Homogeneous 2-nondegenerate CR manifolds of hypersurface type and their modified CR symbols

David Sykes

Masaryk University

42th Winter School
Geometry and Physics
Srni, January 2022

Hypersurface-type CR Structures

Let M be a real hypersurface of \mathbb{C}^{n+1} with odd dimension $2 n+1$
$D=T M \cap i T M$ denotes the maximal complex subbundled of $T M$
$J: D \rightarrow D$ denotes multiplication by i
$H \subset \mathbb{C} \otimes_{\mathbb{R}} T M$ denotes the i-eigenspace of J

Definition

(M, H) is a Cauchy-Riemann (CR) manifold of hypersurface-type

Local Invariants of Generalized Levi Forms

The Levi form \mathcal{L} is a field of Hermitian forms given by

$$
\mathcal{L}\left(X_{p}, Y_{p}\right):=\frac{i}{2}[X, \bar{Y}]_{p} \quad\left(\bmod H_{p} \oplus \bar{H}_{p}\right) \quad \forall X, Y \in \Gamma(H)
$$

taking values in $\mathbb{C} \otimes_{\mathbb{R}} T_{p} M /\left(H_{p} \oplus \bar{H}_{p}\right) \cong \mathbb{C}$. Let K denote the Levi kernel, i.e., the kernel of \mathcal{L}.

For $v \in K_{p}$ we define the antilinear operator $\mathrm{ad}_{v}: H_{p} / K_{p} \rightarrow H_{p} / K_{p}$ by taking $V \in \Gamma(K)$ such that $V_{p}=v$ and setting

$$
\operatorname{ad}_{v}\left(X_{p}+K_{p}\right):=[V, \bar{X}]_{p} \bmod K_{p} \oplus \bar{H}_{p} \quad \forall X \in \Gamma(H)
$$

H is 2 -nondegenerate if $K \neq 0$ and $\operatorname{ad}_{v} \neq 0$ for all $v \in K \backslash\{0\}$.

Truncated Levi-Tanaka Algebras

For $p \in M$, set

$$
\mathfrak{g}_{-2}(p):=\mathfrak{g}_{-2,0}(p):=\mathbb{C} T_{p} M /\left(H_{p} \oplus \bar{H}_{p}\right), \quad \mathfrak{g}_{-1,1}(p):=H_{p} / K_{p},
$$

and

$$
\mathfrak{g}_{-1,-1}(p):=\bar{H}_{p} / \bar{K}_{p} .
$$

If H is 2-nondegenerate then, with $\mathfrak{g}_{-1}(p):=\mathfrak{g}_{-1,1}(p) \oplus \mathfrak{g}_{-1,-1}(p)$,

$$
\mathfrak{g}_{-}(p):=\mathfrak{g}_{-2}(p) \oplus \mathfrak{g}_{-1}(p)
$$

has the structure of a Heisenberg algebra with nontrivial Lie brackets given by

$$
[v, \bar{w}]:=i \mathcal{L}(v, w) \quad \forall v, w \in \mathfrak{g}_{-1,1}(p) .
$$

Derivations of the Heisenberg Algebra

For $v \in K_{p}$, the map ad_{v} determines an element

$$
\widetilde{\mathrm{ad}_{v}} \in \mathfrak{c s p}\left(\mathfrak{g}_{-1}(p)\right) \cong \mathfrak{d e r}\left(\mathfrak{g}_{-}(p)\right)
$$

defined by

$$
\widetilde{\operatorname{ad}_{v}}(x):= \begin{cases}0 & \text { if } x \in H_{p} / K_{p} \\ \operatorname{ad}_{v}(\bar{x}) & \text { if } x \in \bar{H}_{p} / \bar{K}_{p}\end{cases}
$$

Define

$$
\begin{aligned}
\mathfrak{g}_{0,2}(p):= & \left\{\widetilde{\operatorname{ad}_{v}} \in \mathfrak{d e r}\left(\mathfrak{g}_{-}(p)\right) \mid v \in K_{p}\right\}, \\
& \mathfrak{g}_{0,-2}(p):=\overline{\mathfrak{g}_{0,2}(p)},
\end{aligned}
$$

and

$$
\mathfrak{g}_{0,0}(p):=\left\{v \in \mathfrak{d e r}\left(\mathfrak{g}_{-}(p)\right) \mid\left[v, \mathfrak{g}_{i, j}(p)\right] \subset \mathfrak{g}_{i, j}(p) \forall(i, j)\right\} .
$$

