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Quaternion Skew-Hermitian Structures

Preliminaries

Quaternionic Linear Algebra

Definition
The Quaternion algebra is the associative non-commutative algebra H,
with basis 1, i , j , k such that

i2 = j2 = k2 = ijk = −1

The elements of H are called quaternions. Given a quaternion q, the
projections to < 1 > and < i , j , k >, are called the real and imaginary
part of q. We define the conjugation q̄ = ℜ(q)−ℑ(q). The quaternion
algebra is a normed division algebra, with 1, i , j , k an orthonormal basis
and inverse given by q−1 = q̄

|q|2 .
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Quaternion Skew-Hermitian Structures

Preliminaries

Quaternionic Linear Algebra

Definition
A Quaternionic vector space is a real vector space V , equipped with a
scalar action V ×H → V such that the induced map H → End(V ) is a
homomorphism. Quaternionic vector spaces are non-canonically
isomorphic to Hn ≃ R4n. Note that while Hn is an H-bimodule, one
typically restricts to either left- or right quaternionic vector spaces. The
conjugation provides an isomorphism between these points of view.

The image Q ⊂ End(V ) is called a linear quaternionic structure.
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Quaternion Skew-Hermitian Structures

Preliminaries

Sesquilinear forms on quaternionic vector spaces

Let’s consider maps h : V × V → H for a right quaternionic vector space
V .

Definition
We say that h is sesquilinear if

h(xp, yq) = p̄h(x , y)q,

There is an involution on the space of such maps, given by
h′(x , y) = h(y , x) (switch arguments and conjugate ). The positive and
negative eigenspaces of this involution are called Hermitian and
skew-Hermitian, respectively.

Thus, a skew-Hermitian form is a sesquilinear form which satisfies

h(x , y) = −h(y , x)
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Quaternion Skew-Hermitian Structures

Preliminaries

Sesquilinear forms on quaternionic vector spaces

A sesquilinear form h is non-degenerate if h(x , ·) = 0 ⇔ x = 0

Definition
A linear hypercomplex skew-Hermitian structure on a quaternionic
right vector space V is a non-degenerate skew-Hermitian form on V .

More generally,

Definition
A linear quaternion skew-Hermitian structure on a real vector space
V is an endomorphism-valued bilinear form h : V × V → End(V ) such
that

1. The image Q ⊂ End(V ) of h is a linear quaternionic structure on V .

2. For any admissible basis I , J,K ⊂ Q, h is a linear hypercomplex
skew-Hermitian structure.
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Quaternion Skew-Hermitian Structures

Preliminaries

Sesquilinear forms on quaternionic vector spaces

Proposition
We can also reformulate as follows:

▶ h is equivalent to the pair (Q, ω), where ℜ(h(x , y)) = ω(x , y)Id

▶ Real valued 2-forms ω giving rise to such h can be characterised as
non-degenerate Sp(1)-invariant 2-forms. Here Sp(1) = exp(ℑ(Q)) .

Definition
Let V be a vector space equipped with a linear quaternionic structure Q.
Then ω ∈ Λ2V ∗ is called scalar if it is non-degenerate and
Sp(1)-invariant;

∀J ∈ S(Q), ω(Jx , Jy) = ω(x , y)
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Quaternion Skew-Hermitian Structures

Preliminaries

Sesquilinear forms on quaternionic vector spaces

We define the Lie groups SO∗(2n) and Sp(1)SO∗(2n) as the respective
automorphism groups of our two structures. so∗(2n) for even and odd
quaternionic dimension n = 2m or n = 2m + 1:(

A C
B −A∗

)
,

for A,B,C ∈ gl(m,H), B∗ = B,C∗ = C .(
A Y C
X uj jY ∗

B −X∗j −A∗

)
,

for A,B,C ∈ gl(m,H), B∗ = B,C∗ = C , X ,Y ∈ Hn, and u ∈ R This is
the embedding into gl(n,H). We may also embed so∗(2n) into
sp(2n,R) ≃ sp(ω). Moreover, so∗(2n) is a real form of so(2n,C).
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Preliminaries

EH-formalism

We denote

▶ E is the first fundamental representation of SO∗(2n), i.e. Hn

considered as a complex module.

▶ H is the first fundamental representation of Sp(1). In particular, it is
equivalent to H as a complex module (for a choice of complex
structure).

▶ [EH] is a real form inside the complex tensor product E ⊗C H. In
particular, [EH] ≃ Hn as a real module with invariant linear
quaternionic structure.

We introduce the notation K for the complex SO∗(2n)-module with
highest weight π1 + π2.
Now, for example, we may write

Λ2[EH] = [Λ2ES2H]⊕ [S2EΛ2H]
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Quaternion Skew-Hermitian Structures

Differential Geometry

Almost Quaternionic Structures

From now on we let n > 1, and M is connected.

