# The Differential Geometry of $S O^{*}(2 n)$ - and $S O^{*}(2 n) S p(1)$-Manifolds 

Henrik Winther<br>Joint with I.Chrysikos and J. Gregorovič<br>Masaryk University, Brno, Czech Republic

January 21, 2022

## Definition

The Quaternion algebra is the associative non-commutative algebra $\mathbb{H}$, with basis $1, i, j, k$ such that

$$
i^{2}=j^{2}=k^{2}=i j k=-1
$$

The elements of $\mathbb{H}$ are called quaternions. Given a quaternion $q$, the projections to $\langle 1\rangle$ and $\langle i, j, k\rangle$, are called the real and imaginary part of $q$. We define the conjugation $\bar{q}=\Re(q)-\Im(q)$. The quaternion algebra is a normed division algebra, with $1, i, j, k$ an orthonormal basis and inverse given by $q^{-1}=\frac{\bar{q}}{|q|^{2}}$.

## Definition

A Quaternionic vector space is a real vector space $V$, equipped with a scalar action $V \times \mathbb{H} \rightarrow V$ such that the induced map $\mathbb{H} \rightarrow \operatorname{End}(V)$ is a homomorphism. Quaternionic vector spaces are non-canonically isomorphic to $\mathbb{H}^{n} \simeq \mathbb{R}^{4 n}$. Note that while $\mathbb{H}^{n}$ is an $\mathbb{H}$-bimodule, one typically restricts to either left- or right quaternionic vector spaces. The conjugation provides an isomorphism between these points of view.
The image $Q \subset \operatorname{End}(V)$ is called a linear quaternionic structure.

Let's consider maps $h: V \times V \rightarrow \mathbb{H}$ for a right quaternionic vector space $V$.

## Definition

We say that $h$ is sesquilinear if

$$
h(x p, y q)=\bar{p} h(x, y) q
$$

There is an involution on the space of such maps, given by $h^{\prime}(x, y)=\overline{h(y, x)}$ (switch arguments and conjugate). The positive and negative eigenspaces of this involution are called Hermitian and skew-Hermitian, respectively.
Thus, a skew-Hermitian form is a sesquilinear form which satisfies

$$
h(x, y)=-\overline{h(y, x)}
$$

A sesquilinear form $h$ is non-degenerate if $h(x, \cdot)=0 \Leftrightarrow x=0$

## Definition

A linear hypercomplex skew-Hermitian structure on a quaternionic right vector space $V$ is a non-degenerate skew-Hermitian form on $V$.
More generally,

## Definition

A linear quaternion skew-Hermitian structure on a real vector space $V$ is an endomorphism-valued bilinear form $h: V \times V \rightarrow \operatorname{End}(V)$ such that

1. The image $Q \subset \operatorname{End}(V)$ of $h$ is a linear quaternionic structure on $V$.
2. For any admissible basis $I, J, K \subset Q, h$ is a linear hypercomplex skew-Hermitian structure.

## Proposition

We can also reformulate as follows:

- $h$ is equivalent to the pair $(Q, \omega)$, where $\Re(h(x, y))=\omega(x, y) / d$
- Real valued 2-forms $\omega$ giving rise to such $h$ can be characterised as non-degenerate $S p(1)$-invariant 2-forms. Here $S p(1)=\exp (\Im(Q))$.


## Definition

Let $V$ be a vector space equipped with a linear quaternionic structure $Q$. Then $\omega \in \Lambda^{2} V^{*}$ is called scalar if it is non-degenerate and
Sp(1)-invariant;

$$
\forall J \in S(Q), \omega(J x, J y)=\omega(x, y)
$$

We define the Lie groups $S O^{*}(2 n)$ and $S p(1) S O^{*}(2 n)$ as the respective automorphism groups of our two structures. $\mathfrak{S o}^{*}(2 n)$ for even and odd quaternionic dimension $n=2 m$ or $n=2 m+1$ :

$$
\left(\begin{array}{cc}
A & C \\
B & -A^{*}
\end{array}\right),
$$

for $A, B, C \in \mathfrak{g l}(m, \mathbb{H}), B^{*}=B, C^{*}=C$.

$$
\left(\begin{array}{ccc}
A & Y & C \\
X & u j & j Y^{*} \\
B & -X^{*} j & -A^{*}
\end{array}\right),
$$

for $A, B, C \in \mathfrak{g l}(m, \mathbb{H}), B^{*}=B, C^{*}=C, X, Y \in \mathbb{H}^{n}$, and $u \in \mathbb{R}$ This is the embedding into $\mathfrak{g l}(n, \mathbb{H})$. We may also embed $\mathfrak{s o}^{*}(2 n)$ into $\mathfrak{s p}(2 n, \mathbb{R}) \simeq \mathfrak{s p}(\omega)$. Moreover, $\mathfrak{s o}^{*}(2 n)$ is a real form of $\mathfrak{s o}(2 n, \mathbb{C})$.

