{(b, a)}$,
(3) $\mathrm{d} \Omega^{(a, b)} \subseteq \Omega^{(a+1, b)} \oplus \Omega^{(a, b+1)}$.

Complex stucture

A complex structure $\Omega^{(\bullet, \bullet)}$, for a differential $*$-calculus $\left(\Omega^{\bullet}, \mathrm{d}\right)$, is an \mathbb{N}_{0}^{2}-algebra grading $\bigoplus_{(a, b) \in \mathbb{N}_{0}^{2}} \Omega^{(a, b)}$ for Ω^{\bullet} such that, for all $(a, b) \in \mathbb{N}_{0}^{2}$:
(1) $\Omega^{k}=\bigoplus_{a+b=k} \Omega^{(a, b)}$,
(2) $\left(\Omega^{(a, b)}\right)^{*}=\Omega^{(b, a)}$,
(3) $\mathrm{d} \Omega^{(a, b)} \subseteq \Omega^{(a+1, b)} \oplus \Omega^{(a, b+1)}$.

An element of $\Omega^{(a, b)}$ is called an (a, b)-form. For $\operatorname{proj}_{\Omega^{(a+1, b)}}$, and $\operatorname{proj}_{\Omega^{(a, b+1)}}$, the projections from Ω^{a+b+1} to $\Omega^{(a+1, b)}$, and $\Omega^{(a, b+1)}$ respectively, we write

$$
\left.\partial\right|_{\Omega^{(a, b)}}:=\operatorname{proj}_{\Omega^{(a+1, b)}} \circ \mathrm{d},\left.\quad \bar{\partial}\right|_{\Omega^{(a, b)}}:=\operatorname{proj}_{\Omega^{(a, b+1)}} \circ \mathrm{d}
$$

Complex stucture

A complex structure $\Omega^{(\bullet, \bullet)}$, for a differential $*$-calculus $\left(\Omega^{\bullet}, \mathrm{d}\right)$, is an \mathbb{N}_{0}^{2}-algebra grading $\bigoplus_{(a, b) \in \mathbb{N}_{0}^{2}} \Omega^{(a, b)}$ for Ω^{\bullet} such that, for all $(a, b) \in \mathbb{N}_{0}^{2}$:
(1) $\Omega^{k}=\bigoplus_{a+b=k} \Omega^{(a, b)}$,
(2) $\left(\Omega^{(a, b)}\right)^{*}=\Omega^{(b, a)}$,
(3) $\mathrm{d} \Omega^{(a, b)} \subseteq \Omega^{(a+1, b)} \oplus \Omega^{(a, b+1)}$.

An element of $\Omega^{(a, b)}$ is called an (a, b)-form. For $\operatorname{proj}_{\Omega^{(a+1, b)}}$, and $\operatorname{proj}_{\Omega^{(a, b+1)}}$, the projections from Ω^{a+b+1} to $\Omega^{(a+1, b)}$, and $\Omega^{(a, b+1)}$ respectively, we write

$$
\left.\partial\right|_{\Omega^{(a, b)}}:=\operatorname{proj}_{\Omega^{(a+1, b)}} \circ \mathrm{d},\left.\quad \bar{\partial}\right|_{\Omega^{(a, b)}}:=\operatorname{proj}_{\Omega^{(a, b+1)}} \circ \mathrm{d}
$$

For any complex structure,

$$
\mathrm{d}=\partial+\bar{\partial}, \quad \bar{\partial} \circ \partial=-\partial \circ \bar{\partial}, \quad \partial^{2}=\bar{\partial}^{2}=0
$$

Complex stucture

A complex structure $\Omega^{(\bullet, \bullet)}$, for a differential $*$-calculus $\left(\Omega^{\bullet}, \mathrm{d}\right)$, is an \mathbb{N}_{0}^{2}-algebra grading $\bigoplus_{(a, b) \in \mathbb{N}_{0}^{2}} \Omega^{(a, b)}$ for Ω^{\bullet} such that, for all $(a, b) \in \mathbb{N}_{0}^{2}$:
(1) $\Omega^{k}=\bigoplus_{a+b=k} \Omega^{(a, b)}$,
(2) $\left(\Omega^{(a, b)}\right)^{*}=\Omega^{(b, a)}$,
(3) $\mathrm{d} \Omega^{(a, b)} \subseteq \Omega^{(a+1, b)} \oplus \Omega^{(a, b+1)}$.

