Holomorphic relative Hopf modules over the irreducible quantum flag manifolds

Andrey Krutov

Institute of Mathematics, Czech Academy of Sciences GAČR project 20-17488Y

42th Winter School Geometry and Physics Srni, Czech Republic 17 Jan 2022 The talk is based on

 F. Díaz García, A. Krutov, R. Ó Buachalla, P. Somberg, K. R. Strung (2021), Holomorphic relative Hopf modules over the irreducible quantum flag manifolds. *Lett. Math. Phys.*, 111(1), 24 p. arXiv:2005.09652 [math.QA]

Hopf Algebras

An associative algebra over \mathbb{K} is a 3-tuple (A, m, η)

Hopf Algebras

An associative algebra over \mathbb{K} is a 3-tuple (A, m, η)

A coassociative coalgebra over $\mathbb K$ is a 3-tuple (A,Δ,ε)

Hopf Algebras

An associative algebra over \mathbb{K} is a 3-tuple (A, m, η)

A coassociative coalgebra over $\mathbb K$ is a 3-tuple (A,Δ,ε)

A Hopf algebra over \mathbb{K} is a 6-tuple $(A, m, \eta, \Delta, \varepsilon, S)$, $S \colon A \to A$

$$m \circ (S \otimes \mathrm{id}) \circ \Delta = \eta \circ \varepsilon = m \circ (\mathrm{id} \otimes S) \circ \Delta$$

Let G be a group, $A = \mathbb{K}G$. For $g \in G$, we have

$$\Delta g = g \otimes g, \qquad \varepsilon(g) = 1, \qquad S(g) = g^{-1}.$$

Let G be a group, $A = \mathbb{K}G$. For $g \in G$, we have

$$\Delta g = g \otimes g, \qquad \varepsilon(g) = 1, \qquad S(g) = g^{-1}.$$

$$U(\mathfrak{g}) \longrightarrow \mathcal{O}(G)$$

Notation

Let H be a Hopf algebra

- $\varepsilon \colon H \to \mathbb{C}$
- $\Delta: H \to H \otimes H$, $\Delta h = \sum_i x_i \otimes y_i = h_{(1)} \otimes h_{(2)}$
- $S \colon H \to H$

Notation

Let H be a Hopf algebra

- $\varepsilon \colon H \to \mathbb{C}$
- $\Delta: H \to H \otimes H, \Delta h = \sum_i x_i \otimes y_i = h_{(1)} \otimes h_{(2)}$
- $S \colon H \to H$
- $\triangleleft: V \otimes H \rightarrow V$ denote a right *H*-action on *V*
- $\triangleright : H \otimes V \to V$ denote a left *H*-action on *V*

Notation

Let H be a Hopf algebra

- $\varepsilon \colon H \to \mathbb{C}$
- $\Delta: H \to H \otimes H, \Delta h = \sum_i x_i \otimes y_i = h_{(1)} \otimes h_{(2)}$
- $S \colon H \to H$
- $\triangleleft: V \otimes H \rightarrow V$ denote a right *H*-action on *V*
- $\triangleright : H \otimes V \to V$ denote a left *H*-action on *V*
- $\Delta_R: V \to V \otimes H$ denotes a right *H*-coation of *V*

$$\Delta_R v = \sum v_i \otimes h_i = v_{(0)} \otimes v_{(1)}, \qquad v_i \in V, h_i \in H$$

• $\Delta_L \colon V \to H \otimes V$ denotes a left *H*-coaction of *V*

$$\Delta_L v = \sum h_i \otimes v_i = v_{(-1)} \otimes v_{(0)}, \qquad v_i \in V, h_i \in H$$

Let $H^+ := H \cap \ker \varepsilon$ and $h^+ = h - \varepsilon(h)1$ for $h \in H$.

Differential Calculus

A differential calculus over an algebra B is a dg-algebra $(\Omega^{\bullet} \simeq \bigoplus_{k \in \mathbb{Z}_{\geq 0}} \Omega^k, d)$ which is generated in degree 0 as a dg-algebra and such that $\Omega^0 = B$.

$$\mathrm{d}^2 = 0, \qquad \mathrm{d}(\omega \wedge \mu) = \mathrm{d}\omega \wedge \mu + (-1)^{\mathrm{deg}\,\mu}\omega \wedge \mathrm{d}\mu.$$

A differential calculus over an algebra B is a dg-algebra $(\Omega^{\bullet} \simeq \bigoplus_{k \in \mathbb{Z}_{\geq 0}} \Omega^k, d)$ which is generated in degree 0 as a dg-algebra and such that $\Omega^0 = B$.

$$\mathrm{d}^2 = 0, \qquad \mathrm{d}(\omega \wedge \mu) = \mathrm{d}\omega \wedge \mu + (-1)^{\mathrm{deg}\,\mu}\omega \wedge \mathrm{d}\mu.$$

A differential *-calculus is a DC equipped with a conjugate linear involutive map $*: \Omega^{\bullet} \to \Omega^{\bullet}$ satisfying

$$\begin{split} \mathrm{d}(\omega^*) &= (\mathrm{d}\omega)^*,\\ (\omega \wedge \mu)^* &= (-1)^{kl} \mu^* \wedge \omega^*, \quad \text{ for all } \omega \in \Omega^k, \, \mu \in \Omega^l. \end{split}$$

