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Hopf Algebras
An associative algebra over K is a 3-tuple (A, m,n)

n®id A®Aid®nA®K

AARAY™ A9 A Ko A
=T N
A®A— A

A coassociative coalgebra over K is a 3-tuple (A4, A, ¢)
A®id e®id A A id ®e A3 K

AQARA<—ARA KA
Tim TA ‘RTA/

AgA<2 A A
A Hopf algebra over K is a 6-tuple (A, m,n,A,e,S5), S: A — A

mo(S®id)oA=noe=mo (id®S)o A
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Let G be a group, A = KG. For g € G, we have

Ag=g®g, <e(g)=1, Sg=g"
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Let H be a Hopf algebra
e c: H—-C
* AtH—-H®H,Ah=3 7, ®y; = hq) ® h)
e S:H—~>H
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Let H be a Hopf algebra
e c: H—-C
* AtH—-H®H,Ah=3 7, ®y; = hq) ® h)
e S:H—~>H
e : V® H — V denote a right H-action on V/
>: H®V — V denote a left H-action on V'
Agr: V — V ® H denotes a right H-coation of V/

AR”:Z“Z‘@)’%FU(O)@%), v, €V, h; € H

AV — H ®V denotes a left H-coaction of V
ALU:Zhi®Ui:U(_1)®U(0), v; € V,h; € H
Let H" := HNkere and ht =h —e(h)1 for h € H.
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Differential Calculus

A differential calculus over an algebra B is a dg-algebra
(2° =~ Dpez., QOF d) which is generated in degree 0 as a

dg-algebra and such that Q° = B.

d? =0, dw A p) =dwA p+ (—1)%8H 0 A dp.
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Differential Calculus

A differential calculus over an algebra B is a dg-algebra
(2° =~ Dpez., QOF d) which is generated in degree 0 as a
dg-algebra and such that Q° = B.

d? =0, dw A p) =dwA p+ (—1)%8H 0 A dp.

A differential x-calculus is a DC equipped with a conjugate
linear involutive map *: Q°* — Q¢ satisfying

d(w*) = (dw)*,
(WA = (D" Aw*,  forallwe QF, peql.

Note that if (2°,d) is a differential x-calculus over B, then B is a
x-algebra.
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Let A be a Hopf algebra. A left A-comodule algebra B is a left
A-comodule which is also an algebra, such that the comodule

structure map
A,:B—A®B

is an algebra map.
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Let A be a Hopf algebra. A left A-comodule algebra B is a left
A-comodule which is also an algebra, such that the comodule
structure map

A,:B—A®B

is an algebra map.

A differential calculus (Q2*(B), d) over a right A-comdule
algebra B is covariant if there exists a map
Ar: Q*(B) - A® Q*(B) such that

Ar(dw) = (id®d) o Ap(w), forallw € Q*(B).

7/23



Quantum homogeneous spaces

Let 7: A — H be a surjective Hopf algebra map between Hopf
algebras A and H.
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Quantum homogeneous spaces

Let 7: A — H be a surjective Hopf algebra map between Hopf
algebras A and H. Then a homogeneous right H-coaction is
given by the maps

Agp:= (id®m)oA: A— A® H. (1)

The associated quantum homogeneous space is defined to be
the space of coinvariant elements

B = Ac() . {beA\ARb:bm}. @)
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Connections

For 2°* a DC over an algebra B and F a finitely generated
projective left B-module, a connection on F is a C-linear map

V: F— Ql ®p F
satisfying

V(f)=db® f + bV, forallbe B, f € F.
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Connections

For 2°* a DC over an algebra B and F a finitely generated
projective left B-module, a connection on F is a C-linear map

V:F—QepF
satisfying
Vbf)=db® f+bVf, forallbe B, feF.
Any connection can be extendedto V: Q* @ F — Q°* @5 F
Viw® f)=dw® f+ (—1)"8“w A V.

