\mathcal{NQP} Manifolds, Courant Algebroids & Lagrangian Relations

Martin Zika Mathematical Institute of Charles University

Ghosts & Graded Geometry BV-BRST Framework Graded Manifolds

Generalized Geometry Courant Algebroids \mathcal{NQP} -Manifolds of Degree 2

Correspondences Substructures Relations Wehrheim-Woodward Categories

Outlook

Ghosts & Graded Geometry

The field-antifield configuration of a BV-BRST gauge theory:

 $(A, c, A^*, c^*, \mathcal{F})$

A = gauge fields, c = ghosts, (A*, c*) = antifields,
 𝓕 = gauge fixing fermion.

The field-antifield configuration of a BV-BRST gauge theory:

 $(A, c, A^*, c^*, \mathcal{F})$

► A = gauge fields, c = ghosts, (A*, c*) = antifields, F = gauge fixing fermion.

► The **BV-BRST gauge** (super)symmetry transformation:

$$\cdots \xrightarrow{\mathcal{Q}} \begin{array}{c} \text{gauge fields} \\ (\text{degree 0}) \\ \text{bosonic} \end{array} \xrightarrow{\mathcal{Q}} \begin{array}{c} \text{ghosts} \\ (\text{degree 1}) \\ \text{fermionic} \end{array} \xrightarrow{\mathcal{Q}} \begin{array}{c} \text{ghosts} \\ (\text{degree 2}) \\ \text{bosonic} \end{array} \xrightarrow{\mathcal{Q}} \cdots$$

• $Q^2 = 0$, gauge symmetry is described by *Q*-cohomology.

The field-antifield configuration of a BV-BRST gauge theory:

 $(A, c, A^*, c^*, \mathcal{F})$

- A = gauge fields, c = ghosts, (A*, c*) = antifields,
 F = gauge fixing fermion.
- ► The **BV-BRST gauge** (super)symmetry transformation:

$$\cdots \xrightarrow{\mathcal{Q}} \begin{array}{c} \text{gauge fields} \\ (\text{degree } 0) \\ \text{bosonic} \end{array} \xrightarrow{\mathcal{Q}} \begin{array}{c} \text{ghosts} \\ (\text{degree } 1) \\ \text{fermionic} \end{array} \xrightarrow{\mathcal{Q}} \begin{array}{c} \text{ghosts} \\ (\text{degree } 2) \\ \text{bosonic} \end{array} \xrightarrow{\mathcal{Q}} \cdots$$

- $Q^2 = 0$, gauge symmetry is described by *Q*-cohomology.
- The **BV-action functional** S is a generator of Q:

$$\mathcal{Q}[\phi] = \{\mathcal{S}, \phi\}$$

The field-antifield configuration of a BV-BRST gauge theory:

 $(A, c, A^*, c^*, \mathcal{F})$

- A = gauge fields, c = ghosts, (A*, c*) = antifields,
 F = gauge fixing fermion.
- ► The **BV-BRST gauge** (super)symmetry transformation:

$$\cdots \xrightarrow{\mathcal{Q}} \begin{array}{c} \text{gauge fields} \\ (\text{degree } 0) \\ \text{bosonic} \end{array} \xrightarrow{\mathcal{Q}} \begin{array}{c} \text{ghosts} \\ (\text{degree } 1) \\ \text{fermionic} \end{array} \xrightarrow{\mathcal{Q}} \begin{array}{c} \text{ghosts} \\ (\text{degree } 2) \\ \text{bosonic} \end{array} \xrightarrow{\mathcal{Q}} \cdots$$

- $Q^2 = 0$, gauge symmetry is described by *Q*-cohomology.
- The **BV-action functional** S is a *generator* of Q:

$$\mathcal{Q}[\phi] = \{\mathcal{S}, \phi\}$$

• It satisfies the classical master equation iff $Q^2 = 0$.

$$\{\mathcal{S},\mathcal{S}\}=0$$

• A \mathcal{N} -Manifold is a graded locally ringed space \mathcal{M} over $\mathcal{M}_0 \in \mathcal{M}$ an with:

$$\mathcal{O}_{\mathcal{M}}(U) \simeq \mathcal{C}^{\infty}(\mathcal{M}_0) \otimes_{\mathbb{R}} S(V) \in \mathcal{Alg}_{\mathcal{N}},$$

where $V = \bigoplus_{i \ge 1}^{|\mathcal{M}|} V_i \in \mathcal{V}ect_{\mathcal{N}}.$

