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Hopf Algebras
An associative algebra over K is a 3-tuple (A,m, η)

A⊗A⊗A

m⊗id
��

id⊗m // A⊗A
m
��

A⊗A m
// A

K⊗A η⊗id //
∼=

%%

A⊗A
m
��

A⊗K
∼=

yy

id⊗ηoo

A

A coassociative coalgebra over K is a 3-tuple (A,∆, ε)

A⊗A⊗A A⊗A∆⊗idoo

A⊗A

id⊗∆

OO

A
∆oo

∆

OO K⊗A A⊗Aε⊗idoo id⊗ε // A⊗K

A

∼=
ee

∼=
99

∆

OO

A Hopf algebra over K is a 6-tuple (A,m, η,∆, ε, S), S : A→ A

m ◦ (S ⊗ id) ◦∆ = η ◦ ε = m ◦ (id⊗S) ◦∆

3 / 23



Hopf Algebras
An associative algebra over K is a 3-tuple (A,m, η)

A⊗A⊗A

m⊗id
��

id⊗m // A⊗A
m
��

A⊗A m
// A

K⊗A η⊗id //
∼=

%%

A⊗A
m
��

A⊗K
∼=

yy

id⊗ηoo

A

A coassociative coalgebra over K is a 3-tuple (A,∆, ε)

A⊗A⊗A A⊗A∆⊗idoo

A⊗A

id⊗∆

OO

A
∆oo

∆

OO K⊗A A⊗Aε⊗idoo id⊗ε // A⊗K

A

∼=
ee

∼=
99

∆

OO

A Hopf algebra over K is a 6-tuple (A,m, η,∆, ε, S), S : A→ A

m ◦ (S ⊗ id) ◦∆ = η ◦ ε = m ◦ (id⊗S) ◦∆

3 / 23



Hopf Algebras
An associative algebra over K is a 3-tuple (A,m, η)

A⊗A⊗A

m⊗id
��

id⊗m // A⊗A
m
��

A⊗A m
// A

K⊗A η⊗id //
∼=

%%

A⊗A
m
��

A⊗K
∼=

yy

id⊗ηoo

A

A coassociative coalgebra over K is a 3-tuple (A,∆, ε)

A⊗A⊗A A⊗A∆⊗idoo

A⊗A

id⊗∆

OO

A
∆oo

∆

OO K⊗A A⊗Aε⊗idoo id⊗ε // A⊗K

A

∼=
ee

∼=
99

∆

OO

A Hopf algebra over K is a 6-tuple (A,m, η,∆, ε, S), S : A→ A

m ◦ (S ⊗ id) ◦∆ = η ◦ ε = m ◦ (id⊗S) ◦∆

3 / 23



Example

Let G be a group, A = KG. For g ∈ G, we have

∆g = g ⊗ g, ε(g) = 1, S(g) = g−1.

U(g) ←→ O(G)
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Notation

Let H be a Hopf algebra
• ε : H → C
• ∆: H → H ⊗H, ∆h =

∑
i xi ⊗ yi = h(1) ⊗ h(2)

• S : H → H

• / : V ⊗H → V denote a right H-action on V
• . : H ⊗ V → V denote a left H-action on V
• ∆R : V → V ⊗H denotes a right H-coation of V

∆Rv =
∑

vi ⊗ hi = v(0) ⊗ v(1), vi ∈ V, hi ∈ H

• ∆L : V → H ⊗ V denotes a left H-coaction of V

∆Lv =
∑

hi ⊗ vi = v(−1) ⊗ v(0), vi ∈ V, hi ∈ H

Let H+ := H ∩ ker ε and h+ = h− ε(h)1 for h ∈ H.
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Differential Calculus

A differential calculus over an algebra B is a dg-algebra
(Ω• '

⊕
k∈Z≥0

Ωk, d) which is generated in degree 0 as a
dg-algebra and such that Ω0 = B.

d2 = 0, d(ω ∧ µ) = dω ∧ µ+ (−1)deg µω ∧ dµ.

