Relative tractor bundles
 for Lagrangean contact structures

Michał Andrzej Wasilewicz

Faculty of Mathematics University of Vienna

$42^{\text {nd }}$ Winter School Geometry and Physics
January 2022

Table of Contents

1 Lagrangean contact structures

2 Natural bundles

3 Connections

4 Relative tractor calculus

Definition

Let M be a $(2 n+1)$-dimensional \mathscr{C}^{∞}-manifold endowed with a contact structure (M, H). We write $T M=H \mapsto Q$ for $Q=T M / H$.

Definition

A splitting of the contact subbundle into a direct sum of two rank- n subbundles $E \oplus F=H$ such that

$$
\left.\mathcal{L}\right|_{E \times E}=0 \quad \text { and }\left.\quad \mathcal{L}\right|_{F \times F}=0
$$

is called a Lagrangean contact structure.

Remark

\Rightarrow there exists of a canonical nondegenerate pairing $E \otimes F \rightarrow Q$, $\Rightarrow\left[\xi_{1}, \xi_{2}\right] \in \Gamma(H)$ for $\xi_{i} \in \Gamma(E)$ and $\left[\eta_{1}, \eta_{2}\right] \in \Gamma(H) \eta_{i} \in \Gamma(F)$.

Definition

Let M be a $(2 n+1)$-dimensional \mathscr{C}^{∞}-manifold endowed with a contact structure (M, H). We write $T M=H \mapsto Q$ for $Q=T M / H$.

Definition

A splitting of the contact subbundle into a direct sum of two rank- n subbundles $E \oplus F=H$ such that

$$
\left.\mathcal{L}\right|_{E \times E}=0 \quad \text { and }\left.\quad \mathcal{L}\right|_{F \times F}=0,
$$

is called a Lagrangean contact structure.
Remark

Definition

Let M be a $(2 n+1)$-dimensional \mathscr{C}^{∞}-manifold endowed with a contact structure (M, H). We write $T M=H \mapsto Q$ for $Q=T M / H$.

Definition

A splitting of the contact subbundle into a direct sum of two rank- n subbundles $E \oplus F=H$ such that

$$
\left.\mathcal{L}\right|_{E \times E}=0 \quad \text { and }\left.\quad \mathcal{L}\right|_{F \times F}=0,
$$

is called a Lagrangean contact structure.

Remark

\Rightarrow there exists of a canonical nondegenerate pairing $E \otimes F \rightarrow Q$,
$\Rightarrow\left[\xi_{1}, \xi_{2}\right] \in \Gamma(H)$ for $\xi_{i} \in \Gamma(E)$ and $\left[\eta_{1}, \eta_{2}\right] \in \Gamma(H) \eta_{i} \in \Gamma(F)$.

Analogues

Lagrangian subbundles in symplectic geometry
The study of splittings of the contact distribution into a pair of \mathcal{L}-isotropic subbundles can be can be thought of as the contact analogue of the study of Lagrangian (maximally isotropic) subbundles in symplectic geometry.

Almost-CR structures

 A nondegenerate almost-CR structure of hypersurface type consists of a contact manifold endowed with a complex structure on the contact subbundle, which implies that the complexification of it splits into two subbundles of complex rank n.
Analogues

Lagrangian subbundles in symplectic geometry
The study of splittings of the contact distribution into a pair of \mathcal{L}-isotropic subbundles can be can be thought of as the contact analogue of the study of Lagrangian (maximally isotropic) subbundles in symplectic geometry.

Almost-CR structures

A nondegenerate almost-CR structure of hypersurface type consists of a contact manifold endowed with a complex structure on the contact subbundle, which implies that the complexification of it splits into two subbundles of complex rank n.

Parabolic interpretation

Lie algebra $\mathfrak{s l}(n+2)=: \mathfrak{g}$ together with two nested parabolic subalgebras $\mathfrak{q} \subset \mathfrak{p} \subset \mathfrak{g}$, where $\mathfrak{q}=\mathfrak{p} \cap \tilde{\mathfrak{q}}$ (we choose of one side of the fibration).

