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Definition

Let M be a (2n+ 1)-dimensional C ∞-manifold endowed with a contact
structure (M,H). We write TM = H ⨮Q for Q = TM/H.

Definition
A splitting of the contact subbundle into a direct sum of two rank-n
subbundles E ⊕ F = H such that

L|E×E = 0 and L|F ×F = 0,

is called a Lagrangean contact structure.

Remark
⇒ there exists of a canonical nondegenerate pairing E ⊗ F → Q,
⇒ [ξ1, ξ2] ∈ Γ(H) for ξi ∈ Γ(E) and [η1, η2] ∈ Γ(H) ηi ∈ Γ(F ).
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Analogues

Lagrangian subbundles
in symplectic geometry
The study of splittings of the
contact distribution into a pair of
L-isotropic subbundles can be can
be thought of as the contact
analogue of the study of
Lagrangian (maximally isotropic)
subbundles in symplectic geometry.

Almost-CR structures
A nondegenerate almost-CR
structure of hypersurface type
consists of a contact manifold
endowed with a complex structure
on the contact subbundle, which
implies that the complexification of
it splits into two subbundles of
complex rank n.
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Parabolic interpretation

Lie algebra sl(n+ 2) =: g together with two nested parabolic
subalgebras q ⊂ p ⊂ g, where q = p ∩ q̃ (we choose of one side of the
fibration).
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Parabolic interpretation

Remarks

A restriction of the Lie bracket induces an isomorphism
qF

−1
∼= L (qE

−1, q−2).
The bracket q−1 × q−1 → q−2 is nondegenerate, and thus, the
grading is indeed contact.
Viewing it as a symplectic form on g−1, the subspaces gE

−1 and
gF

−1 of g−1 are Lagrangian.

Finally, Lie group PSL(n+ 2) =: G together with two nested
subgroups Q ⊂ P ⊂ G.
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Homogeneous model

F1,n+1(R) = G/Q

G/P = RP n+1 RP (n+1)∗ = G/P̃

The homogeneous model G/Q is the flag manifold F1,n+1(R) of
lines in hyperplanes in Rn+2.
Mapping such a flag to its line makes F1,n+1 into a fibre bundle
over RPn+1 with fibre RPn∗.
Projecting to the hyperplane shows that F1,n+1 is a fibre bundle
over RP (n+1)∗ with fibre RPn.
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Projective structures on (n+ 1)-dimensional manifolds are
equivalent to normal parabolic geometries of type (G,P ).
Those projective structures carry a canonical Lagrangean contact
structure. Let N be an (n+ 1)-dim manifold, and

M := P(T ∗N) π−−→ N.

M carries a canonical contact structure H ⊂ TM , and we obtain
H = E ⊕ F by taking

F := ker(Tπ), E ↭ [∇].

In this setting, F is always integrable and the corresponding
foliation of M is the foliation by the fibres.
On the other hand, regular normal parabolic geometries of type
(G,Q) are equivalent to Lagrangean contact structures.
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Relative setting

We know that natural bundles are induces by representations of Q. For
our purpose, we need to introduce an important subclass called relative
natural bundles.
Definition
Let Q ⊂ P ⊂ G be nested parabolic subgroups and let V be a
representation of Q. For the corresponding natural vector bundle
V = G×QV on parabolic geometries of type (G,Q),

V is called a relative natural bundle if the subgroup P+ ⊂ Q acts
trivially on V;
V is called a relative tractor bundle if V is the restriction to Q of a
representation of P on which P+ acts trivially.
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Relative bundles

Definition

AρM := G ×Q (p/p+) relative adjoint bundle
TρM := G ×Q (p/q) relative tangent bundle
T ∗

ρM := G ×Q (q+/p+) relative cotangent bundle

Definition
As g/p is a completely reducible representation of P ,

V := G ×Q g/p

is a relative tractor bundle, which we call the basic tangent bundle.
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Basic tangent bundle

Lemma
V = TM/F and V ∼= π∗(TN).

