The Differential Geometry of $SO^*(2n)$ - and $SO^*(2n)Sp(1)$ -Manifolds

Henrik Winther Joint with I.Chrysikos and J. Gregorovič

Masaryk University, Brno, Czech Republic

January 21, 2022

Definition

The **Quaternion algebra** is the associative non-commutative algebra \mathbb{H} , with basis 1, *i*, *j*, *k* such that

$$i^2 = j^2 = k^2 = ijk = -1$$

The elements of \mathbb{H} are called quaternions. Given a quaternion q, the projections to $\langle 1 \rangle$ and $\langle i, j, k \rangle$, are called the real and imaginary part of q. We define the conjugation $\overline{q} = \Re(q) - \Im(q)$. The quaternion algebra is a normed division algebra, with 1, i, j, k an orthonormal basis and inverse given by $q^{-1} = \frac{\overline{q}}{|q|^2}$.

Preliminaries

Quaternionic Linear Algebra

Definition

A Quaternionic vector space is a real vector space V, equipped with a scalar action $V \times \mathbb{H} \to V$ such that the induced map $\mathbb{H} \to \text{End}(V)$ is a homomorphism. Quaternionic vector spaces are non-canonically isomorphic to $\mathbb{H}^n \simeq \mathbb{R}^{4n}$. Note that while \mathbb{H}^n is an \mathbb{H} -bimodule, one typically restricts to either left- or right quaternionic vector spaces. The conjugation provides an isomorphism between these points of view.

The image $Q \subset \text{End}(V)$ is called a **linear quaternionic structure**.

Let's consider maps $h: V \times V \to \mathbb{H}$ for a right quaternionic vector space V.

Definition

We say that h is sesquilinear if

$$h(xp, yq) = \bar{p}h(x, y)q,$$

There is an involution on the space of such maps, given by $h'(x, y) = \overline{h(y, x)}$ (switch arguments and conjugate). The positive and negative eigenspaces of this involution are called **Hermitian** and **skew-Hermitian**, respectively.

Thus, a skew-Hermitian form is a sesquilinear form which satisfies

$$h(x,y)=-\overline{h(y,x)}$$

A sesquilinear form h is non-degenerate if $h(x, \cdot) = 0 \Leftrightarrow x = 0$

Definition

A linear hypercomplex skew-Hermitian structure on a quaternionic right vector space V is a non-degenerate skew-Hermitian form on V. More generally,

Definition

A linear quaternion skew-Hermitian structure on a real vector space V is an endomorphism-valued bilinear form $h: V \times V \rightarrow End(V)$ such that

- 1. The image $Q \subset End(V)$ of h is a linear quaternionic structure on V.
- 2. For any admissible basis $I, J, K \subset Q$, h is a linear hypercomplex skew-Hermitian structure.

- Preliminaries

Sesquilinear forms on quaternionic vector spaces

Proposition

We can also reformulate as follows:

- ▶ h is equivalent to the pair (Q, ω) , where $\Re(h(x, y)) = \omega(x, y) Id$
- Real valued 2-forms ω giving rise to such h can be characterised as non-degenerate Sp(1)-invariant 2-forms. Here Sp(1) = exp(ℑ(Q)).

Definition

Let V be a vector space equipped with a linear quaternionic structure Q. Then $\omega \in \Lambda^2 V^*$ is called **scalar** if it is non-degenerate and Sp(1)-invariant;

$$\forall J \in S(Q), \omega(Jx, Jy) = \omega(x, y)$$

We define the Lie groups $SO^*(2n)$ and $Sp(1)SO^*(2n)$ as the respective automorphism groups of our two structures. $\mathfrak{so}^*(2n)$ for even and odd quaternionic dimension n = 2m or n = 2m + 1:

$$\left(\begin{smallmatrix} A & C \\ B & -A^* \end{smallmatrix} \right),$$

for $A, B, C \in \mathfrak{gl}(m, \mathbb{H})$, $B^* = B, C^* = C$.

$$\begin{pmatrix} A & Y & C \\ X & uj & jY^* \\ B & -X^*j & -A^* \end{pmatrix},$$

for $A, B, C \in \mathfrak{gl}(m, \mathbb{H})$, $B^* = B, C^* = C, X, Y \in \mathbb{H}^n$, and $u \in \mathbb{R}$ This is the embedding into $\mathfrak{gl}(n, \mathbb{H})$. We may also embed $\mathfrak{so}^*(2n)$ into $\mathfrak{sp}(2n, \mathbb{R}) \simeq \mathfrak{sp}(\omega)$. Moreover, $\mathfrak{so}^*(2n)$ is a real form of $\mathfrak{so}(2n, \mathbb{C})$.