Parabolic interpretation

Lie algebra $\mathfrak{s l}(n+2)=: \mathfrak{g}$ together with two nested parabolic subalgebras $\mathfrak{q} \subset \mathfrak{p} \subset \mathfrak{g}$, where $\mathfrak{q}=\mathfrak{p} \cap \tilde{\mathfrak{q}}$ (we choose of one side of the fibration).

$$
\begin{aligned}
& \text { decomposition of } \mathfrak{g} \text { wrt. } \mathfrak{q} \\
& x \rightarrow-0-x \\
& \text { decomposition of } \mathfrak{g} \text { wrt. } \mathfrak{p} \\
& \underbrace{\left\{\left(\begin{array}{ccc}
\mathfrak{q}_{0} & \mathfrak{q}_{1}^{E} & \mathfrak{q}_{2} \\
\mathfrak{q}_{-1}^{E} & \mathfrak{q}_{0} & \mathfrak{q}_{1}^{F} \\
\mathfrak{q}_{-2} & \mathfrak{q}_{-1}^{F} & \mathfrak{q}_{0}
\end{array}\right)\right\}}_{\mathfrak{g}} \supset \underbrace{\left\{\left(\begin{array}{ccc}
\mathfrak{q}_{0} & \mathfrak{q}_{1}^{E} & \mathfrak{q}_{2} \\
0 & \mathfrak{q}_{0} & \mathfrak{q}_{1}^{F} \\
0 & \mathfrak{q}_{-1}^{F} & \mathfrak{q}_{0}
\end{array}\right)\right\}}_{\mathfrak{p}} \supset \underbrace{\left\{\left(\begin{array}{ccc}
\mathfrak{q}_{0} & \mathfrak{q}_{1}^{E} & \mathfrak{q}_{2} \\
0 & \mathfrak{q}_{0} & \mathfrak{q}_{1}^{F} \\
0 & 0 & \mathfrak{q}_{0}
\end{array}\right)\right\}}_{\mathfrak{q}} \\
& \mathfrak{q}_{+}:=\mathfrak{q}_{1}^{E} \oplus \mathfrak{q}_{1}^{F} \oplus \mathfrak{q}_{2} \\
& \mathfrak{p}_{+}:=\mathfrak{q}_{1}^{E} \oplus \mathfrak{q}_{2}
\end{aligned}
$$

Parabolic interpretation

Remarks

- A restriction of the Lie bracket induces an isomorphism $\mathfrak{q}_{-1}^{F} \cong \mathscr{L}\left(\mathfrak{q}_{-1}^{E}, \mathfrak{q}_{-2}\right)$.
- The bracket $\mathfrak{q}_{-1} \times \mathfrak{q}_{-1} \rightarrow \mathfrak{q}_{-2}$ is nondegenerate, and thus, the grading is indeed contact.
■ Viewing it as a symplectic form on \mathfrak{g}_{-1}, the subspaces \mathfrak{g}_{-1}^{E} and \mathfrak{g}_{-1}^{F} of \mathfrak{g}_{-1} are Lagrangian.

Finally, Lie group $P S L(n+2)=: G$ together with two nested subgroups $Q \subset P \subset G$.

Parabolic interpretation

Remarks

- A restriction of the Lie bracket induces an isomorphism $\mathfrak{q}_{-1}^{F} \cong \mathscr{L}\left(\mathfrak{q}_{-1}^{E}, \mathfrak{q}_{-2}\right)$.
- The bracket $\mathfrak{q}_{-1} \times \mathfrak{q}_{-1} \rightarrow \mathfrak{q}_{-2}$ is nondegenerate, and thus, the grading is indeed contact.
- Viewing it as a symplectic form on \mathfrak{g}_{-1}, the subspaces \mathfrak{g}_{-1}^{E} and \mathfrak{g}_{-1}^{F} of \mathfrak{g}_{-1} are Lagrangian.

Finally, Lie group $P S L(n+2)=: G$ together with two nested subgroups $Q \subset P \subset G$.

Homogeneous model

- The homogeneous model G / Q is the flag manifold $F_{1, n+1}(\mathbb{R})$ of lines in hyperplanes in \mathbb{R}^{n+2}.
- Mapping such a flag to its line makes $F_{1, n+1}$ into a fibre bundle over $\mathbb{R} P^{n+1}$ with fibre $\mathbb{R} P^{n *}$.
- Projecting to the hyperplane shows that $F_{1, n+1}$ is a fibre bundle over $\mathbb{R} P^{(n+1) *}$ with fibre $\mathbb{R} P^{n}$.