• A \mathcal{N} -Manifold is a graded locally ringed space \mathcal{M} over $\mathcal{M}_0 \in \mathcal{M}$ an with:

$$\mathcal{O}_{\mathcal{M}}(U) \simeq \mathcal{C}^{\infty}(\mathcal{M}_0) \otimes_{\mathbb{R}} S(V) \in \mathcal{Alg}_{\mathcal{N}},$$

where
$$V = \bigoplus_{i \ge 1}^{|\mathcal{M}|} V_i \in \mathcal{V}ect_{\mathcal{N}}.$$

• \mathcal{NQP} -Manifold = differential symplectic \mathcal{N} -manifold with:

• A \mathcal{N} -Manifold is a graded locally ringed space \mathcal{M} over $\mathcal{M}_0 \in \mathcal{M}$ an with:

$$\mathcal{O}_{\mathcal{M}}(U) \simeq \mathcal{C}^{\infty}(\mathcal{M}_0) \otimes_{\mathbb{R}} S(V) \in \mathcal{Alg}_{\mathcal{N}},$$

where
$$V = \bigoplus_{i \ge 1}^{|\mathcal{M}|} V_i \in \mathcal{V}ect_{\mathcal{N}}.$$

 $\blacktriangleright \ \mathcal{NQP}\text{-}\mathbf{Manifold} = \text{differential symplectic } \mathcal{N}\text{-}\text{manifold with:}$

• Cohomological tangent field $\mathcal{Q} \in \mathfrak{X}_{\mathcal{M}}$,

$$|\mathcal{Q}| = 1, \quad \mathcal{Q}^2 = 0.$$

• A \mathcal{N} -Manifold is a graded locally ringed space \mathcal{M} over $\mathcal{M}_0 \in \mathcal{M}$ an with:

$$\mathcal{O}_{\mathcal{M}}(U) \simeq \mathcal{C}^{\infty}(\mathcal{M}_0) \otimes_{\mathbb{R}} S(V) \in \mathcal{Alg}_{\mathcal{N}},$$

where
$$V = \bigoplus_{i \ge 1}^{|\mathcal{M}|} V_i \in \mathcal{V}ect_{\mathcal{N}}.$$

 $\blacktriangleright \ \mathcal{NQP}\text{-}\mathbf{Manifold} = \text{differential symplectic } \mathcal{N}\text{-}\text{manifold with:}$

• Cohomological tangent field
$$\mathcal{Q} \in \mathfrak{X}_{\mathcal{M}}$$
,

$$|\mathcal{Q}| = 1, \quad \mathcal{Q}^2 = 0.$$

• Q-invariant symplectic structure $\omega \in \Omega^2 \mathcal{M}$,

$$|\omega| = |\mathcal{M}|.$$

Generalized Geometry

Def: A Courant algebroid is a vector bundle E equipped with a pairing, a bracket and an anchor $\boldsymbol{\varrho}: E \to TM$

```
\left(E, \langle \bullet, \bullet \rangle, \left[\!\left[ \bullet, \bullet \right]\!\right], \boldsymbol{\varrho}\left( \bullet \right)\right)
```

satisfying the axioms of a Lie algebroid "up to a deformation measured by the pairing" $\langle \bullet, \bullet \rangle$.

Def: A Courant algebroid is a vector bundle *E* equipped with a pairing, a bracket and an anchor $\boldsymbol{\varrho}: E \to TM$

```
\left(E, \left< \bullet, \bullet \right>, \left[\!\left[ \bullet, \bullet \right]\!\right], \boldsymbol{\varrho}\left( \bullet \right)\right)
```

satisfying the axioms of a Lie algebroid "up to a deformation measured by the pairing" $\langle \bullet, \bullet \rangle$.

Idea: Courant algebroids define \mathcal{NQP} -manifolds of degree 2 via minimal symplectic realization.

Def: A Courant algebroid is a vector bundle E equipped with a pairing, a bracket and an anchor $\boldsymbol{\varrho}: E \to TM$

```
\left(E,\left<\bullet,\bullet\right>,\left[\!\left[\bullet,\bullet\right]\!\right],\boldsymbol{\varrho}\left(\bullet\right)\right)
```

satisfying the axioms of a Lie algebroid "up to a deformation measured by the pairing" $\langle \bullet, \bullet \rangle$.

Idea: Courant algebroids define \mathcal{NQP} -manifolds of degree 2 via minimal symplectic realization.