An element of $\Omega^{(a, b)}$ is called an (a, b)-form. For $\operatorname{proj}_{\Omega^{(a+1, b)}}$, and $\operatorname{proj}_{\Omega^{(a, b+1)}}$, the projections from Ω^{a+b+1} to $\Omega^{(a+1, b)}$, and $\Omega^{(a, b+1)}$ respectively, we write

$$
\left.\partial\right|_{\Omega^{(a, b)}}:=\operatorname{proj}_{\Omega^{(a+1, b)}} \circ \mathrm{d},\left.\quad \bar{\partial}\right|_{\Omega^{(a, b)}}:=\operatorname{proj}_{\Omega^{(a, b+1)}} \circ \mathrm{d}
$$

For any complex structure,

$$
\mathrm{d}=\partial+\bar{\partial}, \quad \bar{\partial} \circ \partial=-\partial \circ \bar{\partial}, \quad \partial^{2}=\bar{\partial}^{2}=0
$$

Thus $\left(\bigoplus_{(a, b) \in \mathbb{N}_{0}^{2}} \Omega^{(a, b)}, \partial, \bar{\partial}\right)$ is a double complex. Both ∂ and $\bar{\partial}$ satisfy the graded Leibniz rule. Moreover,

$$
\partial\left(\omega^{*}\right)=(\bar{\partial} \omega)^{*}, \quad \bar{\partial}\left(\omega^{*}\right)=(\partial \omega)^{*}, \quad \text { for all } \omega \in \Omega^{\bullet} .
$$

Holomorphic modules

Let $\left(\Omega^{\bullet}, \mathrm{d}\right)$ be a differential $*$-calculus over a $*$-algebra B, equipped with a complex structure $\Omega^{(\bullet, \bullet)}$.

Holomorphic modules

Let $\left(\Omega^{\bullet}, \mathrm{d}\right)$ be a differential $*$-calculus over a $*$-algebra B, equipped with a complex structure $\Omega^{(\bullet, \bullet)}$. A holomorphic left B-module is a pair $\left(\mathcal{F}, \bar{\partial}_{\mathcal{F}}\right)$, where \mathcal{F} is a finitely generated projective left B-module, and $\bar{\partial}_{\mathcal{F}}: \mathcal{F} \rightarrow \Omega^{(0,1)} \otimes_{B} \mathcal{F}$ is a flat $(0,1)$-connection. We call $\bar{\partial}_{\mathcal{F}}$ the holomorphic structure of the holomorphic left B-module.

Holomorphic modules

Let $\left(\Omega^{\bullet}, \mathrm{d}\right)$ be a differential $*$-calculus over a $*$-algebra B, equipped with a complex structure $\Omega^{(\bullet, \bullet)}$. A holomorphic left B-module is a pair $\left(\mathcal{F}, \bar{\partial}_{\mathcal{F}}\right)$, where \mathcal{F} is a finitely generated projective left B-module, and $\bar{\partial}_{\mathcal{F}}: \mathcal{F} \rightarrow \Omega^{(0,1)} \otimes_{B} \mathcal{F}$ is a flat $(0,1)$-connection. We call $\bar{\partial}_{\mathcal{F}}$ the holomorphic structure of the holomorphic left B-module.

In the classical setting the kernel of the holomorphic structure map coincides with the space of holomorphic sections of a holomorphic vector bundle. This motivates us to call

$$
H_{\bar{\partial}}^{0}(\mathcal{F})=\operatorname{ker}\left(\bar{\partial}_{\mathcal{F}}: \mathcal{F} \rightarrow \Omega^{(0,1)} \otimes_{B} \mathcal{F}\right)
$$

the space of holomorphic sections of $\left(\mathcal{F}, \bar{\partial}_{\mathcal{F}}\right)$.

Induced homogeneous vector bundles

Let ${ }^{H}$ mod denote the category of finite-dimensional left H-comodules.

Induced homogeneous vector bundles

Let ${ }^{H}$ mod denote the category of finite-dimensional left H-comodules.
Definition
Let ${ }_{B}^{A} \bmod _{0}$ be the category whose objects are finite-dimensional left A-comodules $\Delta_{L}: \mathcal{F} \rightarrow A \otimes \mathcal{F}$, endowed with a B-bimodule structure, such that
(1) $\Delta_{L}(b f)=\Delta_{L}(b) \Delta_{L}(f)$, for all $f \in \mathcal{F}, b \in B$,
(2) $\mathcal{F} B^{+}=B^{+} \mathcal{F}$,
and whose morphisms are left A-comodule, B-bimodule, maps.