Homogeneous model

- The homogeneous model G / Q is the flag manifold $F_{1, n+1}(\mathbb{R})$ of lines in hyperplanes in \mathbb{R}^{n+2}.
- Mapping such a flag to its line makes $F_{1, n+1}$ into a fibre bundle over $\mathbb{R} P^{n+1}$ with fibre $\mathbb{R} P^{n *}$.
- Projecting to the hyperplane shows that $F_{1, n+1}$ is a fibre bundle over $\mathbb{R} P^{(n+1) *}$ with fibre $\mathbb{R} P^{n}$.

Homogeneous model

- The homogeneous model G / Q is the flag manifold $F_{1, n+1}(\mathbb{R})$ of lines in hyperplanes in \mathbb{R}^{n+2}.
- Mapping such a flag to its line makes $F_{1, n+1}$ into a fibre bundle over $\mathbb{R} P^{n+1}$ with fibre $\mathbb{R} P^{n *}$.
- Projecting to the hyperplane shows that $F_{1, n+1}$ is a fibre bundle over $\mathbb{R} P^{(n+1) *}$ with fibre $\mathbb{R} P^{n}$.
- Projective structures on $(n+1)$-dimensional manifolds are equivalent to normal parabolic geometries of type (G, P).
- Those projective structures carry a canonical Lagrangean contact structure. Let N be an $(n+1)$-dim manifold, and

$$
M:=\mathcal{P}\left(T^{*} N\right) \xrightarrow{\pi} N .
$$

M carries a canonical contact structure $H \subset T M$, and we obtain $H=E \oplus F$ by taking

$$
F:=\operatorname{ker}(T \pi), \quad E \nless m[\nabla] .
$$

- In this setting, F is always integrable and the corresponding foliation of M is the foliation by the fibres.
- On the other hand, regular normal parabolic geometries of type (G, Q) are equivalent to Lagrangean contact structures.
- Projective structures on $(n+1)$-dimensional manifolds are equivalent to normal parabolic geometries of type (G, P).
- Those projective structures carry a canonical Lagrangean contact structure. Let N be an $(n+1)$-dim manifold, and

$$
M:=\mathcal{P}\left(T^{*} N\right) \xrightarrow{\pi} N .
$$

M carries a canonical contact structure $H \subset T M$, and we obtain $H=E \oplus F$ by taking

$$
F:=\operatorname{ker}(T \pi), \quad E \nless m[\nabla] .
$$

- In this setting, F is always integrable and the corresponding foliation of M is the foliation by the fibres.

■ On the other hand, regular normal parabolic geometries of type (G, Q) are equivalent to Lagrangean contact structures.

- Projective structures on $(n+1)$-dimensional manifolds are equivalent to normal parabolic geometries of type (G, P).
■ Those projective structures carry a canonical Lagrangean contact structure. Let N be an $(n+1)$-dim manifold, and

$$
M:=\mathcal{P}\left(T^{*} N\right) \xrightarrow{\pi} N .
$$

M carries a canonical contact structure $H \subset T M$, and we obtain $H=E \oplus F$ by taking

$$
F:=\operatorname{ker}(T \pi), \quad E \nless[\nabla] .
$$

■ In this setting, F is always integrable and the corresponding foliation of M is the foliation by the fibres.
(G, Q) are equivalent to Lagrangean contact structures.

- Projective structures on $(n+1)$-dimensional manifolds are equivalent to normal parabolic geometries of type (G, P).
- Those projective structures carry a canonical Lagrangean contact structure. Let N be an $(n+1)$-dim manifold, and

$$
M:=\mathcal{P}\left(T^{*} N\right) \xrightarrow{\pi} N .
$$

M carries a canonical contact structure $H \subset T M$, and we obtain $H=E \oplus F$ by taking

$$
F:=\operatorname{ker}(T \pi), \quad E \nless[\nabla] .
$$

■ In this setting, F is always integrable and the corresponding foliation of M is the foliation by the fibres.

- On the other hand, regular normal parabolic geometries of type (G, Q) are equivalent to Lagrangean contact structures.

Table of Contents

1 Lagrangean contact structures

2 Natural bundles

3 Connections

4 Relative tractor calculus

Relative setting

We know that natural bundles are induces by representations of Q. For our purpose, we need to introduce an important subclass called relative natural bundles.