A differential calculus over an algebra B is a dg-algebra $(\Omega^{\bullet} \simeq \bigoplus_{k \in \mathbb{Z}_{\geq 0}} \Omega^k, d)$ which is generated in degree 0 as a dg-algebra and such that $\Omega^0 = B$.

$$\mathrm{d}^2 = 0, \qquad \mathrm{d}(\omega \wedge \mu) = \mathrm{d}\omega \wedge \mu + (-1)^{\mathrm{deg}\,\mu} \omega \wedge \mathrm{d}\mu.$$

A differential *-calculus is a DC equipped with a conjugate linear involutive map $*: \Omega^{\bullet} \to \Omega^{\bullet}$ satisfying

$$\begin{split} \mathrm{d}(\omega^*) &= (\mathrm{d}\omega)^*,\\ (\omega \wedge \mu)^* &= (-1)^{kl} \mu^* \wedge \omega^*, \quad \text{ for all } \omega \in \Omega^k, \, \mu \in \Omega^l. \end{split}$$

Note that if (Ω^{\bullet}, d) is a differential *-calculus over B, then B is a *-algebra.

Let A be a Hopf algebra. A left A-comodule algebra B is a left A-comodule which is also an algebra, such that the comodule structure map

$$\Delta_L \colon B \to A \otimes B$$

is an algebra map.

Let A be a Hopf algebra. A left A-comodule algebra B is a left A-comodule which is also an algebra, such that the comodule structure map

$$\Delta_L \colon B \to A \otimes B$$

is an algebra map.

A differential calculus $(\Omega^{\bullet}(B), d)$ over a right *A*-comdule algebra *B* is *covariant* if there exists a map $\Delta_L \colon \Omega^{\bullet}(B) \to A \otimes \Omega^{\bullet}(B)$ such that

$$\Delta_L(\mathrm{d}\omega) = (\mathrm{id}\otimes\mathrm{d})\circ\Delta_L(\omega), \qquad \text{for all } \omega\in\Omega^{\bullet}(B).$$

Let $\pi \colon A \to H$ be a surjective Hopf algebra map between Hopf algebras A and H.

Let $\pi: A \to H$ be a surjective Hopf algebra map between Hopf algebras A and H. Then a *homogeneous right H-coaction* is given by the maps

$$\Delta_R := (\mathrm{id} \otimes \pi) \circ \Delta \colon A \to A \otimes H.$$
(1)

Let $\pi: A \to H$ be a surjective Hopf algebra map between Hopf algebras A and H. Then a *homogeneous right H-coaction* is given by the maps

$$\Delta_R := (\mathrm{id} \otimes \pi) \circ \Delta \colon A \to A \otimes H.$$
(1)

The associated *quantum homogeneous space* is defined to be the space of coinvariant elements

$$B = A^{\operatorname{co}(H)} := \left\{ b \in A \mid \Delta_R b = b \otimes 1 \right\}.$$
 (2)

For Ω^{\bullet} a DC over an algebra *B* and \mathcal{F} a finitely generated projective left *B*-module, a *connection* on \mathcal{F} is a \mathbb{C} -linear map

$$\nabla \colon \mathcal{F} \to \Omega^1 \otimes_B \mathcal{F}$$

satisfying

$$abla(bf) = db \otimes f + b \nabla f,$$
 for all $b \in B, f \in \mathcal{F}.$

For Ω^{\bullet} a DC over an algebra *B* and \mathcal{F} a finitely generated projective left *B*-module, a *connection* on \mathcal{F} is a \mathbb{C} -linear map

$$\nabla \colon \mathcal{F} \to \Omega^1 \otimes_B \mathcal{F}$$

satisfying

$$abla(bf) = \mathrm{d}b \otimes f + b \nabla f,$$
 for all $b \in B, f \in \mathcal{F}.$

Any connection can be extended to $\nabla \colon \Omega^{\bullet} \otimes_{B} \mathcal{F} \to \Omega^{\bullet} \otimes_{B} \mathcal{F}$

$$\nabla(\omega \otimes f) = \mathrm{d}\omega \otimes f + (-1)^{\mathrm{deg}\,\omega} \omega \wedge \nabla f.$$

For Ω^{\bullet} a DC over an algebra *B* and \mathcal{F} a finitely generated projective left *B*-module, a *connection* on \mathcal{F} is a \mathbb{C} -linear map

$$\nabla \colon \mathcal{F} \to \Omega^1 \otimes_B \mathcal{F}$$

satisfying

 $abla(bf) = \mathrm{d}b \otimes f + b \nabla f, \qquad \text{for all } b \in B, f \in \mathcal{F}.$

Any connection can be extended to $\nabla \colon \Omega^{\bullet} \otimes_{B} \mathcal{F} \to \Omega^{\bullet} \otimes_{B} \mathcal{F}$

$$\nabla(\omega \otimes f) = \mathrm{d}\omega \otimes f + (-1)^{\mathrm{deg}\,\omega} \omega \wedge \nabla f.$$

The *curvature* of a connection is a left *B*-module map $\nabla^2 \colon \mathcal{F} \to \Omega^2 \otimes_B \mathcal{F}.$