Induced homogeneous vector bundles

Let ${ }^{H}$ mod denote the category of finite-dimensional left H-comodules.

Definition

Let ${ }_{B}^{A} \bmod _{0}$ be the category whose objects are finite-dimensional left A-comodules $\Delta_{L}: \mathcal{F} \rightarrow A \otimes \mathcal{F}$, endowed with a B-bimodule structure, such that
(1) $\Delta_{L}(b f)=\Delta_{L}(b) \Delta_{L}(f)$, for all $f \in \mathcal{F}, b \in B$,
(2) $\mathcal{F} B^{+}=B^{+} \mathcal{F}$,
and whose morphisms are left A-comodule, B-bimodule, maps.
Set $A \square_{H} V:=\operatorname{ker}\left(\Delta_{R} \otimes \mathrm{id}-\mathrm{id} \otimes \Delta_{L}: A \otimes V \rightarrow A \otimes H \otimes V\right)$.

$$
\begin{array}{lc}
\Phi:{ }_{B}^{A} \bmod _{0} \rightarrow{ }^{H} \bmod , & \mathcal{F} \mapsto \mathcal{F} / B^{+} \mathcal{F}, \\
\Psi:{ }^{H} \bmod \rightarrow{ }_{B}^{A} \bmod _{0}, & V \mapsto A \square_{H} V,
\end{array}
$$

where the left H-comodule structure of $\Phi(\mathcal{F})$ is given by $(\pi \otimes \mathrm{id}) \circ \Delta_{L}$, and the B-module, and left A-comodule, structures of $\Psi(V)$ are defined on the first tensor factor.

A FODC $\left(\Omega^{1}(B), \mathrm{d}\right)$ over $B=A^{\operatorname{co}(H)}$ is left-covariant if there exist a left A-coaction $\Delta_{L}: \Omega^{1}(B) \rightarrow A \otimes \Omega^{1}(B)$ giving $\Omega^{1}(B)$ the structure of an object in ${ }_{B}^{A}$ mod and such that d is a left A-comodule map.

Relative Hopf modules

A FODC $\left(\Omega^{1}(B), \mathrm{d}\right)$ over $B=A^{\operatorname{co}(H)}$ is left-covariant if there exist a left A-coaction $\Delta_{L}: \Omega^{1}(B) \rightarrow A \otimes \Omega^{1}(B)$ giving $\Omega^{1}(B)$ the structure of an object in ${ }_{B}^{A}$ mod and such that d is a left A-comodule map.

A complex structure $\Omega^{(\bullet, \bullet)}$ for Ω^{\bullet} is said to be covariant if the \mathbb{N}_{0}^{2}-decomposition of Ω^{\bullet} is a decomposition in the category ${ }_{B}^{A}$ mod.

Relative Hopf modules

A FODC $\left(\Omega^{1}(B), \mathrm{d}\right)$ over $B=A^{\operatorname{co}(H)}$ is left-covariant if there exist a left A-coaction $\Delta_{L}: \Omega^{1}(B) \rightarrow A \otimes \Omega^{1}(B)$ giving $\Omega^{1}(B)$ the structure of an object in ${ }_{B}^{A}$ mod and such that d is a left A-comodule map.

A complex structure $\Omega^{(\bullet, \bullet)}$ for Ω^{\bullet} is said to be covariant if the \mathbb{N}_{0}^{2}-decomposition of Ω^{\bullet} is a decomposition in the category ${ }_{B}^{A}$ mod.
Note that the grading implies $\Omega^{(a, b)}$ is automatically a B-sub-bimodule. For any covariant complex structure the differentials ∂ and $\bar{\partial}$ are left A-comodule maps.

Relative Hopf modules

A FODC $\left(\Omega^{1}(B), \mathrm{d}\right)$ over $B=A^{\operatorname{co}(H)}$ is left-covariant if there exist a left A-coaction $\Delta_{L}: \Omega^{1}(B) \rightarrow A \otimes \Omega^{1}(B)$ giving $\Omega^{1}(B)$ the structure of an object in ${ }_{B}^{A}$ mod and such that d is a left A-comodule map.