Defmition

```
Let Q\subsetP\subsetG}\mathrm{ be nested parabolic subgroups and let }\mathbb{V}\mathrm{ be a
representation of Q. For the corresponding natural vector bundle
V}=\mathcal{G}\times\mp@subsup{Q}{Q}{}\mathbb{V}\mathrm{ on parabolic geometries of type (G,Q),
    |}\mathcal{V}\mathrm{ is called a relative natural bundle if the subgroup }\mp@subsup{P}{+}{}\subsetQ\mathrm{ acts
        trivially on \mathbb{V}
    - V}\mathrm{ is called a relative tractor bundle if }\mathbb{V}\mathrm{ is the restriction to Q of a
        representation of P}\mathrm{ on which }\mp@subsup{P}{+}{}\mathrm{ acts trivially.
```


Relative setting

We know that natural bundles are induces by representations of Q. For our purpose, we need to introduce an important subclass called relative natural bundles.

Definition

Let $Q \subset P \subset G$ be nested parabolic subgroups and let \mathbb{V} be a representation of Q. For the corresponding natural vector bundle
$\mathcal{V}=\mathcal{G} \times{ }_{Q} \mathbb{V}$ on parabolic geometries of type (G, Q),

- \mathcal{V} is called a relative natural bundle if the subgroup $P_{+} \subset Q$ acts trivially on \mathbb{V};
- \mathcal{V} is called a relative tractor bundle if \mathbb{V} is the restriction to Q of a representation of P on which P_{+}acts trivially.

Relative bundles

Definition

$$
\begin{array}{ll}
\mathcal{A}_{\rho} M:=\mathcal{G} \times_{Q}\left(\mathfrak{p} / \mathfrak{p}_{+}\right) & \text {relative adjoint bundle } \\
T_{\rho} M:=\mathcal{G} \times_{Q}(\mathfrak{p} / \mathfrak{q}) & \text { relative tangent bundle } \\
T_{\rho}^{*} M:=\mathcal{G} \times_{Q}\left(\mathfrak{q}_{+} / \mathfrak{p}_{+}\right) & \text {relative cotangent bundle }
\end{array}
$$

Definition

As g / \mathfrak{n} is a completely reducible representation of P,
is a relative tractor bundle, which we call the basic tangent bundle.

Relative bundles

Definition

$$
\begin{array}{ll}
\mathcal{A}_{\rho} M:=\mathcal{G} \times_{Q}\left(\mathfrak{p} / \mathfrak{p}_{+}\right) & \text {relative adjoint bundle } \\
T_{\rho} M:=\mathcal{G} \times_{Q}(\mathfrak{p} / \mathfrak{q}) & \text { relative tangent bundle } \\
T_{\rho}^{*} M:=\mathcal{G} \times_{Q}\left(\mathfrak{q}_{+} / \mathfrak{p}_{+}\right) & \text {relative cotangent bundle }
\end{array}
$$

Definition

As $\mathfrak{g} / \mathfrak{p}$ is a completely reducible representation of P,

$$
\mathcal{V}:=\mathcal{G} \times_{Q} \mathfrak{g} / \mathfrak{p}
$$

is a relative tractor bundle, which we call the basic tangent bundle.

Basic tangent bundle

Lemma

$\mathcal{V}=T M / F$ and $\mathcal{V} \cong \pi^{*}(T N)$.

Important remarks
Whe bundle V is induced by an irreducible representation of P and one can construct all relative tractor bundles from it by tensorial constructions.

- Consequently, all relative tractor comections come from the one on \mathcal{V}.

Basic tangent bundle

Lemma

$\mathcal{V}=T M / F$ and $\mathcal{V} \cong \pi^{*}(T N)$.

Important remarks

- The bundle \mathcal{V} is induced by an irreducible representation of P and one can construct all relative tractor bundles from it by tensorial constructions.
- Consequently, all relative tractor connections come from the one on \mathcal{V}.

Table of Contents

1 Lagrangean contact structures

2 Natural bundles

3 Connections

4 Relative tractor calculus

Relative tractor connection

Definition

\mathcal{V} is endowed with a relative tractor connection

$$
\nabla_{\operatorname{proj}_{T_{\rho} M}\left(m_{\rho}\right)}^{\mathcal{V}} \sigma=D_{m_{\rho}}^{\rho} \sigma+m_{\rho} \bullet \sigma
$$

for $m_{\rho} \in \Gamma\left(\mathcal{A}_{\rho} M\right), \sigma \in \Gamma(T M / F)$, and D^{ρ} the relative fundamental derivative.