We denote
$\rightarrow E$ is the first fundamental representation of $S O^{*}(2 n)$, i.e. $\mathbb{H}^{n}$ considered as a complex module.

- $H$ is the first fundamental representation of $S p(1)$. In particular, it is equivalent to $\mathbb{H}$ as a complex module (for a choice of complex structure).
$\rightarrow[E H]$ is a real form inside the complex tensor product $E \otimes_{\mathbb{C}} H$. In particular, $[E H] \simeq \mathbb{H}^{n}$ as a real module with invariant linear quaternionic structure.
We introduce the notation $K$ for the complex $S O^{*}(2 n)$-module with highest weight $\pi_{1}+\pi_{2}$.
Now, for example, we may write

$$
\Lambda^{2}[E H]=\left[\Lambda^{2} E S^{2} H\right] \oplus\left[S^{2} E \Lambda^{2} H\right]
$$

From now on we let $n>1$, and $M$ is connected.

## Definition

An Almost Quaternionic Structure on a manifold $M$ is a smooth algebra sub-bundle (1 is included) $Q \subset \operatorname{End}(T M)$ modelled on $\mathbb{H}$, i.e. such that $\forall x \in M, \exists$ an isomorphism $\phi_{x}: \mathbb{H} \rightarrow Q_{x}$. Thus the dimension of $M$ is $4 n$. Equivalently an $A Q S$ is a $G$-structure for $G=\operatorname{Sp}(1) G L(n, \mathbb{H}) \subset \operatorname{End}\left(\mathbb{R}^{4 n}\right)$.

Remark
If $\varphi: Q \simeq M \times \mathbb{H}$ is a trivialization of the algebra bundle, then $\varphi$ is called an almost hypercomplex structure. In that case, the tangent spaces $T_{x} M$ are naturally quaternionic vector spaces.

## Definition

An almost quaternion skew-Hermitian structure on a manifold can be equivalently defined as either

- An almost quaternionic manifold $(M, Q)$ equipped with a section $\omega \in \Omega^{2}(M)^{S p(1)}$ of the bundle of scalar 2-forms.
- A manifold $(M, h)$ equipped with a smooth tensor field $h$ such that for every point $x \in M, h_{x}$ is a linear quaternion skew-Hermitian structure on $T_{x} M$.

We have a globally defined 4-tensor $\Phi$, given by
$\Phi:=g_{\jmath} \odot g_{\jmath}+g_{\jmath} \odot g_{\jmath}+g_{K} \odot g_{K}=\operatorname{Sym}\left(g_{\jmath} \otimes g_{\jmath}+g_{\jmath} \otimes g_{\jmath}+g_{K} \otimes g_{K}\right) \in \Gamma\left(S^{4} T^{*} M\right)$,
where $g_{A}$ are contractions of $A$ and $\omega$, Sym : $\mathcal{T}^{4} T^{*} M \rightarrow S^{4} T^{*} M$ denotes the operator of complete symmetrization at the bundle level, and $\{I, J, K\}$ is an arbitrary local admissible frame of $Q$. We call $\Phi$ the fundamental 4-tensor (field) associated to the almost quaternionic skew-Hermitian structure $(Q, \omega)$.

## Proposition

A 4n-dimensional connected smooth manifold $M$ admits a
SO* $(2 n) S p(1)$-structure if and only if it admits a symmetric 4-tensor $\Phi$ which is pointwise equivalent to the above.
This can be used to define $S O^{*}(2 n) S p(1)$-structures in an alternative way, via a global symmetric 4-tensor.

## Definition

Let $\pi: \mathcal{P} \rightarrow M$ be a $G$-structure on $M$. A linear connection $\nabla$ is called adapted to $\mathcal{P} \subset \mathcal{F}$, or simply a G-connection, when the corresponding connection on the frame bundle $\mathcal{F}$ of $M$ reduces to $\mathcal{P}$.