Definition
An Almost Quaternionic Structure on a manifold M is a smooth
algebra sub-bundle (1 is included) Q ⊂ End(TM) modelled on H, i.e.
such that ∀x ∈ M, ∃ an isomorphism ϕx : H → Qx . Thus the dimension
of M is 4n. Equivalently an AQS is a G-structure for
G = Sp(1)GL(n,H) ⊂ End(R4n).

Remark
If φ : Q ≃ M ×H is a trivialization of the algebra bundle, then φ is called
an almost hypercomplex structure. In that case, the tangent spaces TxM
are naturally quaternionic vector spaces.
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Quaternion Skew-Hermitian Structures

Differential Geometry

Almost quaternion skew-Hermitian manifolds

Definition
An almost quaternion skew-Hermitian structure on a manifold can be
equivalently defined as either

▶ An almost quaternionic manifold (M,Q) equipped with a section
ω ∈ Ω2(M)Sp(1) of the bundle of scalar 2-forms.

▶ A manifold (M, h) equipped with a smooth tensor field h such that
for every point x ∈ M, hx is a linear quaternion skew-Hermitian
structure on TxM.
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Quaternion Skew-Hermitian Structures

Differential Geometry

Almost quaternion skew-Hermitian manifolds

We have a globally defined 4-tensor Φ, given by

Φ := gI⊙gI+gJ⊙gJ+gK⊙gK = Sym(gI⊗gI+gJ⊗gJ+gK⊗gK ) ∈ Γ
(
S4T ∗M

)
,

where gA are contractions of A and ω, Sym : T 4T ∗M → S4T ∗M denotes
the operator of complete symmetrization at the bundle level, and
{I , J,K} is an arbitrary local admissible frame of Q. We call Φ the
fundamental 4-tensor (field) associated to the almost quaternionic
skew-Hermitian structure (Q, ω).

Proposition
A 4n-dimensional connected smooth manifold M admits a
SO∗(2n)Sp(1)-structure if and only if it admits a symmetric 4-tensor Φ
which is pointwise equivalent to the above.

This can be used to define SO∗(2n)Sp(1)-structures in an alternative
way, via a global symmetric 4-tensor.
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Quaternion Skew-Hermitian Structures

Differential Geometry

Almost quaternion skew-Hermitian manifolds

Definition
Let π : P → M be a G-structure on M. A linear connection ∇ is called
adapted to P ⊂ F , or simply a G-connection, when the corresponding
connection on the frame bundle F of M reduces to P.
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Differential Geometry

Almost quaternion skew-Hermitian manifolds

The first prolongation of g is defined by

g(1) := (V ∗⊗g)∩(S2V ∗⊗V ) = {α ∈ V ∗⊗g : α(x)y = α(y)x , ∀ x , y ∈ V }

Note that for any Lie subalgebra g ⊂ End(V ) we may consider the
G -equivariant map

δ : V ∗ ⊗ g → Λ2V ∗ ⊗ V , δ(α)(x , y) := α(x)y − α(y)x ,

with α ∈ V ∗ ⊗ g and x , y ∈ V . This is the Spencer operator of
alternation, which is actually one of the boundary maps of the Spencer
complex of g ⊂ End(V ), also called Spencer differential. It fits into the
following exact sequence

0 −→ ker δ ∼= g(1) −→ V ∗⊗g ∼= Hom(V , g)
δ−→ Λ2V ∗⊗V −→ H(g) −→ 0

where we denote by H(g) ≡ H0,2(g) the following Spencer cohomology
of g:

H(g) := Hom(Λ2V ,V )/Im(δ) = Λ2V ∗ ⊗ V /Im(δ) .
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Quaternion Skew-Hermitian Structures

Differential Geometry

Almost quaternion skew-Hermitian manifolds

Proposition

Λ2[EH]∗ ⊗ [EH] ∼= [(Λ3E ⊕ K ⊕ E )⊗ S3H]∗ ,

⊕ [(Λ3E ⊕ 2K ⊕ 3E ⊕ S3
0E )⊗ H]∗ ,

δ([EH]∗ ⊗ so∗(2n)) ∼= [(Λ3E ⊕ K ⊕ E )⊗ H]∗ ,

δ([EH]∗ ⊗ sp(1)) ∼= [E ⊗ (S3H ⊕ H)]∗ .

The intrinsic torsion of a SO∗(2n)Sp(1)-structure is

H(so∗(2n)⊕ sp(1)) = [KS3H]⊕ [Λ3ES3H]⊕ [KH]⊕ [EH]⊕ [S3
0EH]
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Quaternion Skew-Hermitian Structures

Differential Geometry

Almost quaternion skew-Hermitian manifolds

Normalization condition

Consider the traces Tri : Λ
2[EH]∗ ⊗ [EH] → [EH]∗ for i = 1, . . . , 4:

1. Tr1(A)(X ) := Tr(A(· ,X ));

2. Tr2(A)(X ) := Tr(A(X , ·));
3. Tr3(A)(X ) := Tr(AT

X ), where AT
X is the symplectic transpose of

AX := A(X , ·);
4. Tr4(A)(X ) := Tr(JA(JX , ·)), for J ∈ S(Q).