The curvature of a connection is a left B-module map

V2: F = Q2 ®p F. A connection is said to be flatif V2 = 0.
Since V2(w ® f) = w A V2(f), a connection is flat if and only if
the pair (Q°* @5 F, V) is a complex.
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Complex stucture

A complex structure Q(**), for a differential x-calculus (Q°,d), is
an Nj-algebra grading Do penz Q@b for O* such that, for all

(a,b) € NZ:
Q 0F = Dorv—r Qlab),
O (QUh)* = Qo)
6 dQ(a,b) C Q(a+1,b) ® Q(a,b+1).
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A complex structure Q(**), for a differential x-calculus (Q°,d), is
an Nj-algebra grading @, jerz 2" for Q° such that, for all
(a,b) € NZ:

QO =B, - Y,

e (Q(a,b))* — Q(b,a),

(3 dn(ab) C Qla+1.b) ® Qlab+1)
An element of Q(®?) is called an (a, b)-form. For projqa-+1.s, and
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respectively, we write
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Complex stucture

A complex structure Q(**), for a differential x-calculus (Q°,d), is
an Nj-algebra grading @, jerz 2" for Q° such that, for all
(a,b) € NZ:

Q =D, 2,

0 (2)" = o),

© d0@d) C Qla+lh) g Qab+l),
An element of Q(®?) is called an (a, b)-form. For projqa-+1.s, and
Proja.s+1), the projections from Q@+4+1 to Q(a+1.5) and Qleb+1)
respectively, we write

A qean = Projgaiim od, g = Projgs+y od.
For any complex structure,
d=0+0, 0od=—-000, P =0%=0.

Thus (@, yenz 2*", 9,9) is a double complex. Both 9 and 9
satisfy the graded Leibniz rule. Moreover,

O(w*) = (0w)", I(w*) = (0w)", forallw € Q°.
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Holomorphic modules

Let (©2°,d) be a differential x-calculus over a x-algebra B,
equipped with a complex structure Q(**).
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Let (©2°,d) be a differential x-calculus over a x-algebra B,
equipped with a complex structure Q(**). A holomorphic left
B-module is a pair (F,dr), where F is a finitely generated
projective left B-module, and 0r : F — QY @5 Fis a flat
(0, 1)-connection. We call 9 the holomorphic structure of the
holomorphic left B-module.
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Holomorphic modules

Let (©2°,d) be a differential x-calculus over a x-algebra B,
equipped with a complex structure Q(**). A holomorphic left
B-module is a pair (F,dr), where F is a finitely generated
projective left B-module, and 0r : F — QY @5 Fis a flat
(0, 1)-connection. We call 9 the holomorphic structure of the
holomorphic left B-module.

In the classical setting the kernel of the holomorphic structure
map coincides with the space of holomorphic sections of a
holomorphic vector bundle. This motivates us to call

HY(F) = ker (05 : F = 0OV @ F),

the space of holomorphic sections of (F,0r).
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Induced homogeneous vector bundles

Let “mod denote the category of finite-dimensional left
H-comodules.
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Let “mod denote the category of finite-dimensional left
H-comodules.

Definition

Let 4mod, be the category whose objects are
finite-dimensional left A-comodules A : F - A® F,
endowed with a B-bimodule structure, such that

O ALQf) =AL(b)AL(f), forall f € F,be B,
® 7Bt = BT F,
and whose morphisms are left A-comodule, B-bimodule, maps.
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Induced homogeneous vector bundles

Let “mod denote the category of finite-dimensional left
H-comodules.
Definition
Let 4mod, be the category whose objects are
finite-dimensional left A-comodules A : F - A® F,
endowed with a B-bimodule structure, such that

O AL(bf)=ALb)AL(Sf), forall f € F,be B,

® FB™ = B"F,
and whose morphisms are left A-comodule, B-bimodule, maps.
Set AOpV :=ker(Ap ®id—id AL : AQV - AQH®YV).

® : Amody — Fmod, F— F/BTF,
\P:Hmod%émodo, Vi— AOgV,

where the left H-comodule structure of ®(F) is given by
(r ®1id) o A, and the B-module, and left A-comodule,
structures of (V') are defined on the first tensor factor.
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Relative Hopf modules

A FODC (Q'(B),d) over B = A1) is left-covariant if there
exist a left A-coaction Az: Q'(B) — A ® Q'(B) giving Q!(B)
the structure of an object in smod and such that d is a left
A-comodule map.