A complex structure $\Omega^{(\bullet, \bullet)}$ for Ω^{\bullet} is said to be covariant if the \mathbb{N}_{0}^{2}-decomposition of Ω^{\bullet} is a decomposition in the category ${ }_{B}^{A}$ mod.
Note that the grading implies $\Omega^{(a, b)}$ is automatically a B-sub-bimodule. For any covariant complex structure the differentials ∂ and $\bar{\partial}$ are left A-comodule maps.

Definition

A holomorphic relative Hopf module is a pair $\left(\mathcal{F}, \bar{\partial}_{\mathcal{F}}\right)$ where $\mathcal{F} \in{ }_{B}^{A} \bmod , \bar{\partial}_{\mathcal{F}}: \mathcal{F} \rightarrow \Omega^{(0,1)} \otimes_{B} \mathcal{F}$ is a covariant
$(0,1)$-connection, and $\left(\mathcal{F}, \bar{\partial}_{\mathcal{F}}\right)$ is a holomorphic left B-module.

Drinfeld-Jimbo Quantum Groups I

Let \mathfrak{g} be a complex simple finite-dimensional Lie algebra with Cartan matrix $A=\left(a_{i j}\right)$.

Drinfeld-Jimbo Quantum Groups I

Let \mathfrak{g} be a complex simple finite-dimensional Lie algebra with Cartan matrix $A=\left(a_{i j}\right)$. Let $q \in \mathbb{R}$ such that $q \notin\{-1,0,1\}$, and denote $q_{i}:=q^{\left(\alpha_{i}, \alpha_{i}\right) / 2}$.

Drinfeld-Jimbo Quantum Groups I

Let \mathfrak{g} be a complex simple finite-dimensional Lie algebra with Cartan matrix $A=\left(a_{i j}\right)$. Let $q \in \mathbb{R}$ such that $q \notin\{-1,0,1\}$, and denote $q_{i}:=q^{\left(\alpha_{i}, \alpha_{i}\right) / 2}$.
The quantised enveloping algebra $U_{q}(\mathfrak{g})$ is the noncommutative associative algebra generated by the elements E_{i}, F_{i}, K_{i}, and K_{i}^{-1}, for $i=1, \ldots, r$, subject to the relations

$$
\begin{gathered}
K_{i} E_{j}=q_{i}^{a_{i j}} E_{j} K_{i}, K_{i} F_{j}=q_{i}^{-a_{i j}} F_{j} K_{i}, K_{i} K_{j}=K_{j} K_{i}, \\
K_{i} K_{i}^{-1}=K_{i}^{-1} K_{i}=1, E_{i} F_{j}-F_{j} E_{i}=\delta_{i j} \frac{K_{i}-K_{i}^{-1}}{q_{i}-q_{i}^{-1}}
\end{gathered}
$$

along with the quantum Serre relations

$$
\begin{aligned}
& \sum_{r=0}^{1-a_{i j}}(-1)^{r}\left[\begin{array}{c}
1-a_{i j} \\
r
\end{array}\right]_{q_{i}} E_{i}^{1-a_{i j}-r} E_{j} E_{i}^{r}=0, \quad \text { for } i \neq j, \\
& \sum_{r=0}^{1-a_{i j}}(-1)^{r}\left[\begin{array}{c}
1-a_{i j} \\
r
\end{array}\right]_{q_{i}} F_{i}^{1-a_{i j}-r} F_{j} F_{i}^{r}=0, \quad \text { for } i \neq j
\end{aligned}
$$

Drinfeld-Jimbo Quantum Groups II

A Hopf algebra structure is defined on $U_{q}(\mathfrak{g})$ by

$$
\begin{gathered}
\Delta\left(K_{i}\right)=K_{i} \otimes K_{i} \\
\Delta\left(E_{i}\right)=E_{i} \otimes K_{i}+1 \otimes E_{i}, \quad \Delta\left(F_{i}\right)=F_{i} \otimes 1+K_{i}^{-1} \otimes F_{i} \\
S\left(E_{i}\right)=-E_{i} K_{i}^{-1}, \quad S\left(F_{i}\right)=-K_{i} F_{i}, \quad S\left(K_{i}\right)=K_{i}^{-1} \\
\varepsilon\left(E_{i}\right)=\varepsilon\left(F_{i}\right)=0, \quad \varepsilon\left(K_{i}\right)=1 .
\end{gathered}
$$