Proposition
Let D(sp(1)⊕ so∗(2n)) = ker(2Tr1 + Tr3) ∩ ker(Tr1 − Tr4). Then
D(sp(1)⊕ so∗(2n)) ≃ [KS3H]⊕ [Λ3ES3H]⊕ [KH]⊕ [EH]⊕ [S3

0EH] is
transversal to the image of δ, and isomorphic to H0,2(sp(1)⊕ so∗(2n)).
Hence it is a normalization condition.
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Differential Geometry

Almost quaternion skew-Hermitian manifolds

Following Alekseevsky, Marchiafava we may start with an arbitrary
Oproiu connection ∇ then obtain a unique quaternionic connection
preserving vol:

∇(Q,vol) = ∇+
1

4(n + 1)
Sθ

Where θ is defined by ∇vol = θ ⊗ vol and Sθ is an equivariant map from
T ∗M to TM ⊗ S2T ∗M.

Proposition
Let (M,Q) be an almost quaternionic manifold equipped with the
volume form vol ∈ Ω4n(M). Then there exists a unique Oproiu

connection ∇Q,vol f or which ∇Q,volvol = 0. We will call this the
unimodular Oproiu connection.

Proposition
We have a forgetful functor from almost quaternion Skew-Hermitian
manifolds to unimodular quaternionic manifolds. This is given by taking
vol = ω2n.
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Quaternion Skew-Hermitian Structures

Differential Geometry

Almost quaternion skew-Hermitian manifolds

The unimodular Oproiu connection is not adapted, but we can modify it:

Theorem
The assignment (Q, ω) 7→ (Q, ω,∇Q,ω), where

∇Q,ω = ∇Q,vol + A,

and A is defined by ω(A(X ,Y ),Z ) = 1
2 (∇

Q,vol
X ω)(Y ,Z ), is a functorial

assignment of adapted connections.

Proposition
We have the prolongations g(1) = {0} for g = so∗(2n) and
g = sp(1)⊕ so∗(2n)

Theorem
The connection ∇Q,ω is the unique minimal adapted connection with
respect to the normalization condition above.
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Quaternion Skew-Hermitian Structures

Differential Geometry

Almost quaternion skew-Hermitian manifolds

We consider the torsion of ∇Q,ω

Corollary

▶ The torsion component S3H(Λ3E + K ) coincides with the intrinsic
torsion of the almost-quaternionic structure Q.

▶ The torsion component H(E + K )⊕ S3HΛ3E is the intrinsic torsion
of the almost-symplectic structure ω, branched.

▶ The torsion component H S3
0E is the “compatibility” torsion of

(Q, ω).

There is a corresponding statement for the almost hypercomplex case,
but with many more torsion components.



19/21

Quaternion Skew-Hermitian Structures

Torsion-Free Examples

Theorem
The symmetric space SO∗(2n + 2)/SO∗(2n)U(1) and the pseudo-Wolf
spaces

SU(2 + p, q)/(SU(2)SU(p, q)U(1)) , SL(n+1,H)/(GL(1,H)SL(n,H))

are the only (up to covering) homogeneous spaces K/L with K
semisimple, admitting invariant torsion-free quaternionic skew-Hermitian
structures (Q, ω). In particular, the corresponding canonical connections
on these symmetric spaces provide the associated minimal quaternionic
skew-Hermitian connection ∇Q,ω.
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Quaternion Skew-Hermitian Structures

Torsion-Free Examples

Let P be the connected subgroup of SO∗(2n + 2) which stabilizes an
isotropic (with respect to ω) quaternionic line in Hn+1. Then, the
homogeneous space N = SO∗(2n + 2)/P admits an invariant contact
structure, and we denote by D the corresponding contact distribution.

Proposition
Let (Q, ω,∇Q,ω) be a smooth torsion-free SO∗(2n)Sp(1)-structure with
special symplectic holonomy, i.e., TQ,ω = 0 and
Hol(∇Q,ω) = SO∗(2n)Sp(1). Then (Q, ω,∇Q,ω) is analytic, and locally
equivalent to a symplectic reduction T\U by a one-parameter subgroup
T ⊂ SO∗(2n + 2) with Lie algebra t, such that the corresponding
right-invariant vector fields are transversal to the contact distribution D
everywhere on U. Here U ⊂ N is a sufficiently small open subset of N.
In particular, the moduli space of such structures is n-dimensional, where
n represents the quaternionic dimension of the symplectic reduction.

This result follows from a theorem of Cahen and Schwachhöfer about
special symplectic connections in general.
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Quaternion Skew-Hermitian Structures

Torsion-Free Examples

▶ Structures on quaternionic twistor space

▶ Natural Spin bundles

Question
Even if the quaternionic structure Q and the scalar two-form ω are both
integrable, the quaternion skew-Hermitian structure could have
non-trivial intrinsic torsion. But does there exist examples which are not
torsion-free?
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