Courant Algebroids $\longleftrightarrow_{bij} \mathcal{NQP}$ -manifolds of degree 2

Courant Algebroids $\longleftrightarrow_{bij} \mathcal{NQP}$ -manifolds of degree 2

Proof idea:

▶ In degree 2, the Hamiltonian function has the form:

$$S = \boldsymbol{\varrho}_{\mu}^{i} \boldsymbol{\xi}^{\mu} p_{i} - \frac{1}{6} \boldsymbol{C}_{\mu\nu\sigma} \boldsymbol{\xi}^{\mu} \boldsymbol{\xi}^{\nu} \boldsymbol{\xi}^{\sigma}$$

Courant Algebroids $\longleftrightarrow_{bij} \mathcal{NQP}$ -manifolds of degree 2

Proof idea:

▶ In degree 2, the Hamiltonian function has the form:

$$S = \boldsymbol{\varrho}_{\mu}^{i} \boldsymbol{\xi}^{\mu} p_{i} - \frac{1}{6} \boldsymbol{C}_{\mu\nu\sigma} \boldsymbol{\xi}^{\mu} \boldsymbol{\xi}^{\nu} \boldsymbol{\xi}^{\sigma}$$

• \langle,\rangle and S correspond to the CA operations:

$$\langle e_{\mu}, e_{\nu} \rangle \stackrel{!}{=} \{ \theta_{\mu}, \theta_{\nu} \} , \quad \llbracket e_{\mu}, e_{\nu} \rrbracket \stackrel{\rho}{=} \boldsymbol{C}_{\mu\nu}^{\ \ \rho} \theta_{\rho} , \quad \boldsymbol{\varrho} \left(e_{\mu} \right) \cdot x^{i} \stackrel{!}{=} \boldsymbol{\varrho}_{\mu}^{i}$$

Courant Algebroids $\longleftrightarrow_{bij} \mathcal{NQP}$ -manifolds of degree 2

Proof idea:

▶ In degree 2, the Hamiltonian function has the form:

$$S = \boldsymbol{\varrho}_{\mu}^{i} \boldsymbol{\xi}^{\mu} p_{i} - \frac{1}{6} \boldsymbol{C}_{\mu\nu\sigma} \boldsymbol{\xi}^{\mu} \boldsymbol{\xi}^{\nu} \boldsymbol{\xi}^{\sigma}$$

• \langle,\rangle and S correspond to the CA operations:

$$\langle e_{\mu}, e_{\nu} \rangle \stackrel{!}{=} \{ \theta_{\mu}, \theta_{\nu} \} , \quad [\![e_{\mu}, e_{\nu}]\!] \stackrel{!}{=} \boldsymbol{C}_{\mu\nu}^{\ \ \rho} \theta_{\rho} , \quad \boldsymbol{\varrho} \left(e_{\mu} \right) \cdot x^{i} \stackrel{!}{=} \boldsymbol{\varrho}_{\mu}^{i}$$

▶ They satisfy the Courant algebroid axioms iff the *classical master* equation holds $\{S, S\} = 0$.

$$\{S,S\} = \left(\left(\boldsymbol{\varrho} \circ \boldsymbol{\varrho}^* \, \mathrm{d}x^j \right) \cdot x^i \right) p_i p_j + \left(\left[\boldsymbol{\varrho} \left(e_\mu \right), \boldsymbol{\varrho} \left(e_\nu \right) \right] - \boldsymbol{\varrho} \left(\left[e_\mu, e_\nu \right] \right) \right) \cdot x^i p_i \xi^\mu \xi^\nu + \frac{1}{12} \left\langle \left[\left[e_\mu, e_\nu \right] \right], e_\rho \right] + \left[e_\nu, \left[e_\mu, e_\rho \right] \right] - \left[e_\mu, \left[e_\nu, e_\rho \right] \right], e_\sigma \right\rangle \xi^\mu \xi^\nu \xi^\rho \xi^\sigma$$

Correspondences

• Example: Dirac structures of the standard Courant algebroid $TM \oplus T^*M$ generalize and interpolate complex and symplectic structures on M.

• **Example:** Dirac structures of the standard Courant algebroid $TM \oplus T^*M$ generalize and interpolate complex and symplectic structures on M.

A **dg-Lagrangian submanifold** $\mathcal{L} \hookrightarrow \mathcal{M}$ of a \mathcal{NQP} -manifold is a half-dimensional closed submanifold st. ω and S vanish on \mathcal{L} .

• Example: Dirac structures of the standard Courant algebroid $TM \oplus T^*M$ generalize and interpolate complex and symplectic structures on M.