CR Symbols of 2-nondegenerate Structures

The CR symbol of a 2-nondegenerate, hypersurface-type structure H at $p \in M$, introduced in [1, Porter and Zelenko], is the space

$$
\mathfrak{g}^{0}(p):=\mathfrak{g}_{-}(p) \oplus \mathfrak{g}_{0,0}(p) \oplus \mathfrak{g}_{0,-2}(p) \oplus \mathfrak{g}_{0,2}(p)
$$

together with the involution induced on $\mathfrak{g}_{-}(p)$ induced by conjugation on $\mathbb{C} T_{p} M$

The CR symbol $\mathfrak{g}^{0}(p)$ is regular if it is a Lie subalgebra of $\mathfrak{g}_{-}(p) \rtimes \mathfrak{d e r}\left(\mathfrak{g}_{-}(p)\right)$.
In general $\left[\mathfrak{g}_{0,2}, \mathfrak{g}_{0,-2}\right]$ is not a subspace of \mathfrak{g}^{0}.

Adapted Frame Bundle

Fix a model abstract CR symbol $\mathfrak{g}^{0}=\mathfrak{g}_{-} \oplus \mathfrak{g}_{0,-2} \oplus \mathfrak{g}_{0,0} \oplus \mathfrak{g}_{0,2}$. pr : $P^{0} \rightarrow M$ is the bundle whose fiber $\mathrm{pr}^{-1}(p)$ over $p \in M$ is comprised of all adapted frames at p, which are the Lie algebra isomorphisms ψ satisfying

- $\psi: \mathfrak{g}_{-} \rightarrow \mathfrak{g}_{-}(p)$
- $\psi\left(\left[y_{1}, y_{2}\right]\right)=\left[\psi\left(y_{1}\right), \psi\left(y_{2}\right)\right] \quad \forall y_{1}, y_{2} \in \mathfrak{g}_{-}$
- $\psi\left(\mathfrak{g}_{i, j}\right)=\mathfrak{g}_{i, j}(p) \quad \forall(i, j) \in\{(-1, \pm 1),(-2,0)\}$
- $\psi^{-1} \circ \mathfrak{g}_{0, \pm 2}(p) \circ \psi=\mathfrak{g}_{0, \pm 2}$
- ψ commutes with the CR symbols' involutions, i.e.,

The Levi Leaf Space

$K \oplus \bar{K}$ is integrable and induces the Levi foliation of M.
Define the Levi leaf space \mathcal{N} to be the leaf space of this foliation, with natural projection denoted by

$$
\pi: M \rightarrow \mathcal{N}
$$

and label

$$
\Pi:=\pi \circ \mathrm{pr}
$$

Modified CR Symbols

Fix $\psi_{0} \in P^{0}$. Let $\psi:(-\varepsilon, \varepsilon) \rightarrow P_{\Pi\left(\psi_{0}\right)}^{0}$ be a curve in
$P_{\Pi\left(\psi_{0}\right)}^{0}=\Pi^{-1}\left(\Pi\left(\psi_{0}\right)\right)$ with

$$
\psi(0)=\psi_{0}
$$

and define $\theta_{0}: T_{\psi_{0}} P_{\Pi\left(\psi_{0}\right)}^{0} \rightarrow \mathfrak{c s p}\left(\mathfrak{g}_{-1}\right)$ by

$$
\theta_{0}\left(\psi^{\prime}(0)\right):=\psi_{0}^{-1} \circ \psi^{\prime}(0)=\left.\frac{d}{d t}\right|_{t=0}\left(\pi_{*} \circ \psi_{0}\right)^{-1} \circ\left(\pi_{*} \circ \psi(t)\right)
$$

The modified CR symbol of the structure H at $\psi_{0} \in P^{0}$ is

$$
\mathfrak{g}^{0, \bmod }\left(\psi_{0}\right):=\mathfrak{g}_{-} \oplus \mathfrak{g}_{0}^{\bmod }\left(\psi_{0}\right)
$$

where

$$
\mathfrak{g}_{0}^{\bmod }\left(\psi_{0}\right):=\operatorname{span}_{\mathbb{C}}\left(\theta_{0}\left(T_{\psi_{0}} P_{\Pi\left(\psi_{0}\right)}^{0}\right)\right)
$$

Reduced Modified CR Symbols (of homogeneous structures)