The first prolongation of $\mathfrak{g}$ is defined by

$$
\mathfrak{g}^{(1)}:=\left(V^{*} \otimes \mathfrak{g}\right) \cap\left(S^{2} V^{*} \otimes V\right)=\left\{\alpha \in V^{*} \otimes \mathfrak{g}: \alpha(x) y=\alpha(y) x, \forall x, y \in V\right\}
$$

Note that for any Lie subalgebra $\mathfrak{g} \subset \operatorname{End}(V)$ we may consider the $G$-equivariant map

$$
\delta: V^{*} \otimes \mathfrak{g} \rightarrow \Lambda^{2} V^{*} \otimes V, \quad \delta(\alpha)(x, y):=\alpha(x) y-\alpha(y) x,
$$

with $\alpha \in V^{*} \otimes \mathfrak{g}$ and $x, y \in V$. This is the Spencer operator of alternation, which is actually one of the boundary maps of the Spencer complex of $\mathfrak{g} \subset \operatorname{End}(V)$, also called Spencer differential. It fits into the following exact sequence
$0 \longrightarrow \operatorname{ker} \delta \cong \mathfrak{g}^{(1)} \longrightarrow V^{*} \otimes \mathfrak{g} \cong \operatorname{Hom}(V, \mathfrak{g}) \xrightarrow{\delta} \Lambda^{2} V^{*} \otimes V \longrightarrow \mathcal{H}(\mathfrak{g}) \longrightarrow 0$
where we denote by $\mathcal{H}(\mathfrak{g}) \equiv \mathcal{H}^{0,2}(\mathfrak{g})$ the following Spencer cohomology of $\mathfrak{g}$ :

$$
\mathcal{H}(\mathfrak{g}):=\operatorname{Hom}\left(\Lambda^{2} V, V\right) / \operatorname{Im}(\delta)=\Lambda^{2} V^{*} \otimes V / \operatorname{Im}(\delta) .
$$

## Proposition

$$
\begin{aligned}
\Lambda^{2}[E H]^{*} \otimes[E H] & \cong\left[\left(\Lambda^{3} E \oplus K \oplus E\right) \otimes S^{3} H\right]^{*}, \\
& \oplus\left[\left(\Lambda^{3} E \oplus 2 K \oplus 3 E \oplus S_{0}^{3} E\right) \otimes H\right]^{*}, \\
\delta\left([E H]^{*} \otimes \mathfrak{s o}^{*}(2 n)\right) & \cong\left[\left(\Lambda^{3} E \oplus K \oplus E\right) \otimes H\right]^{*}, \\
\delta\left([E H]^{*} \otimes \mathfrak{s p}(1)\right) & \cong\left[E \otimes\left(S^{3} H \oplus H\right)\right]^{*} .
\end{aligned}
$$

The intrinsic torsion of a $S O^{*}(2 n) S p(1)$-structure is

$$
\mathcal{H}\left(\mathfrak{s o}^{*}(2 n) \oplus \mathfrak{s p}(1)\right)=\left[K S^{3} H\right] \oplus\left[\Lambda^{3} E S^{3} H\right] \oplus[K H] \oplus[E H] \oplus\left[S_{0}^{3} E H\right]
$$

## Normalization condition

Consider the traces $\operatorname{Tr}_{i}: \Lambda^{2}[E H]^{*} \otimes[E H] \rightarrow[E H]^{*}$ for $i=1, \ldots, 4$ :

1. $\operatorname{Tr}_{1}(A)(X):=\operatorname{Tr}(A(\cdot, X))$;
2. $\operatorname{Tr}_{2}(A)(X):=\operatorname{Tr}(A(X, \cdot))$;
3. $\operatorname{Tr}_{3}(A)(X):=\operatorname{Tr}\left(A_{X}^{T}\right)$, where $A_{X}^{T}$ is the symplectic transpose of $A_{X}:=A(X, \cdot)$;
4. $\operatorname{Tr}_{4}(A)(X):=\operatorname{Tr}(\mathcal{J} A(\mathcal{J} X, \cdot))$, for $\mathcal{J} \in S(Q)$.

## Proposition

Let $\mathcal{D}\left(\mathfrak{s p}(1) \oplus \mathfrak{s o}^{*}(2 n)\right)=\operatorname{ker}\left(2 \operatorname{Tr}_{1}+\operatorname{Tr}_{3}\right) \cap \operatorname{ker}\left(\operatorname{Tr}_{1}-\operatorname{Tr}_{4}\right)$. Then $\mathcal{D}\left(\mathfrak{s p}(1) \oplus \mathfrak{s o}^{*}(2 n)\right) \simeq\left[K S^{3} H\right] \oplus\left[\Lambda^{3} E S^{3} H\right] \oplus[K H] \oplus[E H] \oplus\left[S_{0}^{3} E H\right]$ is transversal to the image of $\delta$, and isomorphic to $H^{0,2}\left(\mathfrak{s p}(1) \oplus \mathfrak{s o}^{*}(2 n)\right)$. Hence it is a normalization condition.

Following Alekseevsky, Marchiafava we may start with an arbitrary Oproiu connection $\nabla$ then obtain a unique quaternionic connection preserving vol:

$$
\nabla^{(Q, \text { vol })}=\nabla+\frac{1}{4(n+1)} S^{\theta}
$$

Where $\theta$ is defined by $\nabla \mathrm{vol}=\theta \otimes \mathrm{vol}$ and $S^{\theta}$ is an equivariant map from $T^{*} M$ to $T M \otimes S^{2} T^{*} M$.