For Ω^{\bullet} a DC over an algebra *B* and \mathcal{F} a finitely generated projective left *B*-module, a *connection* on \mathcal{F} is a \mathbb{C} -linear map

$$\nabla \colon \mathcal{F} \to \Omega^1 \otimes_B \mathcal{F}$$

satisfying

 $abla(bf) = \mathrm{d}b \otimes f + b \nabla f, \qquad \text{for all } b \in B, f \in \mathcal{F}.$

Any connection can be extended to $\nabla \colon \Omega^{\bullet} \otimes_{B} \mathcal{F} \to \Omega^{\bullet} \otimes_{B} \mathcal{F}$

$$\nabla(\omega \otimes f) = \mathrm{d}\omega \otimes f + (-1)^{\mathrm{deg}\,\omega} \omega \wedge \nabla f.$$

The *curvature* of a connection is a left *B*-module map $\nabla^2 : \mathcal{F} \to \Omega^2 \otimes_B \mathcal{F}$. A connection is said to be *flat* if $\nabla^2 = 0$.

For Ω^{\bullet} a DC over an algebra *B* and \mathcal{F} a finitely generated projective left *B*-module, a *connection* on \mathcal{F} is a \mathbb{C} -linear map

$$\nabla \colon \mathcal{F} \to \Omega^1 \otimes_B \mathcal{F}$$

satisfying

 $abla(bf) = \mathrm{d}b \otimes f + b \nabla f, \qquad \text{for all } b \in B, f \in \mathcal{F}.$

Any connection can be extended to $\nabla \colon \Omega^{\bullet} \otimes_{B} \mathcal{F} \to \Omega^{\bullet} \otimes_{B} \mathcal{F}$

$$\nabla(\omega \otimes f) = \mathrm{d}\omega \otimes f + (-1)^{\mathrm{deg}\,\omega} \omega \wedge \nabla f.$$

The *curvature* of a connection is a left *B*-module map $\nabla^2 : \mathcal{F} \to \Omega^2 \otimes_B \mathcal{F}$. A connection is said to be *flat* if $\nabla^2 = 0$. Since $\nabla^2(\omega \otimes f) = \omega \wedge \nabla^2(f)$, a connection is flat if and only if the pair $(\Omega^{\bullet} \otimes_B \mathcal{F}, \nabla)$ is a complex.

A *complex structure* $\Omega^{(\bullet,\bullet)}$, for a differential *-calculus (Ω^{\bullet}, d) , is an \mathbb{N}_0^2 -algebra grading $\bigoplus_{(a,b)\in\mathbb{N}_0^2} \Omega^{(a,b)}$ for Ω^{\bullet} such that, for all $(a,b)\in\mathbb{N}_0^2$:

$$\bullet \Omega^k = \bigoplus_{a+b=k} \Omega^{(a,b)},$$

2
$$(\Omega^{(a,b)})^* = \Omega^{(b,a)},$$

3
$$\mathrm{d}\Omega^{(a,b)} \subseteq \Omega^{(a+1,b)} \oplus \Omega^{(a,b+1)}$$

A *complex structure* $\Omega^{(\bullet,\bullet)}$, for a differential *-calculus (Ω^{\bullet}, d) , is an \mathbb{N}_0^2 -algebra grading $\bigoplus_{(a,b)\in\mathbb{N}_0^2} \Omega^{(a,b)}$ for Ω^{\bullet} such that, for all $(a,b)\in\mathbb{N}_0^2$:

$$\mathbf{1} \ \Omega^k = \bigoplus_{a+b=k} \Omega^{(a,b)},$$

$$(\Omega^{(a,b)})^* = \Omega^{(b,a)},$$

3
$$\mathrm{d}\Omega^{(a,b)} \subseteq \Omega^{(a+1,b)} \oplus \Omega^{(a,b+1)}$$

An element of $\Omega^{(a,b)}$ is called an (a,b)-form. For $\operatorname{proj}_{\Omega^{(a+1,b)}}$, and $\operatorname{proj}_{\Omega^{(a,b+1)}}$, the projections from Ω^{a+b+1} to $\Omega^{(a+1,b)}$, and $\Omega^{(a,b+1)}$ respectively, we write

$$\partial|_{\Omega^{(a,b)}} := \operatorname{proj}_{\Omega^{(a+1,b)}} \circ \mathrm{d}, \qquad \overline{\partial}|_{\Omega^{(a,b)}} := \operatorname{proj}_{\Omega^{(a,b+1)}} \circ \mathrm{d}.$$

A *complex structure* $\Omega^{(\bullet,\bullet)}$, for a differential *-calculus (Ω^{\bullet}, d) , is an \mathbb{N}_0^2 -algebra grading $\bigoplus_{(a,b)\in\mathbb{N}_0^2} \Omega^{(a,b)}$ for Ω^{\bullet} such that, for all $(a,b)\in\mathbb{N}_0^2$:

$$\mathbf{1} \ \Omega^k = \bigoplus_{a+b=k} \Omega^{(a,b)},$$

$$(\Omega^{(a,b)})^* = \Omega^{(b,a)},$$

3
$$\mathrm{d}\Omega^{(a,b)} \subseteq \Omega^{(a+1,b)} \oplus \Omega^{(a,b+1)}$$