However, $\mathcal{V} \cong \mathcal{A} M / \mathcal{A}_{p} M$, where $\mathcal{A}_{p} M=\mathcal{G} \times{ }_{Q} \mathfrak{p}(!!!)$
Lemma \dagger
For $\xi \in \Gamma(F), s \in \Gamma(A M)$, and $\nabla A M$ denoting the (usual) tractor
connection on AM

$$
\nabla_{\xi}^{\mathcal{V}} \Pi(s)=\Pi\left(\nabla_{\xi}^{\mathcal{A} M} s\right)
$$

Relative tractor connection

Definition

\mathcal{V} is endowed with a relative tractor connection

$$
\nabla_{\operatorname{proj}_{T_{\rho} M}\left(m_{\rho}\right)}^{\mathcal{V}} \sigma=D_{m_{\rho}}^{\rho} \sigma+m_{\rho} \bullet \sigma
$$

for $m_{\rho} \in \Gamma\left(\mathcal{A}_{\rho} M\right), \sigma \in \Gamma(T M / F)$, and D^{ρ} the relative fundamental derivative.

However, $\mathcal{V} \cong \mathcal{A} M / \mathcal{A}_{\mathfrak{p}} M$, where $\mathcal{A}_{\mathfrak{p}} M=\mathcal{G} \times{ }_{Q} \mathfrak{p}(!!!)$
\square
For $\xi \in \Gamma(F), s \in \Gamma(\mathcal{A} M)$, and $\nabla^{\mathcal{A} M}$ denoting the (usual) tractor connection on $\mathcal{A} M$

$$
\nabla_{\xi}^{\mathcal{V}} \Pi(s)=\Pi\left(\nabla_{\xi}^{\mathcal{A} M} s\right)
$$

Relative tractor connection

Definition

\mathcal{V} is endowed with a relative tractor connection

$$
\nabla_{\operatorname{proj}_{T_{\rho} M}\left(m_{\rho}\right)}^{\mathcal{V}} \sigma=D_{m_{\rho}}^{\rho} \sigma+m_{\rho} \bullet \sigma
$$

for $m_{\rho} \in \Gamma\left(\mathcal{A}_{\rho} M\right), \sigma \in \Gamma(T M / F)$, and D^{ρ} the relative fundamental derivative.

However, $\mathcal{V} \cong \mathcal{A} M / \mathcal{A}_{\mathfrak{p}} M$, where $\mathcal{A}_{\mathfrak{p}} M=\mathcal{G} \times{ }_{Q} \mathfrak{p}(!!!)$

Lemma \dagger

For $\xi \in \Gamma(F), s \in \Gamma(\mathcal{A} M)$, and $\nabla^{\mathcal{A} M}$ denoting the (usual) tractor connection on $\mathcal{A} M$

$$
\nabla_{\xi}^{\mathcal{V}} \Pi(s)=\Pi\left(\nabla_{\xi}^{\mathcal{A} M} s\right) .
$$

Sketch of the proof \dagger

- Does the RHS depend on $\Pi(s)$?

```
| D D is compatible with all natural bundle maps coming from
    Q-equivariant maps between the inducing representations;
| : A AM \timesE }->E\mathrm{ coincides with the algebraic bracket
    {,}:\mathcal{A}M\times\mathcal{A}M->\mathcal{A}M\mathrm{ if }E=\mathcal{A}M;
\square so, indeed }\mp@subsup{\nabla}{\xi}{\mathcal{AM}}\mp@subsup{s}{}{\prime}\in\operatorname{ker}(\Pi)\mathrm{ for }\mp@subsup{s}{}{\prime}\in\Gamma(\mp@subsup{\mathcal{A}}{\mathfrak{p}}{}M)\mathrm{ .
- Does the equality hold?
```


Sketch of the proof \dagger

■ Does the RHS depend on $\Pi(s)$?

- D^{ρ} is compatible with all natural bundle maps coming from Q-equivariant maps between the inducing representations;
- • : $\mathcal{A} M \times E \rightarrow E$ coincides with the algebraic bracket $\{\}:, \mathcal{A} M \times \mathcal{A} M \rightarrow \mathcal{A} M$ if $E=\mathcal{A} M ;$
so, indeed $\nabla_{\xi}^{\mathcal{A} M} s^{\prime} \in \operatorname{ker}(\Pi)$ for $s^{\prime} \in \Gamma\left(\mathcal{A}_{\mathfrak{p}} M\right)$.
- Does the equality hold?