## Proposition

Let $(M, Q)$ be an almost quaternionic manifold equipped with the volume form vol $\in \Omega^{4 n}(M)$. Then there exists a unique Oproiu connection $\nabla^{Q, \text { vol }} f$ or which $\nabla^{Q, \text { vol }}$ vol $=0$. We will call this the unimodular Oproiu connection.

## Proposition

We have a forgetful functor from almost quaternion Skew-Hermitian manifolds to unimodular quaternionic manifolds. This is given by taking $\mathrm{vol}=\omega^{2 n}$.

The unimodular Oproiu connection is not adapted, but we can modify it:
Theorem
The assignment $(Q, \omega) \mapsto\left(Q, \omega, \nabla^{Q, \omega}\right)$, where

$$
\nabla^{Q, \omega}=\nabla^{Q, \text { vol }}+A,
$$

and $A$ is defined by $\omega(A(X, Y), Z)=\frac{1}{2}\left(\nabla_{X}^{Q, \text { vol }} \omega\right)(Y, Z)$, is a functorial assignment of adapted connections.

## Proposition

We have the prolongations $\mathfrak{g}^{(1)}=\{0\}$ for $\mathfrak{g}=\mathfrak{s o}^{*}(2 n)$ and $\mathfrak{g}=\mathfrak{s p}(1) \oplus \mathfrak{s o}^{*}(2 n)$

## Theorem

The connection $\nabla^{Q, \omega}$ is the unique minimal adapted connection with respect to the normalization condition above.

We consider the torsion of $\nabla^{Q, \omega}$
Corollary

- The torsion component $S^{3} H\left(\Lambda^{3} E+K\right)$ coincides with the intrinsic torsion of the almost-quaternionic structure $Q$.
- The torsion component $H(E+K) \oplus S^{3} H \wedge^{3} E$ is the intrinsic torsion of the almost-symplectic structure $\omega$, branched.
- The torsion component $H S_{0}^{3} E$ is the "compatibility" torsion of $(Q, \omega)$.

There is a corresponding statement for the almost hypercomplex case, but with many more torsion components.

Theorem
The symmetric space $S O^{*}(2 n+2) / S O^{*}(2 n) U(1)$ and the pseudo-Wolf spaces
$S U(2+p, q) /(S U(2) S U(p, q) U(1)), \quad S L(n+1, \mathbb{H}) /(G L(1, \mathbb{H}) S L(n, \mathbb{H}))$
are the only (up to covering) homogeneous spaces $K / L$ with $K$ semisimple, admitting invariant torsion-free quaternionic skew-Hermitian structures $(Q, \omega)$. In particular, the corresponding canonical connections on these symmetric spaces provide the associated minimal quaternionic skew-Hermitian connection $\nabla^{Q, \omega}$.

Let $P$ be the connected subgroup of $S O^{*}(2 n+2)$ which stabilizes an isotropic (with respect to $\omega$ ) quaternionic line in $\mathbb{H}^{n+1}$. Then, the homogeneous space $N=S O^{*}(2 n+2) / P$ admits an invariant contact structure, and we denote by $\mathcal{D}$ the corresponding contact distribution.

## Proposition

Let $\left(Q, \omega, \nabla^{Q, \omega}\right)$ be a smooth torsion-free $S O^{*}(2 n) \operatorname{Sp}(1)$-structure with special symplectic holonomy, i.e., $T^{Q, \omega}=0$ and
$\operatorname{Hol}\left(\nabla^{Q, \omega}\right)=S O^{*}(2 n) \operatorname{Sp}(1)$. Then $\left(Q, \omega, \nabla^{Q, \omega}\right)$ is analytic, and locally equivalent to a symplectic reduction $\mathbb{T} \backslash U$ by a one-parameter subgroup $\mathbb{T} \subset S O^{*}(2 n+2)$ with Lie algebra $\mathfrak{t}$, such that the corresponding right-invariant vector fields are transversal to the contact distribution $\mathcal{D}$ everywhere on $U$. Here $U \subset N$ is a sufficiently small open subset of $N$. In particular, the moduli space of such structures is n-dimensional, where $n$ represents the quaternionic dimension of the symplectic reduction.
This result follows from a theorem of Cahen and Schwachhöfer about special symplectic connections in general.

- Structures on quaternionic twistor space
- Natural Spin bundles


## Question

Even if the quaternionic structure $Q$ and the scalar two-form $\omega$ are both integrable, the quaternion skew-Hermitian structure could have non-trivial intrinsic torsion. But does there exist examples which are not torsion-free?