We denote

- ► E is the first fundamental representation of SO*(2n), i.e. Hⁿ considered as a complex module.
- ► H is the first fundamental representation of Sp(1). In particular, it is equivalent to H as a complex module (for a choice of complex structure).
- [EH] is a real form inside the complex tensor product E ⊗_C H. In particular, [EH] ≃ ℍⁿ as a real module with invariant linear quaternionic structure.

We introduce the notation *K* for the complex $SO^*(2n)$ -module with highest weight $\pi_1 + \pi_2$.

Now, for example, we may write

$$\Lambda^2[EH] = [\Lambda^2 ES^2 H] \oplus [S^2 E \Lambda^2 H]$$

From now on we let n > 1, and M is connected.

Definition

An Almost Quaternionic Structure on a manifold M is a smooth algebra sub-bundle (1 is included) $Q \subset \text{End}(TM)$ modelled on \mathbb{H} , i.e. such that $\forall x \in M, \exists$ an isomorphism $\phi_x : \mathbb{H} \to Q_x$. Thus the dimension of M is 4n. Equivalently an AQS is a G-structure for $G = Sp(1)GL(n, \mathbb{H}) \subset \text{End}(\mathbb{R}^{4n})$.

Remark

If $\varphi : Q \simeq M \times \mathbb{H}$ is a trivialization of the algebra bundle, then φ is called an almost hypercomplex structure. In that case, the tangent spaces $T_x M$ are naturally quaternionic vector spaces. - Differential Geometry

Almost quaternion skew-Hermitian manifolds

Definition

An **almost quaternion skew-Hermitian structure** on a manifold can be equivalently defined as either

- An almost quaternionic manifold (M, Q) equipped with a section $\omega \in \Omega^2(M)^{Sp(1)}$ of the bundle of scalar 2-forms.
- A manifold (M, h) equipped with a smooth tensor field h such that for every point $x \in M$, h_x is a linear quaternion skew-Hermitian structure on $T_x M$.

We have a globally defined 4-tensor Φ , given by

 $\Phi := g_I \odot g_I + g_J \odot g_J + g_K \odot g_K = \mathsf{Sym}(g_I \otimes g_I + g_J \otimes g_J + g_K \otimes g_K) \in \Gamma(S^4 T^* M),$

where g_A are contractions of A and ω , Sym : $\mathcal{T}^4 \mathcal{T}^* M \to S^4 \mathcal{T}^* M$ denotes the operator of complete symmetrization at the bundle level, and $\{I, J, K\}$ is an arbitrary local admissible frame of Q. We call Φ the **fundamental 4-tensor (field)** associated to the almost quaternionic skew-Hermitian structure (Q, ω) .

Proposition

A 4n-dimensional connected smooth manifold M admits a $SO^*(2n)Sp(1)$ -structure if and only if it admits a symmetric 4-tensor Φ which is pointwise equivalent to the above.

This can be used to define $SO^*(2n)Sp(1)$ -structures in an alternative way, via a global symmetric 4-tensor.

- Differential Geometry

Almost quaternion skew-Hermitian manifolds

Definition

Let $\pi : \mathcal{P} \to M$ be a *G*-structure on *M*. A linear connection ∇ is called **adapted** to $\mathcal{P} \subset \mathcal{F}$, or simply a *G*-connection, when the corresponding connection on the frame bundle \mathcal{F} of *M* reduces to \mathcal{P} .