An element of $\Omega^{(a,b)}$ is called an (a,b)-form. For $\operatorname{proj}_{\Omega^{(a+1,b)}}$, and $\operatorname{proj}_{\Omega^{(a,b+1)}}$, the projections from Ω^{a+b+1} to $\Omega^{(a+1,b)}$, and $\Omega^{(a,b+1)}$ respectively, we write

$$\partial|_{\Omega^{(a,b)}} := \operatorname{proj}_{\Omega^{(a+1,b)}} \circ d, \qquad \overline{\partial}|_{\Omega^{(a,b)}} := \operatorname{proj}_{\Omega^{(a,b+1)}} \circ d.$$

For any complex structure,

$$\mathbf{d} = \partial + \bar{\partial}, \qquad \bar{\partial} \circ \partial = - \partial \circ \bar{\partial}, \qquad \partial^2 = \bar{\partial}^2 = 0.$$

A *complex structure* $\Omega^{(\bullet,\bullet)}$, for a differential *-calculus (Ω^{\bullet}, d) , is an \mathbb{N}_0^2 -algebra grading $\bigoplus_{(a,b)\in\mathbb{N}_0^2} \Omega^{(a,b)}$ for Ω^{\bullet} such that, for all $(a,b)\in\mathbb{N}_0^2$:

$$\mathbf{1} \ \Omega^k = \bigoplus_{a+b=k} \Omega^{(a,b)},$$

$$(\Omega^{(a,b)})^* = \Omega^{(b,a)},$$

3
$$\mathrm{d}\Omega^{(a,b)} \subseteq \Omega^{(a+1,b)} \oplus \Omega^{(a,b+1)}$$

An element of $\Omega^{(a,b)}$ is called an (a,b)-form. For $\operatorname{proj}_{\Omega^{(a+1,b)}}$, and $\operatorname{proj}_{\Omega^{(a,b+1)}}$, the projections from Ω^{a+b+1} to $\Omega^{(a+1,b)}$, and $\Omega^{(a,b+1)}$ respectively, we write

$$\partial|_{\Omega^{(a,b)}} := \operatorname{proj}_{\Omega^{(a+1,b)}} \circ d, \qquad \overline{\partial}|_{\Omega^{(a,b)}} := \operatorname{proj}_{\Omega^{(a,b+1)}} \circ d.$$

For any complex structure,

$$\mathbf{d} = \partial + \bar{\partial}, \qquad \bar{\partial} \circ \partial = - \partial \circ \bar{\partial}, \qquad \partial^2 = \bar{\partial}^2 = 0.$$

Thus $\left(\bigoplus_{(a,b)\in\mathbb{N}_0^2}\Omega^{(a,b)},\partial,\overline{\partial}\right)$ is a double complex. Both ∂ and $\overline{\partial}$ satisfy the graded Leibniz rule. Moreover,

$$\partial(\omega^*) = \left(\bar{\partial}\omega\right)^*, \qquad \bar{\partial}(\omega^*) = \left(\partial\omega\right)^*, \qquad \text{for all } \omega \in \Omega^\bullet.$$

Holomorphic modules

Let (Ω^{\bullet}, d) be a differential *-calculus over a *-algebra B, equipped with a complex structure $\Omega^{(\bullet, \bullet)}$.

Let (Ω^{\bullet}, d) be a differential *-calculus over a *-algebra B, equipped with a complex structure $\Omega^{(\bullet, \bullet)}$. A *holomorphic* left B-module is a pair $(\mathcal{F}, \bar{\partial}_{\mathcal{F}})$, where \mathcal{F} is a finitely generated projective left B-module, and $\bar{\partial}_{\mathcal{F}} : \mathcal{F} \to \Omega^{(0,1)} \otimes_B \mathcal{F}$ is a flat (0, 1)-connection. We call $\bar{\partial}_{\mathcal{F}}$ the *holomorphic structure* of the holomorphic left B-module. Let (Ω^{\bullet}, d) be a differential *-calculus over a *-algebra B, equipped with a complex structure $\Omega^{(\bullet, \bullet)}$. A *holomorphic* left B-module is a pair $(\mathcal{F}, \bar{\partial}_{\mathcal{F}})$, where \mathcal{F} is a finitely generated projective left B-module, and $\bar{\partial}_{\mathcal{F}} : \mathcal{F} \to \Omega^{(0,1)} \otimes_B \mathcal{F}$ is a flat (0, 1)-connection. We call $\bar{\partial}_{\mathcal{F}}$ the *holomorphic structure* of the holomorphic left B-module.

In the classical setting the kernel of the holomorphic structure map coincides with the space of holomorphic sections of a holomorphic vector bundle. This motivates us to call

$$H^{0}_{\bar{\partial}}(\mathcal{F}) = \ker \left(\bar{\partial}_{\mathcal{F}} : \mathcal{F} \to \Omega^{(0,1)} \otimes_{B} \mathcal{F} \right),$$

the space of holomorphic sections of $(\mathcal{F}, \bar{\partial}_{\mathcal{F}})$.

Induced homogeneous vector bundles

Let H mod denote the category of finite-dimensional left H-comodules.

Induced homogeneous vector bundles

Let H mod denote the category of finite-dimensional left H-comodules.