A differential ∗-calculus is a DC equipped with a conjugate
linear involutive map ∗ : Ω• → Ω• satisfying

d(ω∗) = (dω)∗,

(ω ∧ µ)∗ = (−1)klµ∗ ∧ ω∗, for all ω ∈ Ωk, µ ∈ Ωl.

Note that if (Ω•,d) is a differential ∗-calculus over B, then B is a
∗-algebra.
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Covariant DC

Let A be a Hopf algebra. A left A-comodule algebra B is a left
A-comodule which is also an algebra, such that the comodule
structure map

∆L : B → A⊗B

is an algebra map.

A differential calculus (Ω•(B),d) over a right A-comdule
algebra B is covariant if there exists a map
∆L : Ω•(B)→ A⊗ Ω•(B) such that

∆L(dω) = (id⊗d) ◦∆L(ω), for all ω ∈ Ω•(B).
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Quantum homogeneous spaces

Let π : A→ H be a surjective Hopf algebra map between Hopf
algebras A and H.

Then a homogeneous right H-coaction is
given by the maps

∆R := (id⊗π) ◦∆: A→ A⊗H. (1)

The associated quantum homogeneous space is defined to be
the space of coinvariant elements

B = Aco(H) :=
{
b ∈ A | ∆Rb = b⊗ 1

}
. (2)
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Connections

For Ω• a DC over an algebra B and F a finitely generated
projective left B-module, a connection on F is a C-linear map

∇ : F → Ω1 ⊗B F

satisfying

∇(bf) = db⊗ f + b∇f, for all b ∈ B, f ∈ F .

Any connection can be extended to ∇ : Ω• ⊗B F → Ω• ⊗B F

∇(ω ⊗ f) = dω ⊗ f + (−1)degωω ∧∇f.

The curvature of a connection is a left B-module map
∇2 : F → Ω2 ⊗B F . A connection is said to be flat if ∇2 = 0.
Since ∇2(ω ⊗ f) = ω ∧∇2(f), a connection is flat if and only if
the pair (Ω• ⊗B F ,∇) is a complex.
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Complex stucture
A complex structure Ω(•,•), for a differential ∗-calculus (Ω•, d), is
an N2

0-algebra grading
⊕

(a,b)∈N2
0

Ω(a,b) for Ω• such that, for all
(a, b) ∈ N2

0:

1 Ωk =
⊕

a+b=k Ω(a,b),

2
(
Ω(a,b)

)∗
= Ω(b,a),

3 dΩ(a,b) ⊆ Ω(a+1,b) ⊕ Ω(a,b+1).

An element of Ω(a,b) is called an (a, b)-form. For projΩ(a+1,b) , and
projΩ(a,b+1) , the projections from Ωa+b+1 to Ω(a+1,b), and Ω(a,b+1)

respectively, we write

∂|Ω(a,b) := projΩ(a+1,b) ◦d, ∂|Ω(a,b) := projΩ(a,b+1) ◦d.
For any complex structure,

d = ∂ + ∂̄, ∂̄ ◦ ∂ = − ∂ ◦ ∂̄, ∂2 = ∂̄2 = 0.

Thus
(⊕

(a,b)∈N2
0

Ω(a,b), ∂, ∂
)

is a double complex. Both ∂ and ∂̄
satisfy the graded Leibniz rule. Moreover,

∂(ω∗) =
(
∂̄ω
)∗
, ∂̄(ω∗) =

(
∂ω
)∗
, for all ω ∈ Ω•.
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Holomorphic modules

Let (Ω•,d) be a differential ∗-calculus over a ∗-algebra B,
equipped with a complex structure Ω(•,•).

A holomorphic left
B-module is a pair (F , ∂̄F ), where F is a finitely generated
projective left B-module, and ∂̄F : F → Ω(0,1) ⊗B F is a flat
(0, 1)-connection. We call ∂̄F the holomorphic structure of the
holomorphic left B-module.

In the classical setting the kernel of the holomorphic structure
map coincides with the space of holomorphic sections of a
holomorphic vector bundle. This motivates us to call

H0
∂̄(F) = ker

(
∂̄F : F → Ω(0,1) ⊗B F

)
,

the space of holomorphic sections of (F , ∂̄F ).
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Induced homogeneous vector bundles
Let Hmod denote the category of finite-dimensional left
H-comodules.