The first prolongation of \mathfrak{g} is defined by

 $\mathfrak{g}^{(1)} := (V^* \otimes \mathfrak{g}) \cap (S^2 V^* \otimes V) = \{ \alpha \in V^* \otimes \mathfrak{g} : \alpha(x)y = \alpha(y)x, \ \forall \ x, y \in V \}$

Note that for any Lie subalgebra $\mathfrak{g} \subset \operatorname{End}(V)$ we may consider the G-equivariant map

$$\delta: V^* \otimes \mathfrak{g} \to \Lambda^2 V^* \otimes V, \quad \delta(\alpha)(x,y) := \alpha(x)y - \alpha(y)x,$$

with $\alpha \in V^* \otimes \mathfrak{g}$ and $x, y \in V$. This is the **Spencer operator of alternation**, which is actually one of the boundary maps of the Spencer complex of $\mathfrak{g} \subset \operatorname{End}(V)$, also called **Spencer differential**. It fits into the following exact sequence

$$0 \longrightarrow \ker \delta \cong \mathfrak{g}^{(1)} \longrightarrow V^* \otimes \mathfrak{g} \cong \operatorname{Hom}(V, \mathfrak{g}) \stackrel{\delta}{\longrightarrow} \Lambda^2 V^* \otimes V \longrightarrow \mathcal{H}(\mathfrak{g}) \longrightarrow 0$$

where we denote by $\mathcal{H}(\mathfrak{g}) \equiv \mathcal{H}^{0,2}(\mathfrak{g})$ the following Spencer cohomology of \mathfrak{g} :

$$\mathcal{H}(\mathfrak{g}) := \operatorname{Hom}(\Lambda^2 V, V) / \operatorname{Im}(\delta) = \Lambda^2 V^* \otimes V / \operatorname{Im}(\delta) \,.$$

Differential Geometry

Almost quaternion skew-Hermitian manifolds

Proposition

$$\begin{array}{rcl} \Lambda^2[EH]^* \otimes [EH] &\cong & [(\Lambda^3 E \oplus K \oplus E) \otimes S^3 H]^* \,, \\ &\oplus & [(\Lambda^3 E \oplus 2K \oplus 3E \oplus S_0^3 E) \otimes H]^* \,, \end{array} \\ \delta([EH]^* \otimes \mathfrak{so}^*(2n)) &\cong & [(\Lambda^3 E \oplus K \oplus E) \otimes H]^* \,, \\ \delta([EH]^* \otimes \mathfrak{sp}(1)) &\cong & [E \otimes (S^3 H \oplus H)]^* \,. \end{array}$$

The intrinsic torsion of a $SO^*(2n)Sp(1)$ -structure is

 $\mathcal{H}(\mathfrak{so}^*(2n)\oplus\mathfrak{sp}(1))=[\mathit{KS}^3\mathit{H}]\oplus[\Lambda^3\mathit{ES}^3\mathit{H}]\oplus[\mathit{KH}]\oplus[\mathit{EH}]\oplus[\mathit{S}_0^3\mathit{EH}]$

Normalization condition

Consider the traces $Tr_i : \Lambda^2[EH]^* \otimes [EH] \rightarrow [EH]^*$ for $i = 1, \dots, 4$:

- 1. $Tr_1(A)(X) := Tr(A(\cdot, X));$
- 2. $Tr_2(A)(X) := Tr(A(X, \cdot));$
- 3. $\operatorname{Tr}_3(A)(X) := \operatorname{Tr}(A_X^T)$, where A_X^T is the symplectic transpose of $A_X := A(X, \cdot)$;
- 4. $\operatorname{Tr}_4(A)(X) := \operatorname{Tr}(\mathcal{J}A(\mathcal{J}X, \cdot))$, for $\mathcal{J} \in S(Q)$.

Proposition

Let $\mathcal{D}(\mathfrak{sp}(1) \oplus \mathfrak{so}^*(2n)) = \ker(2\mathsf{Tr}_1 + \mathsf{Tr}_3) \cap \ker(\mathsf{Tr}_1 - \mathsf{Tr}_4)$. Then $\mathcal{D}(\mathfrak{sp}(1) \oplus \mathfrak{so}^*(2n)) \simeq [KS^3H] \oplus [\Lambda^3ES^3H] \oplus [KH] \oplus [EH] \oplus [S_0^3EH]$ is transversal to the image of δ , and isomorphic to $H^{0,2}(\mathfrak{sp}(1) \oplus \mathfrak{so}^*(2n))$. Hence it is a normalization condition. Following Alekseevsky, Marchiafava we may start with an arbitrary Oproiu connection ∇ then obtain a unique quaternionic connection preserving vol:

$$abla^{(Q, \mathsf{vol})} =
abla + rac{1}{4(n+1)}S^ heta$$

Where θ is defined by $\nabla vol = \theta \otimes vol$ and S^{θ} is an equivariant map from T^*M to $TM \otimes S^2T^*M$.