Definition

Let ${}^{A}_{B} \mod_{0}$ be the category whose objects are finite-dimensional left *A*-comodules $\Delta_{L} : \mathcal{F} \to A \otimes \mathcal{F}$, endowed with a *B*-bimodule structure, such that

$$\mathbf{1} \ \Delta_L(bf) = \Delta_L(b) \Delta_L(f), \text{ for all } f \in \mathcal{F}, b \in B,$$

$$\mathbf{2} \ \mathcal{F}B^+ = B^+\mathcal{F},$$

and whose morphisms are left A-comodule, B-bimodule, maps.

Induced homogeneous vector bundles

Let H mod denote the category of finite-dimensional left H-comodules.

Definition

Let ${}^{A}_{B} \mod_{0}$ be the category whose objects are finite-dimensional left *A*-comodules $\Delta_{L} : \mathcal{F} \rightarrow A \otimes \mathcal{F}$, endowed with a *B*-bimodule structure, such that

1
$$\Delta_L(bf) = \Delta_L(b)\Delta_L(f)$$
, for all $f \in \mathcal{F}, b \in B$,
2 $\mathcal{F}B^+ = B^+\mathcal{F}$,

and whose morphisms are left *A*-comodule, *B*-bimodule, maps. Set $A \Box_H V := \ker(\Delta_R \otimes \operatorname{id} - \operatorname{id} \otimes \Delta_L : A \otimes V \to A \otimes H \otimes V).$

$$\begin{split} \Phi &: {}^{A}_{B}\mathsf{mod}_{0} \to {}^{H}\mathsf{mod}, & \mathcal{F} \mapsto \mathcal{F}/B^{+}\mathcal{F}, \\ \Psi &: {}^{H}\mathsf{mod} \to {}^{A}_{B}\mathsf{mod}_{0}, & V \mapsto A \square_{H}V, \end{split}$$

where the left *H*-comodule structure of $\Phi(\mathcal{F})$ is given by $(\pi \otimes id) \circ \Delta_L$, and the *B*-module, and left *A*-comodule, structures of $\Psi(V)$ are defined on the first tensor factor.

Relative Hopf modules

A FODC $(\Omega^1(B), d)$ over $B = A^{\operatorname{co}(H)}$ is left-covariant if there exist a left *A*-coaction $\Delta_L : \Omega^1(B) \to A \otimes \Omega^1(B)$ giving $\Omega^1(B)$ the structure of an object in ${}^A_B \mod$ and such that d is a left *A*-comodule map.

Relative Hopf modules

A FODC $(\Omega^1(B), d)$ over $B = A^{\operatorname{co}(H)}$ is left-covariant if there exist a left *A*-coaction $\Delta_L \colon \Omega^1(B) \to A \otimes \Omega^1(B)$ giving $\Omega^1(B)$ the structure of an object in ${}^A_B \mod$ and such that d is a left *A*-comodule map.

A complex structure $\Omega^{(\bullet,\bullet)}$ for Ω^{\bullet} is said to be *covariant* if the \mathbb{N}_0^2 -decomposition of Ω^{\bullet} is a decomposition in the category A_B mod.

Relative Hopf modules

A FODC $(\Omega^1(B), d)$ over $B = A^{\operatorname{co}(H)}$ is left-covariant if there exist a left *A*-coaction $\Delta_L \colon \Omega^1(B) \to A \otimes \Omega^1(B)$ giving $\Omega^1(B)$ the structure of an object in ${}^A_B \mod$ and such that d is a left *A*-comodule map.

A complex structure $\Omega^{(\bullet,\bullet)}$ for Ω^{\bullet} is said to be *covariant* if the \mathbb{N}_0^2 -decomposition of Ω^{\bullet} is a decomposition in the category A_B mod.

Note that the grading implies $\Omega^{(a,b)}$ is automatically a *B*-sub-bimodule. For any covariant complex structure the differentials ∂ and $\overline{\partial}$ are left *A*-comodule maps.

A FODC $(\Omega^1(B), d)$ over $B = A^{\operatorname{co}(H)}$ is left-covariant if there exist a left *A*-coaction $\Delta_L \colon \Omega^1(B) \to A \otimes \Omega^1(B)$ giving $\Omega^1(B)$ the structure of an object in A_B mod and such that d is a left *A*-comodule map.

A complex structure $\Omega^{(\bullet,\bullet)}$ for Ω^{\bullet} is said to be *covariant* if the \mathbb{N}_0^2 -decomposition of Ω^{\bullet} is a decomposition in the category ${}^A_B \mod$.

Note that the grading implies $\Omega^{(a,b)}$ is automatically a *B*-sub-bimodule. For any covariant complex structure the differentials ∂ and $\overline{\partial}$ are left *A*-comodule maps.

Definition

A holomorphic relative Hopf module is a pair $(\mathcal{F}, \bar{\partial}_{\mathcal{F}})$ where $\mathcal{F} \in {}^{A}_{B} \text{mod}, \ \bar{\partial}_{\mathcal{F}} : \mathcal{F} \to \Omega^{(0,1)} \otimes_{B} \mathcal{F}$ is a covariant (0,1)-connection, and $(\mathcal{F}, \bar{\partial}_{\mathcal{F}})$ is a holomorphic left *B*-module.

Let g be a complex simple finite-dimensional Lie algebra with Cartan matrix $A = (a_{ij})$.