Drinfeld-Jimbo Quantum Groups II

A Hopf algebra structure is defined on $U_{q}(\mathfrak{g})$ by

$$
\begin{gathered}
\Delta\left(K_{i}\right)=K_{i} \otimes K_{i} \\
\Delta\left(E_{i}\right)=E_{i} \otimes K_{i}+1 \otimes E_{i}, \quad \Delta\left(F_{i}\right)=F_{i} \otimes 1+K_{i}^{-1} \otimes F_{i} \\
S\left(E_{i}\right)=-E_{i} K_{i}^{-1}, \quad S\left(F_{i}\right)=-K_{i} F_{i}, \quad S\left(K_{i}\right)=K_{i}^{-1} \\
\varepsilon\left(E_{i}\right)=\varepsilon\left(F_{i}\right)=0, \quad \varepsilon\left(K_{i}\right)=1
\end{gathered}
$$

A Hopf $*$-algebra structure, called the compact real form of $U_{q}(\mathfrak{g})$, is defined by

$$
K_{i}^{*}:=K_{i}, \quad E_{i}^{*}:=K_{i} F_{i}, \quad F_{i}^{*}:=E_{i} K_{i}^{-1}
$$

Drinfeld-Jimbo Quantum Groups III

Let \mathcal{P} be the weight lattice of \mathfrak{g}, and \mathcal{P}^{+}its set of dominant integral weights.

Drinfeld-Jimbo Quantum Groups III

Let \mathcal{P} be the weight lattice of \mathfrak{g}, and \mathcal{P}^{+}its set of dominant integral weights. For each $\mu \in \mathcal{P}^{+}$there exists an irreducible finite-dimensional $U_{q}(\mathfrak{g})$-module V_{μ} uniquely defined by the existence of a vector $v_{\mu} \in V_{\mu}$, which we call a highest weight vector, satisfying

$$
E_{i} \triangleright v_{\mu}=0, \quad K_{i} \triangleright v_{\mu}=q^{\left(\mu, \alpha_{i}\right)} v_{\mu} \quad \text { for all } i=1, \ldots, r .
$$

Drinfeld-Jimbo Quantum Groups III

Let \mathcal{P} be the weight lattice of \mathfrak{g}, and \mathcal{P}^{+}its set of dominant integral weights. For each $\mu \in \mathcal{P}^{+}$there exists an irreducible finite-dimensional $U_{q}(\mathfrak{g})$-module V_{μ} uniquely defined by the existence of a vector $v_{\mu} \in V_{\mu}$, which we call a highest weight vector, satisfying

$$
E_{i} \triangleright v_{\mu}=0, \quad K_{i} \triangleright v_{\mu}=q^{\left(\mu, \alpha_{i}\right)} v_{\mu} \quad \text { for all } i=1, \ldots, r .
$$

Moreover, v_{μ} is unique up to scalar multiple. We call any finite direct sum of such $U_{q}(\mathfrak{g})$-representations a type-1 representation.

Drinfeld-Jimbo Quantum Groups III

Let \mathcal{P} be the weight lattice of \mathfrak{g}, and \mathcal{P}^{+}its set of dominant integral weights. For each $\mu \in \mathcal{P}^{+}$there exists an irreducible finite-dimensional $U_{q}(\mathfrak{g})$-module V_{μ} uniquely defined by the existence of a vector $v_{\mu} \in V_{\mu}$, which we call a highest weight vector, satisfying

$$
E_{i} \triangleright v_{\mu}=0, \quad K_{i} \triangleright v_{\mu}=q^{\left(\mu, \alpha_{i}\right)} v_{\mu} \quad \text { for all } i=1, \ldots, r .
$$

Moreover, v_{μ} is unique up to scalar multiple. We call any finite direct sum of such $U_{q}(\mathfrak{g})$-representations a type-1 representation. In general, a vector $v \in V_{\mu}$ is called a weight vector of weight $\mathrm{wt}(v) \in \mathcal{P}$ if

$$
K_{i} \triangleright v=q^{\left(\mathrm{wt}(v), \alpha_{i}\right)} v, \quad \text { for all } i=1, \ldots, r .
$$

Quantised Coordinate Algebras $\mathcal{O}_{q}(G)$

Let V be a finite-dimensional $U_{q}(\mathfrak{g})$-module, $v \in V$, and $f \in V^{*}$, the linear dual of V. Consider the function

$$
c_{v, f}^{V}: U_{q}(\mathfrak{g}) \rightarrow \mathbb{C}, \quad X \mapsto f(X(v))
$$