Sketch of the proof \dagger

- Does the RHS depend on $\Pi(s)$?
- D^{ρ} is compatible with all natural bundle maps coming from Q-equivariant maps between the inducing representations;
■ - : $\mathcal{A} M \times E \rightarrow E$ coincides with the algebraic bracket $\{\}:, \mathcal{A} M \times \mathcal{A} M \rightarrow \mathcal{A} M$ if $E=\mathcal{A} M$;
- Does the equality hold?

Sketch of the proof \dagger

- Does the RHS depend on $\Pi(s)$?
- D^{ρ} is compatible with all natural bundle maps coming from Q-equivariant maps between the inducing representations;
■ - $\mathcal{A} M \times E \rightarrow E$ coincides with the algebraic bracket $\{\}:, \mathcal{A} M \times \mathcal{A} M \rightarrow \mathcal{A} M$ if $E=\mathcal{A} M$;
- so, indeed $\nabla_{\xi}^{\mathcal{A} M} s^{\prime} \in \operatorname{ker}(\Pi)$ for $s^{\prime} \in \Gamma\left(\mathcal{A}_{\mathfrak{p}} M\right)$.
- Does the equality hold?

Sketch of the proof \dagger

- Does the RHS depend on $\Pi(s)$?
- D^{ρ} is compatible with all natural bundle maps coming from Q-equivariant maps between the inducing representations;
■ - $\mathcal{A} M \times E \rightarrow E$ coincides with the algebraic bracket $\{\}:, \mathcal{A} M \times \mathcal{A} M \rightarrow \mathcal{A} M$ if $E=\mathcal{A} M$;
- so, indeed $\nabla_{\xi}^{\mathcal{A} M} s^{\prime} \in \operatorname{ker}(\Pi)$ for $s^{\prime} \in \Gamma\left(\mathcal{A}_{\mathfrak{p}} M\right)$.
- Does the equality hold?
- D^{ρ} is by definition a restriction of the usual fundamental derivative D in the first factor to $\mathcal{A}_{\mathrm{p}} M$;
■ so, indeed $\nabla_{\xi}^{\mathcal{V}} \Pi(s)=\Pi\left(\nabla_{\xi}^{\mathcal{A} M} s\right)$.

Sketch of the proof \dagger

- Does the RHS depend on $\Pi(s)$?
- D^{ρ} is compatible with all natural bundle maps coming from Q-equivariant maps between the inducing representations;
■ - $\mathcal{A} M \times E \rightarrow E$ coincides with the algebraic bracket $\{\}:, \mathcal{A} M \times \mathcal{A} M \rightarrow \mathcal{A} M$ if $E=\mathcal{A} M$;
- so, indeed $\nabla_{\xi}^{\mathcal{A} M} s^{\prime} \in \operatorname{ker}(\Pi)$ for $s^{\prime} \in \Gamma\left(\mathcal{A}_{\mathfrak{p}} M\right)$.

■ Does the equality hold?

- D^{ρ} is by definition a restriction of the usual fundamental derivative D in the first factor to $\mathcal{A}_{p} M$;

Sketch of the proof \dagger

- Does the RHS depend on $\Pi(s)$?
- D^{ρ} is compatible with all natural bundle maps coming from Q-equivariant maps between the inducing representations;
■ - $\mathcal{A} M \times E \rightarrow E$ coincides with the algebraic bracket $\{\}:, \mathcal{A} M \times \mathcal{A} M \rightarrow \mathcal{A} M$ if $E=\mathcal{A} M$;
- so, indeed $\nabla_{\xi}^{\mathcal{A} M} s^{\prime} \in \operatorname{ker}(\Pi)$ for $s^{\prime} \in \Gamma\left(\mathcal{A}_{\mathfrak{p}} M\right)$.

■ Does the equality hold?

- D^{ρ} is by definition a restriction of the usual fundamental derivative D in the first factor to $\mathcal{A}_{\mathfrak{p}} M$;
■ so, indeed $\nabla_{\xi}^{\mathcal{V}} \Pi(s)=\Pi\left(\nabla_{\xi}^{\mathcal{A M}} s\right)$.