For a modified symbol $\mathfrak{g}^{0, \text { mod }} \subset \mathfrak{g}_{-} \rtimes \mathfrak{c s p}\left(\mathfrak{g}_{-1}\right)$, define its reduction

$$
\mathfrak{g}^{0, \text { red }}=\mathfrak{g}_{-} \oplus \mathfrak{g}_{0}^{\text {red }} \subset \mathfrak{g}^{0, \text { mod }}
$$

by

$$
\mathfrak{g}_{0}^{\text {red }}:=V_{s} \subset V_{s-1} \subset \cdots \subset V_{1}=\mathfrak{g}_{0}^{\bmod }
$$

where

$$
V_{j+1}:=V_{j} \cap N_{\text {csp }(\mathfrak{g}-1)}\left(V_{j}\right) \quad \forall j \in\{1, \ldots, s\}
$$

and $V_{s}=V_{s+1}$.
We call $\mathfrak{g}^{0, \text { red }}$ a reduced modified $C R$ symbol (RMS) of $\mathfrak{g}^{0, \text { mod }}$.

Homogeneity criterion

Proposition

If (M, H) is homogeneous with a reduced modified symbol $\mathfrak{g}^{0, \text { red }}=\mathfrak{g}_{-} \oplus \mathfrak{g}_{0}^{\text {red }}$ then $\mathfrak{g}_{0}^{\text {red }}$ is a subalgebra in $\mathfrak{c s p}\left(\mathfrak{g}_{-1}\right)$ with decomposition $\mathfrak{g}_{0}^{\text {red }}=\mathfrak{g}_{0,-}^{\text {red }} \oplus \mathfrak{g}_{0,0}^{\text {red }} \oplus \mathfrak{g}_{0,+}^{\text {red }}$ satisfying

- $\iota\left(\mathfrak{g}_{0}^{\text {red }}\right)=\mathfrak{g}_{0}^{\text {red }}$,
- $\iota\left(\mathfrak{g}_{0,-}^{\text {red }}\right)=\mathfrak{g}_{0,+}^{\text {red }}$,
- $\left[v, \mathfrak{g}_{-1,1}\right] \not \subset \mathfrak{g}_{-1,1} \quad \forall v \in \mathfrak{g}_{0,-}^{\text {red }}$
- $\left[v, \mathfrak{g}_{-1,-1}\right] \subset \mathfrak{g}_{-1,-1} \quad \forall v \in \mathfrak{g}_{0,-}^{\text {red }}$
- $\left[v, \mathfrak{g}_{-1, i}\right] \subset \mathfrak{g}_{-1, i} \quad \forall v \in \mathfrak{g}_{0,0}^{\text {red }}, i \in\{-1,1\}$.

An abstract reduced modified CR symbol (ARMS) is any subalgebra $\mathfrak{g}^{0, \text { red }} \subset \mathfrak{g}_{-} \rtimes \mathfrak{c s p}\left(\mathfrak{g}_{-1}\right)$ with a structure as above.

Symmetry Bounds

The universal Tanaka prolongation $\mathfrak{u}=\bigoplus_{j \geq-2} \mathfrak{u}_{j}$ of $\mathfrak{g}^{0 \text { red }}$ is given by

$$
\mathfrak{u}_{-2}=\mathfrak{g}_{-2}, \quad \mathfrak{u}_{-1}=\mathfrak{g}_{-1}, \quad \text { and } \quad \mathfrak{u}_{0}=\mathfrak{g}_{0}^{\text {red }},
$$

and, $\forall j \geq 0$,

$$
\mathfrak{u}_{j}:=\left\{\varphi \in \bigoplus_{k=1}^{2} \operatorname{hom}\left(\mathfrak{u}_{-k}, \mathfrak{u}_{j-k}\right) \mid \varphi([v, w])=[\varphi(v), w]+[v, \varphi(w)]\right\} .
$$

Theorem (D. S. and I. Zelenko)
If (M, H) is a homogeneous CR manifold with a reduced modified symbol $\mathfrak{g}^{0, \text { red }}$ then

$$
\operatorname{dim} \operatorname{Aut}(M, H) \leq \operatorname{dim}_{\mathbb{C}} \mathfrak{u} .
$$