0 0

A0M A0M

0 ApM AM V 0

0 F T M V 0

0 0

Important remarks

The bundle V is induced by an irreducible representation of P and
one can construct all relative tractor bundles from it by tensorial
constructions.
Consequently, all relative tractor connections come from the one
on V.
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Relative tractor connection

Definition
V is endowed with a relative tractor connection

∇V
projTρM (mρ)σ = Dρ

mρ
σ +mρ • σ

for mρ ∈ Γ(AρM), σ ∈ Γ(TM/F ), and Dρ the relative fundamental
derivative.

However, V ∼= AM/ApM , where ApM = G×Qp (!!!)

Lemma †
For ξ ∈ Γ(F ), s ∈ Γ(AM), and ∇AM denoting the (usual) tractor
connection on AM

∇V
ξ Π(s) = Π(∇AM

ξ s).
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Sketch of the proof †

Does the RHS depend on Π(s)?
Dρ is compatible with all natural bundle maps coming from
Q-equivariant maps between the inducing representations;
• : AM × E → E coincides with the algebraic bracket
{ , } : AM × AM → AM if E = AM ;
so, indeed ∇AM

ξ s′ ∈ ker(Π) for s′ ∈ Γ(ApM).
Does the equality hold?

Dρ is by definition a restriction of the usual fundamental
derivative D in the first factor to ApM ;
so, indeed ∇V

ξ Π(s) = Π(∇AM
ξ s).
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Bott connection

Theorem ‡
For ξ ∈ Γ(F ), σ ∈ Γ(TM/F ) and σ̃ denoting any of its lifts to X(M)

∇V
ξ σ = Π([ξ, σ̃] + κ(ξ, σ̃)).

In particular, when the bundle F is involutive

∇V
ξ σ = Π([ξ, σ̃]).

Remark
The partial connection ∇V given by the Lie bracket is sometimes
referred to as Bott connection.



Sketch of the proof ‡

For s ∈ Γ(AM) and mp ∈ Γ(ApM) the projection Π(Dsmp)
vanishes identically, so we can write

∇V
ξ σ = Π(Dmp

s−Dsmp + {mp, s}).

This coincides with the Lie bracket on AM induced from X(G)Q,
so ∇V

ξ σ = Π ([mp, s] + κ(ξ, σ̃)).
Π (κ(ξ, σ̃)) is the Λ2F ⊗ E component of the torsion.
This component vanishes identically in case the bundle F is
involutive (heavy BGG machinery).
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Relative tractor calculus

Upon a choice of a contact form θ ∈ Ω1(M) we can decompose V into
V = E ⊕Q and use it to develop an analogue of tractor calculus.

Definition
Given a contact form θ on M and a section t of TM , we define an
isomorphism Γ(TM/F ) ∋ (t+ F ) 7→ (t)θ ∈ Γ(VM) by the formula

(t)θ :=
(
θ(t)πQ(r)

(t− θ(t)r)E

)
.
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Distinguished connection

Definition
Given a contact form θ on M , the following formulae define partial
connections ∇E on the bundle E and ∇Q on the line bundle Q (in
F -directions)

L(∇E
η1
ξ, η2) = −dθ([η1, ξ], η2)q(r) and ∇Q

η1
q(ψ) = [η1 · θ(ψ)]q(r),

where r is the Reeb vector field, η1, η2 ∈ Γ(F ), ξ ∈ Γ(E), and
ψ ∈ Γ(TM).



Relative tractor connection

Theorem
Given a contact form θ on M , the following slot-wise formula
characterises a partial tractor connection ∇VM on VM in F -directions

∇ξ(t)θ :=
(

∇Q
ξ ρ+ L(ξ, µ)

∇E
ξ µ− θ(ρ)[ξ, r]E

)
,

where ξ ∈ Γ(F ), ρ ∈ Γ(Q), and µ ∈ Γ(E).

Remarks

The formula can be used as an alternative definition.
This offers an alternative approach to dealing with Lagrangean
contact structures (enough to choose θ, no need for general
theory).
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