Definition
Let ABmod0 be the category whose objects are
finite-dimensional left A-comodules ∆L : F → A⊗F ,
endowed with a B-bimodule structure, such that

1 ∆L(bf) = ∆L(b)∆L(f), for all f ∈ F , b ∈ B,
2 FB+ = B+F ,

and whose morphisms are left A-comodule, B-bimodule, maps.
Set A�HV := ker(∆R ⊗ id− id⊗∆L : A⊗ V → A⊗H ⊗ V ).

Φ : ABmod0 → Hmod, F 7→ F/B+F ,
Ψ : Hmod → A

Bmod0, V 7→ A�HV,

where the left H-comodule structure of Φ(F) is given by
(π ⊗ id) ◦∆L, and the B-module, and left A-comodule,
structures of Ψ(V ) are defined on the first tensor factor.
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endowed with a B-bimodule structure, such that
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2 FB+ = B+F ,
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Relative Hopf modules

A FODC (Ω1(B),d) over B = Aco(H) is left-covariant if there
exist a left A-coaction ∆L : Ω1(B)→ A⊗ Ω1(B) giving Ω1(B)
the structure of an object in A

Bmod and such that d is a left
A-comodule map.

A complex structure Ω(•,•) for Ω• is said to be covariant if the
N2

0-decomposition of Ω• is a decomposition in the
category A

Bmod.

Note that the grading implies Ω(a,b) is automatically a
B-sub-bimodule. For any covariant complex structure the
differentials ∂ and ∂̄ are left A-comodule maps.

Definition
A holomorphic relative Hopf module is a pair (F , ∂̄F ) where
F ∈ A

Bmod, ∂̄F : F → Ω(0,1) ⊗B F is a covariant
(0, 1)-connection, and (F , ∂̄F ) is a holomorphic left B-module.
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Drinfeld–Jimbo Quantum Groups I
Let g be a complex simple finite-dimensional Lie algebra with
Cartan matrix A = (aij).

Let q ∈ R such that q /∈ {−1, 0, 1}, and
denote qi := q(αi,αi)/2.
The quantised enveloping algebra Uq(g) is the noncommutative
associative algebra generated by the elements Ei, Fi,Ki, and
K−1
i , for i = 1, . . . , r, subject to the relations

KiEj = q
aij
i EjKi, KiFj = q

−aij
i FjKi, KiKj = KjKi, ,

KiK
−1
i = K−1

i Ki = 1, EiFj − FjEi = δij
Ki −K−1

i

qi − q−1
i

,

along with the quantum Serre relations∑1−aij
r=0

(−1)r
[
1− aij
r

]
qi

E
1−aij−r
i EjE

r
i = 0, for i 6= j,

∑1−aij
r=0

(−1)r
[
1− aij
r

]
qi

F
1−aij−r
i FjF

r
i = 0, for i 6= j;
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Drinfeld–Jimbo Quantum Groups II

A Hopf algebra structure is defined on Uq(g) by

∆(Ki) = Ki ⊗Ki,

∆(Ei) = Ei ⊗Ki + 1⊗ Ei, ∆(Fi) = Fi ⊗ 1 +K−1
i ⊗ Fi,

S(Ei) = −EiK−1
i , S(Fi) = −KiFi, S(Ki) = K−1

i ,

ε(Ei) = ε(Fi) = 0, ε(Ki) = 1.

A Hopf ∗-algebra structure, called the compact real form of
Uq(g), is defined by

K∗i := Ki, E∗i := KiFi, F ∗i := EiK
−1
i .
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Drinfeld–Jimbo Quantum Groups III

Let P be the weight lattice of g, and P+ its set of dominant
integral weights.

For each µ ∈ P+ there exists an irreducible
finite-dimensional Uq(g)-module Vµ uniquely defined by the
existence of a vector vµ ∈ Vµ, which we call a highest weight
vector, satisfying

Ei . vµ = 0, Ki . vµ = q(µ,αi)vµ for all i = 1, . . . , r.