Bott connection

Theorem \ddagger

For $\xi \in \Gamma(F), \sigma \in \Gamma(T M / F)$ and $\tilde{\sigma}$ denoting any of its lifts to $\mathfrak{X}(M)$

$$
\nabla_{\xi}^{\mathcal{V}} \sigma=\Pi([\xi, \widetilde{\sigma}]+\kappa(\xi, \widetilde{\sigma})) .
$$

In particular, when the bundle F is involutive

$$
\nabla_{\xi}^{\mathcal{V}} \sigma=\Pi([\xi, \widetilde{\sigma}]) .
$$

Remark

The partial connection $\nabla^{\mathcal{V}}$ given by the Lie bracket is sometimes referred to as Bott connection.

Sketch of the proof \ddagger

■ For $s \in \Gamma(\mathcal{A} M)$ and $m_{\mathfrak{p}} \in \Gamma\left(\mathcal{A}_{\mathfrak{p}} M\right)$ the projection $\Pi\left(D_{s} m_{\mathfrak{p}}\right)$ vanishes identically, so we can write

$$
\nabla_{\xi}^{\mathcal{V}} \sigma=\Pi\left(D_{m_{\mathfrak{p}}} s-D_{s} m_{\mathfrak{p}}+\left\{m_{\mathfrak{p}}, s\right\}\right) .
$$

- This coincides with the Lie bracket on $\mathcal{A} M$ induced from $\mathfrak{X}(\mathcal{G})^{Q}$; so $\nabla_{\xi}^{\mathcal{V}} \sigma=\Pi\left(\left[m_{\mathfrak{p}}, s\right]+\kappa(\xi, \widetilde{\sigma})\right)$.
■ $\Pi(\kappa(\xi, \widetilde{\sigma}))$ is the $\Lambda^{2} F \otimes E$ component of the torsion.
- This component vanishes identically in case the bundle F is involutive (heavy BGG machinery).

Sketch of the proof \ddagger

$■$ For $s \in \Gamma(\mathcal{A} M)$ and $m_{\mathfrak{p}} \in \Gamma\left(\mathcal{A}_{\mathfrak{p}} M\right)$ the projection $\Pi\left(D_{s} m_{\mathfrak{p}}\right)$ vanishes identically, so we can write

$$
\nabla_{\xi}^{\mathcal{V}} \sigma=\Pi\left(D_{m_{\mathfrak{p}}} s-D_{s} m_{\mathfrak{p}}+\left\{m_{\mathfrak{p}}, s\right\}\right) .
$$

- This coincides with the Lie bracket on $\mathcal{A} M$ induced from $\mathfrak{X}(\mathcal{G})^{Q}$, so $\nabla_{\xi}^{\mathcal{V}} \sigma=\Pi\left(\left[m_{\mathfrak{p}}, s\right]+\kappa(\xi, \widetilde{\sigma})\right)$.
- $\Pi(\kappa(\xi, \widetilde{\sigma}))$ is the $\Lambda^{2} F \otimes E$ component of the torsion.

■ This component vanishes identically in case the bundle F is involutive (heavy BGG machinery).

Sketch of the proof \ddagger

■ For $s \in \Gamma(\mathcal{A} M)$ and $m_{\mathfrak{p}} \in \Gamma\left(\mathcal{A}_{\mathfrak{p}} M\right)$ the projection $\Pi\left(D_{s} m_{\mathfrak{p}}\right)$ vanishes identically, so we can write

$$
\nabla_{\xi}^{\mathcal{V}} \sigma=\Pi\left(D_{m_{\mathfrak{p}}} s-D_{s} m_{\mathfrak{p}}+\left\{m_{\mathfrak{p}}, s\right\}\right) .
$$

- This coincides with the Lie bracket on $\mathcal{A} M$ induced from $\mathfrak{X}(\mathcal{G})^{Q}$, so $\nabla_{\xi}^{\mathcal{V}} \sigma=\Pi\left(\left[m_{\mathfrak{p}}, s\right]+\kappa(\xi, \widetilde{\sigma})\right)$.
- $\Pi(\kappa(\xi, \widetilde{\sigma}))$ is the $\Lambda^{2} F \otimes E$ component of the torsion. involutive (heavy BGG machinery).