Let \mathfrak{g} be a complex simple finite-dimensional Lie algebra with Cartan matrix $A = (a_{ij})$. Let $q \in \mathbb{R}$ such that $q \notin \{-1, 0, 1\}$, and denote $q_i := q^{(\alpha_i, \alpha_i)/2}$.

Let \mathfrak{g} be a complex simple finite-dimensional Lie algebra with Cartan matrix $A = (a_{ij})$. Let $q \in \mathbb{R}$ such that $q \notin \{-1, 0, 1\}$, and denote $q_i := q^{(\alpha_i, \alpha_i)/2}$.

The quantised enveloping algebra $U_q(\mathfrak{g})$ is the noncommutative associative algebra generated by the elements E_i, F_i, K_i , and K_i^{-1} , for $i = 1, \ldots, r$, subject to the relations

$$K_i E_j = q_i^{a_{ij}} E_j K_i, \ K_i F_j = q_i^{-a_{ij}} F_j K_i, \ K_i K_j = K_j K_i,,$$
$$K_i K_i^{-1} = K_i^{-1} K_i = 1, \ E_i F_j - F_j E_i = \delta_{ij} \frac{K_i - K_i^{-1}}{q_i - q_i^{-1}},$$

along with the quantum Serre relations

$$\sum_{r=0}^{1-a_{ij}} (-1)^r \begin{bmatrix} 1-a_{ij} \\ r \end{bmatrix}_{q_i} E_i^{1-a_{ij}-r} E_j E_i^r = 0, \quad \text{for } i \neq j,$$
$$\sum_{r=0}^{1-a_{ij}} (-1)^r \begin{bmatrix} 1-a_{ij} \\ r \end{bmatrix}_{q_i} F_i^{1-a_{ij}-r} F_j F_i^r = 0, \quad \text{for } i \neq j;$$

A Hopf algebra structure is defined on $U_q(\mathfrak{g})$ by

$$\Delta(K_i) = K_i \otimes K_i,$$

$$\Delta(E_i) = E_i \otimes K_i + 1 \otimes E_i, \quad \Delta(F_i) = F_i \otimes 1 + K_i^{-1} \otimes F_i,$$

$$S(E_i) = -E_i K_i^{-1}, \quad S(F_i) = -K_i F_i, \quad S(K_i) = K_i^{-1},$$

$$\varepsilon(E_i) = \varepsilon(F_i) = 0, \quad \varepsilon(K_i) = 1.$$

A Hopf algebra structure is defined on $U_q(\mathfrak{g})$ by

$$\Delta(K_i) = K_i \otimes K_i,$$

$$\Delta(E_i) = E_i \otimes K_i + 1 \otimes E_i, \quad \Delta(F_i) = F_i \otimes 1 + K_i^{-1} \otimes F_i,$$

$$S(E_i) = -E_i K_i^{-1}, \quad S(F_i) = -K_i F_i, \quad S(K_i) = K_i^{-1},$$

$$\varepsilon(E_i) = \varepsilon(F_i) = 0, \quad \varepsilon(K_i) = 1.$$

A Hopf *-algebra structure, called the *compact real form* of $U_q(\mathfrak{g})$, is defined by

$$K_i^* := K_i, \qquad E_i^* := K_i F_i, \qquad F_i^* := E_i K_i^{-1}.$$

Let \mathcal{P} be the weight lattice of \mathfrak{g} , and \mathcal{P}^+ its set of dominant integral weights.

Let \mathcal{P} be the weight lattice of \mathfrak{g} , and \mathcal{P}^+ its set of dominant integral weights. For each $\mu \in \mathcal{P}^+$ there exists an irreducible finite-dimensional $U_q(\mathfrak{g})$ -module V_μ uniquely defined by the existence of a vector $v_\mu \in V_\mu$, which we call a *highest weight vector*, satisfying

$$E_i \triangleright v_\mu = 0, \qquad K_i \triangleright v_\mu = q^{(\mu, \alpha_i)} v_\mu \qquad \text{for all } i = 1, \dots, r.$$

Let \mathcal{P} be the weight lattice of \mathfrak{g} , and \mathcal{P}^+ its set of dominant integral weights. For each $\mu \in \mathcal{P}^+$ there exists an irreducible finite-dimensional $U_q(\mathfrak{g})$ -module V_μ uniquely defined by the existence of a vector $v_\mu \in V_\mu$, which we call a *highest weight vector*, satisfying

$$E_i \triangleright v_\mu = 0, \qquad K_i \triangleright v_\mu = q^{(\mu, \alpha_i)} v_\mu \qquad \text{for all } i = 1, \dots, r.$$

Moreover, v_{μ} is unique up to scalar multiple. We call any finite direct sum of such $U_q(\mathfrak{g})$ -representations a *type*-1 *representation*.

Let \mathcal{P} be the weight lattice of \mathfrak{g} , and \mathcal{P}^+ its set of dominant integral weights. For each $\mu \in \mathcal{P}^+$ there exists an irreducible finite-dimensional $U_q(\mathfrak{g})$ -module V_μ uniquely defined by the existence of a vector $v_\mu \in V_\mu$, which we call a *highest weight vector*, satisfying

$$E_i \triangleright v_\mu = 0, \qquad K_i \triangleright v_\mu = q^{(\mu, \alpha_i)} v_\mu \qquad \text{for all } i = 1, \dots, r.$$

Moreover, v_{μ} is unique up to scalar multiple. We call any finite direct sum of such $U_q(\mathfrak{g})$ -representations a *type*-1 *representation*. In general, a vector $v \in V_{\mu}$ is called a weight vector of weight $\operatorname{wt}(v) \in \mathcal{P}$ if

$$K_i \triangleright v = q^{(\operatorname{wt}(v),\alpha_i)}v,$$
 for all $i = 1, \dots, r$.