Symmetry Bounds

The universal Tanaka prolongation $\mathfrak{u}=\bigoplus_{j \geq-2} \mathfrak{u}_{j}$ of $\mathfrak{g}^{0 \text { red }}$ is given by

$$
\mathfrak{u}_{-2}=\mathfrak{g}_{-2}, \quad \mathfrak{u}_{-1}=\mathfrak{g}_{-1}, \quad \text { and } \quad \mathfrak{u}_{0}=\mathfrak{g}_{0}^{\text {red }},
$$

and, $\forall j \geq 0$,

$$
\mathfrak{u}_{j}:=\left\{\varphi \in \bigoplus_{k=1}^{2} \operatorname{hom}\left(\mathfrak{u}_{-k}, \mathfrak{u}_{j-k}\right) \mid \varphi([v, w])=[\varphi(v), w]+[v, \varphi(w)]\right\} .
$$

Theorem ([4, D. S. and I. Zelenko])
If (M, H) is a homogeneous $C R$ manifold with a reduced modified symbol $\mathfrak{g}^{0, \text { red }}$ then

$$
\operatorname{dim} \operatorname{Aut}(M, H) \leq \operatorname{dim}_{\mathbb{C}} \mathfrak{u} .
$$

Symmetry Bounds for $\operatorname{Rank}(K)=1$

Let (M, H) be homogeneous with CR symbol \mathfrak{g}^{0}, RMS $\mathfrak{g}^{0, \text { red }}$, and $\operatorname{dim}(M)=2 n+1$.

Theorem ([1, C. Porter and I. Zelenko])
If \mathfrak{g}^{0} is regular and $\operatorname{rank}(K)=1$ then

$$
\operatorname{dim} \operatorname{Aut}(M, H) \leq n^{2}+7 .
$$

Theorem ([5, D. S. and I. Zelenko])
If \mathfrak{g}^{0} is not regular and $\operatorname{rank}(K)=1$ then

$$
\operatorname{dim} \operatorname{Aut}(M, H)<(n-1)^{2}+7 .
$$

Matrix Representations of ARMS $($ with $\operatorname{rank}(K)=1)$

Let $\left(e_{0}, e_{1}, \ldots, e_{2 n-2}\right)$ be a basis of \mathfrak{g}_{-}with

$$
\begin{gathered}
\mathfrak{g}_{-2}=\operatorname{span}\left\{e_{0}\right\}, \quad \mathfrak{g}_{-1,1}=\operatorname{span}\left\{e_{1}, \ldots, e_{n-1}\right\}, \\
\iota\left(e_{0}\right)=e_{0}, \quad \text { and } \quad \iota\left(e_{j}\right)=e_{j+n-1} \quad \forall j \in\{1, \ldots, n-1\} .
\end{gathered}
$$

Let $H_{\mathcal{L}}$ be the nondegenerate Hermitian matrix satisfying

$$
\left[e_{j}, l\left(e_{k}\right)\right]=i\left(H_{\mathcal{L}}\right)_{j, k} e_{0} \quad \forall j, k \in\{1, \ldots, n-1\} .
$$

We have

$$
\mathfrak{c s p}\left(\mathfrak{g}_{-1}\right)= \begin{cases}\left(\begin{array}{ll}
X_{1,1} & X_{1,2} \\
X_{2,1} & X_{2,2}
\end{array}\right)+c I & \begin{array}{l}
X_{2,2}=-H_{\mathcal{L}}^{-1} X_{1,1}^{T} H_{\ell}, \\
X_{2,1}=H_{\mathcal{L}}^{-1} X_{2,1}^{T} H_{\mathcal{L}}, \\
X_{1,2}=\overline{H_{\mathcal{L}}}{ }^{-1} X_{1,2}^{T} H_{\mathcal{L}}, \text { and } \\
c \in \mathbb{C}
\end{array}\end{cases}
$$

Matrix Representations of ARMS $($ with $\operatorname{rank}(K)=1)$

An ARMS $\mathfrak{g}^{0, \text { red }}$ is represented by a tuple $\left(H_{\mathcal{L}}, C, \Omega, \mathscr{A}\right)$:
C and Ω are $(n-1) \times(n-1)$ matrices, and \mathscr{A} a matrix algebra

$$
\mathscr{A} \subset\left\{\begin{array}{ll}
\alpha & \begin{array}{l}
\alpha C H_{\ell}^{-1}+C H_{\ell}^{-1} \alpha^{T}=\eta C H_{\ell}^{-1} \text { and } \\
\alpha^{T} H_{\ell} \bar{C}+H_{\ell} \bar{C} \alpha=\eta^{\prime} H_{\ell} \bar{C} \text { for some } \eta, \eta^{\prime} \in \mathbb{C}
\end{array}
\end{array}\right\} .
$$