Quantised Coordinate Algebras $\mathcal{O}_{q}(G)$

Let V be a finite-dimensional $U_{q}(\mathfrak{g})$-module, $v \in V$, and $f \in V^{*}$, the linear dual of V. Consider the function

$$
c_{v, f}^{V}: U_{q}(\mathfrak{g}) \rightarrow \mathbb{C}, \quad X \mapsto f(X(v))
$$

The coordinate ring of V is the subspace

$$
C(V):=\operatorname{Span}_{\mathbb{C}}\left\{c_{v, f}^{V} \mid v \in V, f \in V^{*}\right\} \subseteq U_{q}(\mathfrak{g})^{*}
$$

Quantised Coordinate Algebras $\mathcal{O}_{q}(G)$

Let V be a finite-dimensional $U_{q}(\mathfrak{g})$-module, $v \in V$, and $f \in V^{*}$, the linear dual of V. Consider the function

$$
c_{v, f}^{V}: U_{q}(\mathfrak{g}) \rightarrow \mathbb{C}, \quad X \mapsto f(X(v))
$$

The coordinate ring of V is the subspace

$$
C(V):=\operatorname{Span}_{\mathbb{C}}\left\{c_{v, f}^{V} \mid v \in V, f \in V^{*}\right\} \subseteq U_{q}(\mathfrak{g})^{*}
$$

In fact, we see that $C(V) \subseteq U_{q}(\mathfrak{g})^{\circ}$, where $U_{q}(\mathfrak{g})^{\circ}$ denotes the Hopf dual of a Hopf algebra $U_{q}(\mathfrak{g})$, and that a Hopf subalgebra of $U_{q}(\mathfrak{g})^{\circ}$ is given by

$$
\mathcal{O}_{q}(G):=\bigoplus_{V \in \operatorname{Rep}_{1} U_{q}(\mathfrak{g})} C(V)
$$

Quantised Coordinate Algebras $\mathcal{O}_{q}(G)$

Let V be a finite-dimensional $U_{q}(\mathfrak{g})$-module, $v \in V$, and $f \in V^{*}$, the linear dual of V. Consider the function

$$
c_{v, f}^{V}: U_{q}(\mathfrak{g}) \rightarrow \mathbb{C}, \quad X \mapsto f(X(v))
$$

The coordinate ring of V is the subspace

$$
C(V):=\operatorname{Span}_{\mathbb{C}}\left\{c_{v, f}^{V} \mid v \in V, f \in V^{*}\right\} \subseteq U_{q}(\mathfrak{g})^{*}
$$

In fact, we see that $C(V) \subseteq U_{q}(\mathfrak{g})^{\circ}$, where $U_{q}(\mathfrak{g})^{\circ}$ denotes the Hopf dual of a Hopf algebra $U_{q}(\mathfrak{g})$, and that a Hopf subalgebra of $U_{q}(\mathfrak{g})^{\circ}$ is given by

$$
\mathcal{O}_{q}(G):=\bigoplus_{V \in \operatorname{Rep}_{1} U_{q}(\mathfrak{g})} C(V) .
$$

We call $\mathcal{O}_{q}(G)$ the quantum coordinate algebra of G, where G is the unique connected, simply connected, complex algebraic group having \mathfrak{g} as its complex Lie algebra.

Quantum Flag Manifolds

Let \mathfrak{g} be a complex simple Lie algebra of rank r.

Quantum Flag Manifolds

Let \mathfrak{g} be a complex simple Lie algebra of rank r. For S a subset of simple roots, consider the Hopf subalgebra

$$
U_{q}\left(\mathfrak{l}_{S}\right):=\left\langle K_{i}, E_{j}, F_{j} \mid i=1, \ldots, r ; \alpha_{j} \in S\right\rangle .
$$

Quantum Flag Manifolds

Let \mathfrak{g} be a complex simple Lie algebra of rank r. For S a subset of simple roots, consider the Hopf subalgebra

$$
U_{q}\left(\mathfrak{l}_{S}\right):=\left\langle K_{i}, E_{j}, F_{j} \mid i=1, \ldots, r ; \alpha_{j} \in S\right\rangle .
$$