13/23



Relative Hopf modules

A FODC (Q'(B),d) over B = A1) is left-covariant if there
exist a left A-coaction Az: Q'(B) — A ® Q'(B) giving Q!(B)
the structure of an object in smod and such that d is a left
A-comodule map.

A complex structure Q(**) for Q° is said to be covariant if the
NZ-decomposition of 2* is a decomposition in the
category amod.

13/23



Relative Hopf modules

A FODC (Q'(B),d) over B = A1) is left-covariant if there
exist a left A-coaction Az: Q'(B) — A ® Q'(B) giving Q!(B)
the structure of an object in smod and such that d is a left
A-comodule map.

A complex structure Q(**) for Q° is said to be covariant if the
NZ-decomposition of 2* is a decomposition in the
category amod.

Note that the grading implies Q(**) is automatically a
B-sub-bimodule. For any covariant complex structure the
differentials 9 and 9 are left A-comodule maps.

13/23



Relative Hopf modules

A FODC (Q'(B),d) over B = A1) is left-covariant if there
exist a left A-coaction Az: Q'(B) — A ® Q'(B) giving Q!(B)
the structure of an object in smod and such that d is a left
A-comodule map.

A complex structure Q(**) for Q° is said to be covariant if the
NZ-decomposition of 2* is a decomposition in the
category amod.

Note that the grading implies Q(**) is automatically a
B-sub-bimodule. For any covariant complex structure the
differentials 9 and 9 are left A-comodule maps.

Definition

A holomorphic relative Hopf module is a pair (F, dr) where
F € #mod, 9 : F — QO ®p Fis a covariant

(0, 1)-connection, and (F, dr) is a holomorphic left B-module.
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Drinfeld—Jimbo Quantum Groups |

Let g be a complex simple finite-dimensional Lie algebra with
Cartan matrix A = (a;;).
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Drinfeld—Jimbo Quantum Groups |

Let g be a complex simple finite-dimensional Lie algebra with
Cartan matrix A = (a;;). Let ¢ € Rsuch thatq ¢ {—1,0,1}, and
denote ¢; := ¢(@ixi)/2,
The quantised enveloping algebra U,(g) is the noncommutative
associative algebra generated by the elements E;, F;, K;, and
K; ! fori=1,...,r, subject to the relations

KiEj = ¢;" EjK;, KiFj = q; “"FiK;, K;Kj = K;K;,,
K —K;!
KiK' =K 'K; =1, E;Fj; — FjE; = §;;————,
qi — q;
along with the quantum Serre relations

1—a;; — Qi —ii—
S | B EE =0 fori

r=0 r
qi

> ) F “”} F %R EN =0, fori# j;

r=0 r
qi
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Drinfeld—Jimbo Quantum Groups Il

A Hopf algebra structure is defined on U,(g) by
A(K;) = K; ® K,
AE)=FEeK +10E, AF)=Fol+K;,'®F,
S(E))=-EK;', S(F)=-KF, S(K;)=K",
€(EZ) = €(FZ) = 0, €(Kl) =1.
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Drinfeld—Jimbo Quantum Groups Il

A Hopf algebra structure is defined on U,(g) by
A(K;) = K; ® K,
AE)=FEeK +10E, AF)=Fol+K;,'®F,
S(E))=-EK;', S(F)=-KF, S(K;)=K",
€(EZ) = €(FZ) = 0, €(Kl) =1.

A Hopf x-algebra structure, called the compact real form of
U,(g), is defined by

K=K, Ef .= K;F;, Ff = BK; .

)
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Drinfeld—Jimbo Quantum Groups I

Let P be the weight lattice of g, and P+ its set of dominant
integral weights.
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Drinfeld—Jimbo Quantum Groups I

Let P be the weight lattice of g, and P+ its set of dominant
integral weights. For each . € P there exists an irreducible
finite-dimensional U, (g)-module V,, uniquely defined by the
existence of a vector v, € V,,, which we call a highest weight
vector, satisfying

E;>v, =0, Ki>v, = q(“’ai)vu foralli=1,...,r.