such that

$$
\mathfrak{g}_{0,+}^{\text {red }}=\left\langle\left(\begin{array}{cc}
\Omega & C \\
0 & -H_{\ell}-1 \Omega^{T} H_{\ell}
\end{array}\right)\right\rangle, \quad \mathfrak{g}_{0,-}^{\text {red }}=\left\langle\left(\begin{array}{cc}
-\bar{H}_{\ell}^{-1} \Omega^{*} \overline{H_{\ell}} & 0 \\
\bar{C} & \bar{\Omega}
\end{array}\right)\right\rangle
$$

and

$$
\mathfrak{g}_{0,0}^{\text {red }}=\left\{\left.\left(\begin{array}{cc}
\alpha & 0 \\
0 & -H_{\ell}{ }^{-1} \alpha^{T} H_{\ell}
\end{array}\right) \right\rvert\, \alpha \in \mathscr{A}\right\} \cup\langle I\rangle .
$$

Note $H_{\mathcal{L}} C=\left(H_{\mathcal{L}} C\right)^{T}$.

ARMS of Flat Structures in \mathbb{C}^{4}

	$H_{\mathcal{L}}$	C	Ω	max. symmetry group dim.
i	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	$\left(\begin{array}{ll}0 & i \\ 1 & 0\end{array}\right)$	$\left(\begin{array}{cc}0 & \frac{i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0\end{array}\right)$	8
ii	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	$\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{ll}1 & \frac{1}{2} \\ 0 & 0\end{array}\right)$	8
iii	$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$	$\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$	$\left(\begin{array}{cc}0 & 0 \\ \sqrt{\frac{3}{4}} & 0\end{array}\right)$	9
iv	$\left(\begin{array}{ll}1 & 0 \\ 0 & \epsilon\end{array}\right)$	$\left(\begin{array}{ll}1 & 0 \\ 0 & \eta\end{array}\right)$	0	$\begin{aligned} & 10 \text { if } \eta=0 \\ & 15 \text { if } \eta=1 \end{aligned}$
V	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	$\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$	0	15
vi	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	$\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$	0	16

Here $\epsilon \in\{-1,1\}$ and $\eta \in\{0,1\}$

Theorem ([2, D. S.])

- Every homogeneous 2-nondegenerate hypersurface in \mathbb{C}^{4} has a RMS from the previous table.
- The maximally symmetric homogeneous structure with given RMS from the previous table is unique.

Sketch of proof:

Fix a basis of \mathfrak{g}_{-} bringing $\left(H_{\mathcal{L}}, C\right)$ to the canonical form of [3, D. S. and I. Zelenko]

$$
\begin{gathered}
\text { Solve for }(\Omega, \mathscr{A}) \\
\text { such that the } \\
\text { ARMS } \\
\left(H_{\mathcal{L}}, C, \Omega, \mathscr{A}\right) \text { is a } \\
\text { Lie algebra }
\end{gathered}
$$

	Apply local uniqueness arguments. Different ARMS require different techniques.
	Conclude the CR symbol $\left(H_{\mathcal{L}}, C\right)$ does not admit homogeneous structures.

Symmetry Group and Prolongation Comparisons

- For flat structures of ARMS of type i and ii, $\operatorname{dim}(\operatorname{Aut}(M, H))=\operatorname{dim}_{\mathbb{C}}(\mathfrak{u})=8$.
- For flat structures of ARMS of type iv with $\eta=0$, $\operatorname{dim}(\operatorname{Aut}(M, H))=10$ and $\operatorname{dim}_{\mathbb{C}}(\mathfrak{u})=\infty$.
- For flat structures of ARMS of type iii, $\operatorname{dim}(\operatorname{Aut}(M, H))=9$ and \mathfrak{u} is the 14-d. exceptional Lie algebra \mathfrak{g}_{2} having the root space decomposition

with $\mathfrak{u}_{-2,0}=\left\langle e_{0}\right\rangle, \mathfrak{u}_{-1,-3}=\left\langle e_{4}\right\rangle, \mathfrak{u}_{-1,-1}=\left\langle e_{3}\right\rangle, \mathfrak{u}_{-1,1}=\left\langle e_{1}\right\rangle$,
$\mathfrak{u}_{-1,3}=\left\langle e_{2}\right\rangle, \mathfrak{u}_{0,-2}=\mathfrak{g}_{0,-}^{\text {red }}, \mathfrak{u}_{0,2}=\mathfrak{g}_{0,+}^{\text {red }}$, and $\mathfrak{u}_{0,0}=\mathfrak{g}_{0,0}^{\text {red }}$.