Proposition

Let (M, Q) be an almost quaternionic manifold equipped with the volume form vol $\in \Omega^{4n}(M)$. Then there exists a <u>unique</u> Oproiu connection $\nabla^{Q,\text{vol}}$ f or which $\nabla^{Q,\text{vol}}$ vol = 0. We will call this the **unimodular Oproiu connection**.

Proposition

We have a forgetful functor from almost quaternion Skew-Hermitian manifolds to unimodular quaternionic manifolds. This is given by taking $vol = \omega^{2n}$.

The unimodular Oproiu connection is not adapted, but we can modify it:

Theorem

The assignment $(Q, \omega) \mapsto (Q, \omega, \nabla^{Q, \omega})$, where

$$\nabla^{Q,\omega} = \nabla^{Q,\mathsf{vol}} + A,$$

and A is defined by $\omega(A(X, Y), Z) = \frac{1}{2}(\nabla_X^{Q, \text{vol}}\omega)(Y, Z)$, is a functorial assignment of adapted connections.

Proposition

We have the prolongations $\mathfrak{g}^{(1)} = \{0\}$ for $\mathfrak{g} = \mathfrak{so}^*(2n)$ and $\mathfrak{g} = \mathfrak{sp}(1) \oplus \mathfrak{so}^*(2n)$

Theorem

The connection $\nabla^{Q,\omega}$ is the unique minimal adapted connection with respect to the normalization condition above.

- Differential Geometry

Almost quaternion skew-Hermitian manifolds

We consider the torsion of $\nabla^{Q,\omega}$

Corollary

- The torsion component $S^{3}H(\Lambda^{3}E + K)$ coincides with the intrinsic torsion of the almost-quaternionic structure Q.
- The torsion component $H(E + K) \oplus S^3 H \Lambda^3 E$ is the intrinsic torsion of the almost-symplectic structure ω , branched.
- The torsion component H S₀³E is the "compatibility" torsion of (Q, ω).

There is a corresponding statement for the almost hypercomplex case, but with many more torsion components.

Theorem

The symmetric space $SO^*(2n+2)/SO^*(2n)U(1)$ and the pseudo-Wolf spaces

 $SU(2+p,q)/(SU(2)SU(p,q)U(1)), SL(n+1,\mathbb{H})/(GL(1,\mathbb{H})SL(n,\mathbb{H}))$

are the only (up to covering) homogeneous spaces K/L with K semisimple, admitting invariant torsion-free quaternionic skew-Hermitian structures (Q, ω) . In particular, the corresponding canonical connections on these symmetric spaces provide the associated minimal quaternionic skew-Hermitian connection $\nabla^{Q,\omega}$.

Let P be the connected subgroup of $SO^*(2n+2)$ which stabilizes an isotropic (with respect to ω) quaternionic line in \mathbb{H}^{n+1} . Then, the homogeneous space $N = SO^*(2n+2)/P$ admits an invariant contact structure, and we denote by \mathcal{D} the corresponding contact distribution.

Proposition

Let $(Q, \omega, \nabla^{Q, \omega})$ be a smooth torsion-free $SO^*(2n)Sp(1)$ -structure with special symplectic holonomy, i.e., $T^{Q, \omega} = 0$ and $Hol(\nabla^{Q, \omega}) = SO^*(2n)Sp(1)$. Then $(Q, \omega, \nabla^{Q, \omega})$ is analytic, and locally equivalent to a symplectic reduction $\mathbb{T}\setminus U$ by a one-parameter subgroup $\mathbb{T} \subset SO^*(2n+2)$ with Lie algebra t, such that the corresponding right-invariant vector fields are transversal to the contact distribution \mathcal{D} everywhere on U. Here $U \subset N$ is a sufficiently small open subset of N. In particular, the moduli space of such structures is n-dimensional, where n represents the quaternionic dimension of the symplectic reduction. This result follows from a theorem of Cahen and Schwachhöfer about special symplectic connections in general.

Structures on quaternionic twistor space

Natural Spin bundles

Question

Even if the quaternionic structure Q and the scalar two-form ω are both integrable, the quaternion skew-Hermitian structure could have non-trivial intrinsic torsion. But does there exist examples which are not torsion-free?