Moreover, v,, is unique up to scalar multiple. We call any finite
direct sum of such U,(g)-representations a type-1
representation. In general, a vector v € V,, is called a weight
vector of weight wt(v) € P if

K;pv=q"thaiy, foralli=1,...,r
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Quantised Coordinate Algebras O,(G)

Let V' be a finite-dimensional U,(g)-module, v € V, and f € V¥,
the linear dual of V. Consider the function

eyt Uqlg) = C, X = f(X(v)).
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Quantised Coordinate Algebras O,(G)

Let V' be a finite-dimensional U,(g)-module, v € V, and f € V¥,
the linear dual of V. Consider the function

eyt Uqlg) = C, X = f(X(v)).
The coordinate ring of V' is the subspace
cV):= Span(c{ch lveV, feV*} CU,(g)".

In fact, we see that C(V') C U,(g)°, where U,(g)° denotes the
Hopf dual of a Hopf algebra U, (g), and that a Hopf subalgebra
of U,(g)° is given by

0,G) = & o).

VERep, Uq(9)

We call O,(G) the quantum coordinate algebra of G, where G
is the unique connected, simply connected, complex algebraic
group having g as its complex Lie algebra.
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Quantum Flag Manifolds

Let g be a complex simple Lie algebra of rank r.
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the dual Hopf algebra map .° : U, (g)° — U,(ls)°. We have

ms =0, + Og(G) = Uy(ls),

and the Hopf subalgebra O,(Ls) := 75(04(G)) C Uy(ls)°.
The quantum-homogeneous space

m: Og(G) = O4(Lg), (3)

is called the quantum flag manifold associated to S and
denoted by

0(G/Ls) := 0, (G)®°©alLs)),
The pair (O,(G/Ls),Ar) is a left O,(G)-comodule algebra.
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Irreducible Quantum Flag Manifolds

A, Oo—-0 O O O O Oy(Grrmi1)
By X—=C —C—=0 04(Q2n+1)
C. o—0O——(C==X O4(Ln)
D, Oq (Q%/)
D, O4(Sn)
Es o—-=C i 0 0,(0P?)
E. o—=0 i O—CO 0,(F)
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Theorem (Heckenberger—Kolb’2004)

Over any irreducible quantum flag manifold O,(G/Lyg), there

exists a unique finite-dimensional left O,(G)-covariant

differential x-calculus Q3(G/Ls) € 0, (g/qégmodo, of classical

dimension, that is to say, satisfying

2M

dun(I)(Qq(G/LS)) - < . ) forall k =0,...,2M,
where M is the complex dimension of the corresponding

classical manifold.
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Theorem (Heckenberger—Kolb’2004)

Over any irreducible quantum flag manifold O,(G/Lyg), there
exists a unique finite-dimensional left O,(G)-covariant
differential x-calculus Q3(G/Ls) € 0, (g/qégmodo, of classical

dimension, that is to say, satisfying

2M

dimcp(sz’;(G/LS)) - < . ) forall k=0,...,2M,

where M is the complex dimension of the corresponding
classical manifold.

Proposition
O Q5 (G/Ls) admits precisely two left O,(G)-covariant

complex structures, each of which is opposite to the other,

© for each complex structure Q10 and Q1) are simple

objects in o, (g 7£i§modg.
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Theorem (Diaz Garcia, K., O Buachalla, Somberg,
Strung, 2021)

Let O,(G/Ls) be an irreducible quantum flag manifold
endowed with its Heckenberger—Kolb calculus, and
F € o,c/rs)mody. It holds that
© 7 admits a left O,(G)-covariant connection
V:F = Q(G/Ls) ®o,c/Ls) F» and this is the unique
such connection if F is simple,

® Or := proj®V o V is a left O,(G)-covariant holomorphic
structure for F, and this is the unique such holomorphic
structure if F is simple.
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Further discussion

Theorem (Matassa, 2021)

For quantum projective spaces the corresponding connection
coincides with the Levi—Civita connection for q-deformed
analogues of the Fubini-Study metric.
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