Let V be a finite-dimensional $U_q(\mathfrak{g})$ -module, $v \in V$, and $f \in V^*$, the linear dual of V. Consider the function

 $c_{v,f}^V : U_q(\mathfrak{g}) \to \mathbb{C}, \qquad X \mapsto f(X(v)).$

Let V be a finite-dimensional $U_q(\mathfrak{g})$ -module, $v \in V$, and $f \in V^*$, the linear dual of V. Consider the function

$$c_{v,f}^V : U_q(\mathfrak{g}) \to \mathbb{C}, \qquad X \mapsto f(X(v)).$$

The coordinate ring of V is the subspace

$$C(V) := \operatorname{Span}_{\mathbb{C}} \{ c_{v,f}^V \, | \, v \in V, \, f \in V^* \} \subseteq U_q(\mathfrak{g})^*.$$

Let V be a finite-dimensional $U_q(\mathfrak{g})$ -module, $v \in V$, and $f \in V^*$, the linear dual of V. Consider the function

$$c_{v,f}^V: U_q(\mathfrak{g}) \to \mathbb{C}, \qquad X \mapsto f(X(v)).$$

The coordinate ring of V is the subspace

$$C(V) := \operatorname{Span}_{\mathbb{C}} \{ c_{v,f}^V \, | \, v \in V, \, f \in V^* \} \subseteq U_q(\mathfrak{g})^*.$$

In fact, we see that $C(V) \subseteq U_q(\mathfrak{g})^\circ$, where $U_q(\mathfrak{g})^\circ$ denotes the Hopf dual of a Hopf algebra $U_q(\mathfrak{g})$, and that a Hopf subalgebra of $U_q(\mathfrak{g})^\circ$ is given by

$$\mathcal{O}_q(G) := \bigoplus_{V \in \mathsf{Rep}_1U_q(\mathfrak{g})} C(V).$$

Let V be a finite-dimensional $U_q(\mathfrak{g})$ -module, $v \in V$, and $f \in V^*$, the linear dual of V. Consider the function

$$c_{v,f}^V : U_q(\mathfrak{g}) \to \mathbb{C}, \qquad X \mapsto f(X(v)).$$

The *coordinate ring* of V is the subspace

$$C(V) := \operatorname{Span}_{\mathbb{C}} \{ c_{v,f}^V \, | \, v \in V, \, f \in V^* \} \subseteq U_q(\mathfrak{g})^*.$$

In fact, we see that $C(V) \subseteq U_q(\mathfrak{g})^\circ$, where $U_q(\mathfrak{g})^\circ$ denotes the Hopf dual of a Hopf algebra $U_q(\mathfrak{g})$, and that a Hopf subalgebra of $U_q(\mathfrak{g})^\circ$ is given by

$$\mathcal{O}_q(G):=\bigoplus_{V\in \mathsf{Rep}_1U_q(\mathfrak{g})}C(V).$$

We call $\mathcal{O}_q(G)$ the quantum coordinate algebra of G, where G is the unique connected, simply connected, complex algebraic group having \mathfrak{g} as its complex Lie algebra.

Let \mathfrak{g} be a complex simple Lie algebra of rank r.

Let \mathfrak{g} be a complex simple Lie algebra of rank r. For S a subset of simple roots, consider the Hopf subalgebra

$$U_q(\mathfrak{l}_S) := \langle K_i, E_j, F_j \mid i = 1, \dots, r; \alpha_j \in S \rangle.$$

Let \mathfrak{g} be a complex simple Lie algebra of rank r. For S a subset of simple roots, consider the Hopf subalgebra

$$U_q(\mathfrak{l}_S) := \langle K_i, E_j, F_j \mid i = 1, \dots, r; \alpha_j \in S \rangle.$$

From the Hopf algebra embedding $\iota : U_q(\mathfrak{l}_S) \hookrightarrow U_q(\mathfrak{g})$, we get the dual Hopf algebra map $\iota^\circ : U_q(\mathfrak{g})^\circ \to U_q(\mathfrak{l}_S)^\circ$. We have

$$\pi_S := \iota^{\circ}|_{\mathcal{O}_q(G)} : \mathcal{O}_q(G) \to U_q(\mathfrak{l}_S)^{\circ},$$

and the Hopf subalgebra $\mathcal{O}_q(L_S) := \pi_S \big(\mathcal{O}_q(G) \big) \subseteq U_q(\mathfrak{l}_S)^{\circ}.$

Let \mathfrak{g} be a complex simple Lie algebra of rank r. For S a subset of simple roots, consider the Hopf subalgebra

$$U_q(\mathfrak{l}_S) := \langle K_i, E_j, F_j \mid i = 1, \dots, r; \alpha_j \in S \rangle.$$