From the Hopf algebra embedding $\iota: U_{q}\left(\mathfrak{l}_{S}\right) \hookrightarrow U_{q}(\mathfrak{g})$, we get the dual Hopf algebra map $\iota^{\circ}: U_{q}(\mathfrak{g})^{\circ} \rightarrow U_{q}\left(\mathfrak{l}_{S}\right)^{\circ}$. We have

$$
\pi_{S}:=\left.\iota^{\circ}\right|_{\mathcal{O}_{q}(G)}: \mathcal{O}_{q}(G) \rightarrow U_{q}\left(\mathfrak{l}_{S}\right)^{\circ}
$$

and the Hopf subalgebra $\mathcal{O}_{q}\left(L_{S}\right):=\pi_{S}\left(\mathcal{O}_{q}(G)\right) \subseteq U_{q}\left(\mathfrak{l}_{S}\right)^{\circ}$.

Quantum Flag Manifolds

Let \mathfrak{g} be a complex simple Lie algebra of rank r. For S a subset of simple roots, consider the Hopf subalgebra

$$
U_{q}\left(l_{S}\right):=\left\langle K_{i}, E_{j}, F_{j} \mid i=1, \ldots, r ; \alpha_{j} \in S\right\rangle .
$$

From the Hopf algebra embedding $\iota: U_{q}\left(\mathfrak{l}_{S}\right) \hookrightarrow U_{q}(\mathfrak{g})$, we get the dual Hopf algebra map $\iota^{\circ}: U_{q}(\mathfrak{g})^{\circ} \rightarrow U_{q}\left(\mathfrak{l}_{S}\right)^{\circ}$. We have

$$
\pi_{S}:=\left.\iota^{\circ}\right|_{\mathcal{O}_{q}(G)}: \mathcal{O}_{q}(G) \rightarrow U_{q}\left(\mathfrak{l}_{S}\right)^{\circ}
$$

and the Hopf subalgebra $\mathcal{O}_{q}\left(L_{S}\right):=\pi_{S}\left(\mathcal{O}_{q}(G)\right) \subseteq U_{q}\left(\mathfrak{l}_{S}\right)^{\circ}$. The quantum-homogeneous space

$$
\begin{equation*}
\pi: \mathcal{O}_{q}(G) \rightarrow \mathcal{O}_{q}\left(L_{S}\right) \tag{3}
\end{equation*}
$$

is called the quantum flag manifold associated to S and denoted by

$$
\mathcal{O}_{q}\left(G / L_{S}\right):=\mathcal{O}_{q}(G)^{\operatorname{co}\left(\mathcal{O}_{q}\left(L_{S}\right)\right)}
$$

Quantum Flag Manifolds

Let \mathfrak{g} be a complex simple Lie algebra of rank r. For S a subset of simple roots, consider the Hopf subalgebra

$$
U_{q}\left(l_{S}\right):=\left\langle K_{i}, E_{j}, F_{j} \mid i=1, \ldots, r ; \alpha_{j} \in S\right\rangle .
$$

From the Hopf algebra embedding $\iota: U_{q}\left(\mathfrak{l}_{S}\right) \hookrightarrow U_{q}(\mathfrak{g})$, we get the dual Hopf algebra map $\iota^{\circ}: U_{q}(\mathfrak{g})^{\circ} \rightarrow U_{q}\left(\mathfrak{l}_{S}\right)^{\circ}$. We have

$$
\pi_{S}:=\left.\iota^{\circ}\right|_{\mathcal{O}_{q}(G)}: \mathcal{O}_{q}(G) \rightarrow U_{q}\left(\mathfrak{l}_{S}\right)^{\circ}
$$

and the Hopf subalgebra $\mathcal{O}_{q}\left(L_{S}\right):=\pi_{S}\left(\mathcal{O}_{q}(G)\right) \subseteq U_{q}\left(\mathfrak{l}_{S}\right)^{\circ}$. The quantum-homogeneous space

$$
\begin{equation*}
\pi: \mathcal{O}_{q}(G) \rightarrow \mathcal{O}_{q}\left(L_{S}\right) \tag{3}
\end{equation*}
$$

is called the quantum flag manifold associated to S and denoted by

$$
\mathcal{O}_{q}\left(G / L_{S}\right):=\mathcal{O}_{q}(G)^{\operatorname{co}\left(\mathcal{O}_{q}\left(L_{S}\right)\right)}
$$

The pair $\left(\mathcal{O}_{q}\left(G / L_{S}\right), \Delta_{L}\right)$ is a left $\mathcal{O}_{q}(G)$-comodule algebra.