Sketch of the proof \ddagger

- For $s \in \Gamma(\mathcal{A} M)$ and $m_{\mathfrak{p}} \in \Gamma\left(\mathcal{A}_{\mathfrak{p}} M\right)$ the projection $\Pi\left(D_{s} m_{\mathfrak{p}}\right)$ vanishes identically, so we can write

$$
\nabla_{\xi}^{\mathcal{V}} \sigma=\Pi\left(D_{m_{\mathfrak{p}}} s-D_{s} m_{\mathfrak{p}}+\left\{m_{\mathfrak{p}}, s\right\}\right) .
$$

- This coincides with the Lie bracket on $\mathcal{A} M$ induced from $\mathfrak{X}(\mathcal{G})^{Q}$, so $\nabla_{\xi}^{\mathcal{V}} \sigma=\Pi\left(\left[m_{\mathfrak{p}}, s\right]+\kappa(\xi, \widetilde{\sigma})\right)$.
- $\Pi(\kappa(\xi, \widetilde{\sigma}))$ is the $\Lambda^{2} F \otimes E$ component of the torsion.
- This component vanishes identically in case the bundle F is involutive (heavy BGG machinery).

Table of Contents

1 Lagrangean contact structures

2 Natural bundles

3 Connections

4 Relative tractor calculus

Relative tractor calculus

Upon a choice of a contact form $\theta \in \Omega^{1}(M)$ we can decompose \mathcal{V} into $\mathcal{V}=E \oplus Q$ and use it to develop an analogue of tractor calculus.

Definition

Given a contact form θ on M and a section t of $T M$, we define an isomorphism $\Gamma(T M / F) \ni(t+F) \mapsto(t)_{\theta} \in \Gamma(\mathcal{V} M)$ by the formula

Relative tractor calculus

Upon a choice of a contact form $\theta \in \Omega^{1}(M)$ we can decompose \mathcal{V} into $\mathcal{V}=E \oplus Q$ and use it to develop an analogue of tractor calculus.

Definition

Given a contact form θ on M and a section t of $T M$, we define an isomorphism $\Gamma(T M / F) \ni(t+F) \mapsto(t)_{\theta} \in \Gamma(\mathcal{V} M)$ by the formula

$$
(t)_{\theta}:=\binom{\theta(t) \pi_{Q}(r)}{(t-\theta(t) r)_{E}} .
$$

Distinguished connection

Definition

Given a contact form θ on M, the following formulae define partial connections ∇^{E} on the bundle E and ∇^{Q} on the line bundle Q (in F-directions)

$$
\mathcal{L}\left(\nabla_{\eta_{1}}^{E} \xi, \eta_{2}\right)=-d \theta\left(\left[\eta_{1}, \xi\right], \eta_{2}\right) q(r) \text { and } \nabla_{\eta_{1}}^{Q} q(\psi)=\left[\eta_{1} \cdot \theta(\psi)\right] q(r)
$$

where r is the Reeb vector field, $\eta_{1}, \eta_{2} \in \Gamma(F), \xi \in \Gamma(E)$, and $\psi \in \Gamma(T M)$.

Relative tractor connection

Theorem

Given a contact form θ on M, the following slot-wise formula characterises a partial tractor connection $\nabla^{\mathcal{V} M}$ on $\mathcal{V} M$ in F-directions

$$
\nabla_{\xi}(t)_{\theta}:=\binom{\nabla_{\xi}^{Q} \rho+\mathcal{L}(\xi, \mu)}{\nabla_{\xi}^{E} \mu-\theta(\rho)[\xi, r]_{E}},
$$

where $\xi \in \Gamma(F), \rho \in \Gamma(Q)$, and $\mu \in \Gamma(E)$.

Remarks

- The formula can be used as an altemative definition.
- This offers an alternative approach to dealing with Lagrangean contact structures (enough to choose θ, no need for general theory)

Relative tractor connection

Theorem

Given a contact form θ on M, the following slot-wise formula characterises a partial tractor connection $\nabla^{\mathcal{V} M}$ on $\mathcal{V} M$ in F-directions

$$
\nabla_{\xi}(t)_{\theta}:=\binom{\nabla_{\xi}^{Q} \rho+\mathcal{L}(\xi, \mu)}{\nabla_{\xi}^{E} \mu-\theta(\rho)[\xi, r]_{E}},
$$

where $\xi \in \Gamma(F), \rho \in \Gamma(Q)$, and $\mu \in \Gamma(E)$.

Remarks

- The formula can be used as an alternative definition.
- This offers an alternative approach to dealing with Lagrangean contact structures (enough to choose θ, no need for general theory).