Moreover, vµ is unique up to scalar multiple. We call any finite
direct sum of such Uq(g)-representations a type-1
representation. In general, a vector v ∈ Vµ is called a weight
vector of weight wt(v) ∈ P if

Ki . v = q(wt(v),αi)v, for all i = 1, . . . , r.
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Quantised Coordinate Algebras Oq(G)

Let V be a finite-dimensional Uq(g)-module, v ∈ V , and f ∈ V ∗,
the linear dual of V . Consider the function

cVv,f : Uq(g)→ C, X 7→ f
(
X(v)

)
.

The coordinate ring of V is the subspace

C(V ) := SpanC{cVv,f | v ∈ V, f ∈ V ∗} ⊆ Uq(g)∗.

In fact, we see that C(V ) ⊆ Uq(g)◦, where Uq(g)◦ denotes the
Hopf dual of a Hopf algebra Uq(g), and that a Hopf subalgebra
of Uq(g)◦ is given by

Oq(G) :=
⊕

V ∈Rep1Uq(g)

C(V ).

We call Oq(G) the quantum coordinate algebra of G, where G
is the unique connected, simply connected, complex algebraic
group having g as its complex Lie algebra.
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Quantum Flag Manifolds
Let g be a complex simple Lie algebra of rank r.

For S a subset
of simple roots, consider the Hopf subalgebra

Uq(lS) :=
〈
Ki, Ej , Fj | i = 1, . . . , r;αj ∈ S

〉
.

From the Hopf algebra embedding ι : Uq(lS) ↪→ Uq(g), we get
the dual Hopf algebra map ι◦ : Uq(g)◦ → Uq(lS)◦. We have

πS := ι◦|Oq(G) : Oq(G)→ Uq(lS)◦,

and the Hopf subalgebra Oq(LS) := πS
(
Oq(G)

)
⊆ Uq(lS)◦.

The quantum-homogeneous space

π : Oq(G)→ Oq(LS), (3)

is called the quantum flag manifold associated to S and
denoted by

Oq
(
G/LS

)
:= Oq

(
G)co(Oq(LS)).

The pair (Oq(G/LS),∆L) is a left Oq(G)-comodule algebra.
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Irreducible Quantum Flag Manifolds

An Oq(Grk,n+1)

Bn Oq(Q2n+1)

Cn Oq(Ln)

Dn Oq(Q2n)

Dn Oq(Sn)

E6 Oq(OP2)

E7 Oq(F)
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Theorem (Heckenberger–Kolb’2004)
Over any irreducible quantum flag manifold Oq(G/LS), there
exists a unique finite-dimensional left Oq(G)-covariant
differential ∗-calculus Ω•q(G/LS) ∈ Oq(G)

Oq(G/LS)mod0, of classical
dimension, that is to say, satisfying

dim Φ
(

Ωk
q (G/LS)

)
=

(
2M

k

)
, for all k = 0, . . . , 2M,

where M is the complex dimension of the corresponding
classical manifold.

Proposition

1 Ω•q(G/LS) admits precisely two left Oq(G)-covariant
complex structures, each of which is opposite to the other,

2 for each complex structure Ω(1,0) and Ω(0,1) are simple
objects in Oq(G)

Oq(G/LS)mod0.
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Main Theorem

Theorem (Dı́az Garcı́a, K., Ó Buachalla, Somberg,
Strung, 2021)
Let Oq(G/LS) be an irreducible quantum flag manifold
endowed with its Heckenberger–Kolb calculus, and
F ∈ Oq(G)

Oq(G/LS)mod0. It holds that

1 F admits a left Oq(G)-covariant connection
∇ : F → Ω1

q(G/LS)⊗Oq(G/LS) F , and this is the unique
such connection if F is simple,

2 ∂̄F := proj(0,1) ◦ ∇ is a left Oq(G)-covariant holomorphic
structure for F , and this is the unique such holomorphic
structure if F is simple.
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Further discussion

Theorem (Matassa, 2021)
For quantum projective spaces the corresponding connection
coincides with the Levi–Civita connection for q-deformed
analogues of the Fubini-Study metric.
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Thank you
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