From the Hopf algebra embedding $\iota : U_q(\mathfrak{l}_S) \hookrightarrow U_q(\mathfrak{g})$, we get the dual Hopf algebra map $\iota^\circ : U_q(\mathfrak{g})^\circ \to U_q(\mathfrak{l}_S)^\circ$. We have

$$\pi_S := \iota^{\circ}|_{\mathcal{O}_q(G)} : \mathcal{O}_q(G) \to U_q(\mathfrak{l}_S)^{\circ},$$

and the Hopf subalgebra $\mathcal{O}_q(L_S) := \pi_S \big(\mathcal{O}_q(G) \big) \subseteq U_q(\mathfrak{l}_S)^{\circ}$. The quantum-homogeneous space

$$\pi: \mathcal{O}_q(G) \to \mathcal{O}_q(L_S), \tag{3}$$

is called the quantum flag manifold associated to \boldsymbol{S} and denoted by

$$\mathcal{O}_q(G/L_S) := \mathcal{O}_q(G)^{\operatorname{co}(\mathcal{O}_q(L_S))}$$

Let \mathfrak{g} be a complex simple Lie algebra of rank r. For S a subset of simple roots, consider the Hopf subalgebra

$$U_q(\mathfrak{l}_S) := \langle K_i, E_j, F_j \mid i = 1, \dots, r; \alpha_j \in S \rangle.$$

From the Hopf algebra embedding $\iota : U_q(\mathfrak{l}_S) \hookrightarrow U_q(\mathfrak{g})$, we get the dual Hopf algebra map $\iota^\circ : U_q(\mathfrak{g})^\circ \to U_q(\mathfrak{l}_S)^\circ$. We have

$$\pi_S := \iota^{\circ}|_{\mathcal{O}_q(G)} : \mathcal{O}_q(G) \to U_q(\mathfrak{l}_S)^{\circ},$$

and the Hopf subalgebra $\mathcal{O}_q(L_S) := \pi_S \big(\mathcal{O}_q(G) \big) \subseteq U_q(\mathfrak{l}_S)^{\circ}$. The quantum-homogeneous space

$$\pi: \mathcal{O}_q(G) \to \mathcal{O}_q(L_S), \tag{3}$$

is called the quantum flag manifold associated to \boldsymbol{S} and denoted by

$$\mathcal{O}_q(G/L_S) := \mathcal{O}_q(G)^{\operatorname{co}(\mathcal{O}_q(L_S))}.$$

The pair $(\mathcal{O}_q(G/L_S), \Delta_L)$ is a left $\mathcal{O}_q(G)$ -comodule algebra.

Irreducible Quantum Flag Manifolds

Theorem (Heckenberger–Kolb'2004)

Over any irreducible quantum flag manifold $\mathcal{O}_q(G/L_S)$, there exists a unique finite-dimensional left $\mathcal{O}_q(G)$ -covariant differential *-calculus $\Omega_q^{\bullet}(G/L_S) \in \mathcal{O}_{q(G/L_S)}^{\mathcal{O}_q(G)} \mod_0$, of classical dimension, that is to say, satisfying

dim
$$\Phi\left(\Omega_q^k(G/L_S)\right) = \binom{2M}{k}$$
, for all $k = 0, \dots, 2M$,

where M is the complex dimension of the corresponding classical manifold.

Theorem (Heckenberger–Kolb'2004)

Over any irreducible quantum flag manifold $\mathcal{O}_q(G/L_S)$, there exists a unique finite-dimensional left $\mathcal{O}_q(G)$ -covariant differential *-calculus $\Omega_q^{\bullet}(G/L_S) \in \mathcal{O}_{q(G/L_S)}^{\mathcal{O}_q(G)} \mod_0$, of classical dimension, that is to say, satisfying

dim
$$\Phi\left(\Omega_q^k(G/L_S)\right) = \binom{2M}{k}$$
, for all $k = 0, \dots, 2M$,

where M is the complex dimension of the corresponding classical manifold.

Proposition

- **1** $\Omega_q^{\bullet}(G/L_S)$ admits precisely two left $\mathcal{O}_q(G)$ -covariant complex structures, each of which is opposite to the other,
- 2 for each complex structure $\Omega^{(1,0)}$ and $\Omega^{(0,1)}$ are simple objects in $\mathcal{O}_{q(G/L_S)} \mod_0$.

Theorem (Díaz García, K., Ó Buachalla, Somberg, Strung, 2021)

Let $\mathcal{O}_q(G/L_S)$ be an irreducible quantum flag manifold endowed with its Heckenberger–Kolb calculus, and $\mathcal{F} \in \frac{\mathcal{O}_q(G)}{\mathcal{O}_q(G/L_S)} \text{mod}_0$. It holds that

- **1** \mathcal{F} admits a left $\mathcal{O}_q(G)$ -covariant connection $\nabla : \mathcal{F} \to \Omega^1_q(G/L_S) \otimes_{\mathcal{O}_q(G/L_S)} \mathcal{F}$, and this is the unique such connection if \mathcal{F} is simple,
- ∂_F := proj^(0,1) ∘ ∇ is a left O_q(G)-covariant holomorphic structure for F, and this is the unique such holomorphic structure if F is simple.

Theorem (Matassa, 2021)

For quantum projective spaces the corresponding connection coincides with the Levi–Civita connection for *q*-deformed analogues of the Fubini-Study metric.

Thank you