References

[1] Curtis Porter and Igor Zelenko. Absolute parallelism for 2-nondegenerate CR structures via bigraded Tanaka prolongation. Journal für die reine und angewandte Mathematik, in press. doi: 10.1515/crelle-2021-0012.
[2] David Sykes (in preparation). Homogeneous 2-nondegenerate CR manifolds of hypersurface type in low dimensions.
[3] David Sykes and Igor Zelenko. A canonical form for pairs consisting of a hermitian form and a self-adjoint antilinear operator. Linear Algebra and its Applications, 590:32-61, 2020.
[4] David Sykes and Igor Zelenko. On geometry of 2-nondegenerate CR structures of hypersurface type and flag structures on leaf spaces of Levi foliations. arXiv e-prints, art. arXiv:2010.02770, October 2020.
[5] David Sykes and Igor Zelenko. Maximal dimension of groups of symmetries of homogeneous 2-nondegenerate CR structures of hypersurface type with a 1-dimensional Levi kernel. arXiv e-prints, art. arXiv:2102.08599, February 2021.

Thank you very much!

Extending and Linking ARMS

Given an ARMS $\mathfrak{g}^{0, \text { red }}=\left\{H_{\ell}, C, \Omega, \mathscr{A}\right\}$, its 2-d. extensions have the form $\widetilde{\mathfrak{g}^{0, \text { red }}}=\left\{\widetilde{H_{\ell}}, \widetilde{C}, \widetilde{\Omega}, \widetilde{\mathscr{A}\}}\right.$ with

$$
\widetilde{H_{\ell}}=\left(\begin{array}{c:c}
H_{\ell} & 0 \\
\hdashline 0 & \epsilon
\end{array}\right), \widetilde{C}=\left(\begin{array}{c:c}
C & 0 \\
\hdashline 0 & 0
\end{array}\right), \widetilde{\Omega}=\left(\begin{array}{c:c}
\Omega & 0 \\
\hdashline 0 & 0
\end{array}\right),
$$

and given another ARMS $\hat{\mathfrak{g}}^{0, \text { red }}=\left\{\hat{H}_{\ell}, \hat{C}, \hat{\Omega}, \hat{\mathscr{A}}\right\}$, the links of $\hat{\mathfrak{g}}^{0, \text { red }}$ and $\mathfrak{g}^{0, \text { red }}$ are ARMS of the form $\widetilde{\mathfrak{g}^{0, \text { red }}}=\left\{\widetilde{H_{\ell}}, \widetilde{C}, \widetilde{\Omega}, \widetilde{\mathscr{A}\}}\right.$ with

$$
\widetilde{H}_{\ell}=\left(\begin{array}{c:c}
H_{\ell} & 0 \\
\hdashline 0 & \epsilon \hat{H}_{\ell}
\end{array}\right), \quad \widetilde{C}=\left(\begin{array}{c:c}
C & 0 \\
\hdashline 0 & C
\end{array}\right), \quad \widetilde{\Omega}=\left(\begin{array}{c:c}
\Omega & 0 \\
\hdashline 0 & \hat{\Omega}
\end{array}\right)
$$

where $\epsilon= \pm$.

Extending and Linking ARMS of Flat Structures in \mathbb{C}^{3} and \mathbb{C}^{4}

Linking ARMS
5-d. model

69 -d. structures and
24 11-d. structures

Extending ARMS

119-d. structures and 19 11-d. structures

Hypersurface realizations of maximally symmetric models

The hypersurfaces

$$
\left\{\left(z_{0}, \ldots, z_{n}\right) \in \mathbb{C}^{n+1} \mid \Im\left(z_{0}+z_{1}^{2} \overline{z_{n}}\right)=z_{1} \overline{z_{2}}+\overline{z_{1}} z_{2}+\sum_{i=3}^{n-1} \varepsilon_{i} z_{i} \overline{z_{i}}\right\}
$$

with $\varepsilon_{i}= \pm 1$ are 2-nondegenerate. Their Levi form's signature is determined by $\left\{\varepsilon_{i}\right\}$ and their algebras of infinitesimal symmetries attain the upper bound $\frac{1}{4}(\operatorname{dim} M-1)^{2}+7=n^{2}+7 .{ }^{1}$

[^0]
[^0]: ${ }^{1}$ reference: [1, C. Porter and I. Zelenko]