Irreducible Quantum Flag Manifolds

A_{n}	$0-0-0-0-0$	$\mathcal{O}_{q}\left(\mathrm{Gr}_{k, n+1}\right)$
B_{n}	$x-0-0=0$	$\mathcal{O}_{q}\left(\mathrm{Q}_{2 n+1}\right)$
C_{n}	$\mathrm{O}-\mathrm{O-}-\mathrm{O}$	$\mathcal{O}_{q}\left(\mathrm{~L}_{n}\right)$
D_{n}	--- -	$\mathcal{O}_{q}\left(\mathrm{Q}_{2 n}\right)$
D_{n}	-0- -	$\mathcal{O}_{q}\left(\mathrm{~S}_{n}\right)$
E_{6}	$0-0-\mathrm{O}$	$\mathcal{O}_{q}\left(\mathbb{O P}^{2}\right)$
E_{7}	$\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{x}$	$\mathcal{O}_{q}(\mathrm{~F})$

Theorem (Heckenberger-Kolb'2004)
Over any irreducible quantum flag manifold $\mathcal{O}_{q}\left(G / L_{S}\right)$, there exists a unique finite-dimensional left $\mathcal{O}_{q}(G)$-covariant differential $*$-calculus $\Omega_{q}^{\bullet}\left(G / L_{S}\right) \in \underset{\mathcal{O}_{q}\left(G / L_{S}\right)}{\mathcal{O}_{q}(G)} \bmod _{0}$, of classical dimension, that is to say, satisfying

$$
\operatorname{dim} \Phi\left(\Omega_{q}^{k}\left(G / L_{S}\right)\right)=\binom{2 M}{k}, \quad \text { for all } k=0, \ldots, 2 M
$$

where M is the complex dimension of the corresponding classical manifold.

Theorem (Heckenberger-Kolb'2004)
Over any irreducible quantum flag manifold $\mathcal{O}_{q}\left(G / L_{S}\right)$, there exists a unique finite-dimensional left $\mathcal{O}_{q}(G)$-covariant differential $*$-calculus $\Omega_{q}^{\bullet}\left(G / L_{S}\right) \in \underset{\mathcal{O}_{q}\left(G / L_{S}\right)}{\mathcal{O}_{q}(G)} \bmod _{0}$, of classical dimension, that is to say, satisfying

$$
\operatorname{dim} \Phi\left(\Omega_{q}^{k}\left(G / L_{S}\right)\right)=\binom{2 M}{k}, \quad \text { for all } k=0, \ldots, 2 M
$$

where M is the complex dimension of the corresponding classical manifold.

Proposition

(1) $\Omega_{q}^{\bullet}\left(G / L_{S}\right)$ admits precisely two left $\mathcal{O}_{q}(G)$-covariant complex structures, each of which is opposite to the other,
(2) for each complex structure $\Omega^{(1,0)}$ and $\Omega^{(0,1)}$ are simple objects in $\underset{\mathcal{O}_{q}\left(G / L_{S}\right)}{\mathcal{O}_{\mathcal{O}^{\prime}(G)} \bmod _{0} \text {. }}$

Main Theorem

Theorem (Díaz García, K., Ó Buachalla, Somberg,

Strung, 2021)
Let $\mathcal{O}_{q}\left(G / L_{S}\right)$ be an irreducible quantum flag manifold endowed with its Heckenberger-Kolb calculus, and $\mathcal{F} \in \underset{\mathcal{O}_{q}\left(G / L_{S}\right)}{\mathcal{O}_{q}(G)} \bmod _{0}$. It holds that
(1) \mathcal{F} admits a left $\mathcal{O}_{q}(G)$-covariant connection $\nabla: \mathcal{F} \rightarrow \Omega_{q}^{1}\left(G / L_{S}\right) \otimes_{\mathcal{O}_{q}\left(G / L_{S}\right)} \mathcal{F}$, and this is the unique such connection if \mathcal{F} is simple,
(2) $\bar{\partial}_{\mathcal{F}}:=\operatorname{proj}^{(0,1)} \circ \nabla$ is a left $\mathcal{O}_{q}(G)$-covariant holomorphic structure for \mathcal{F}, and this is the unique such holomorphic structure if \mathcal{F} is simple.

Theorem (Matassa, 2021)
For quantum projective spaces the corresponding connection coincides with the Levi-Civita connection for q-deformed analogues of the Fubini-Study metric.

Thank you