A **dg-Lagrangian submanifold** $\mathcal{L} \hookrightarrow \mathcal{M}$ of a \mathcal{NQP} -manifold is a half-dimensional closed submanifold st. ω and S vanish on \mathcal{L} .

Example: gauge fixing chooses a Lagrangian submanifold.

$$\phi^* = \frac{\partial \mathcal{F}}{\partial \phi}$$

• Example: Dirac structures of the standard Courant algebroid $TM \oplus T^*M$ generalize and interpolate complex and symplectic structures on M.

A **dg-Lagrangian submanifold** $\mathcal{L} \hookrightarrow \mathcal{M}$ of a \mathcal{NQP} -manifold is a half-dimensional closed submanifold st. ω and S vanish on \mathcal{L} .

Example: gauge fixing chooses a Lagrangian submanifold.

$$\phi^* = \frac{\partial \mathcal{F}}{\partial \phi}$$

Theorem (Generalization of [Grutzmann 2010]): For \mathcal{M} the minimal symplectic realization of E:

Dirac Structures of $E \longleftrightarrow_{bij}$ dg-Lagrangian submanifolds of M

We can follow [Vysoký 2019] and define a **Dirac relation** from $E \to S$ to $E' \to S'$ as a Dirac structure $R \subseteq \overline{E'} \times E$, where \overline{E} denotes E with $-\langle,\rangle$.

We can follow [Vysoký 2019] and define a **Dirac relation** from $E \to S$ to $E' \to S'$ as a Dirac structure $R \subseteq \overline{E'} \times E$, where \overline{E} denotes E with $-\langle,\rangle$.

Example: Graphs of a structure preserving bundle morphisms.

We can follow [Vysoký 2019] and define a **Dirac relation** from $E \to S$ to $E' \to S'$ as a Dirac structure $R \subseteq \overline{E'} \times E$, where \overline{E} denotes E with $-\langle,\rangle$.

- **Example**: Graphs of a structure preserving bundle morphisms.
- ► Example: Symplectic reduction, Dirac bracket, Poisson-Lie T-Duality, ...

We can follow [Vysoký 2019] and define a **Dirac relation** from $E \to S$ to $E' \to S'$ as a Dirac structure $R \subseteq \overline{E'} \times E$, where \overline{E} denotes E with $-\langle,\rangle$.

- **Example**: Graphs of a structure preserving bundle morphisms.
- Example: Symplectic reduction, Dirac bracket, Poisson-Lie T-Duality, ...

A **dg-Lagrangian relation** \mathcal{R} from \mathcal{N} to \mathcal{M} is a half-dimensional closed submanifold $\mathcal{R} \hookrightarrow \overline{\mathcal{M}} \times \mathcal{N}$ st. the induced sympletic structure $\pi_{\mathcal{N}}^* \omega_{\mathcal{N}} - \pi_{\mathcal{M}}^* \omega_{\mathcal{M}}$ and $\pi_{\mathcal{N}}^* S_{\mathcal{N}} - \pi_{\mathcal{M}}^* S_{\mathcal{M}}$ vanish on \mathcal{R} .

Composing Relations

Composing Relations

Composing Relations

Def: Given objects & relations, we define a **correspondence** as an \sim -equivalence class of sequences of relations

Def: Given objects & relations, we define a **correspondence** as an \sim -equivalence class of sequences of relations

and a corresponding Wehrheim-Woodward category [Wehrheim, Woodward 2007]), where composition is given by concatenation and $(\mathcal{R}', \mathcal{R}) \sim (\mathcal{R}' \circ \mathcal{R})$ whenever a composition of relations is defined.

Def: Given objects & relations, we define a **correspondence** as an \sim -equivalence class of sequences of relations

and a corresponding Wehrheim-Woodward category [Wehrheim, Woodward 2007]), where composition is given by concatenation and $(\mathcal{R}', \mathcal{R}) \sim (\mathcal{R}' \circ \mathcal{R})$ whenever a composition of relations is defined.

▶ Thus we have well-defined categories *CourAlgCorr* and $Man^2_{NQP}Corr$.

► On *objects*:

Equivalence of Categories

► On *objects*:

▶ On *morphisms*, we can use:

Equivalence of Categories

► On *objects*:

▶ On *morphisms*, we can use:

 $\overset{\text{Dirac}}{\text{structure}} L \longmapsto \overset{\sim}{\longrightarrow} N^*[2]L[1] \overset{\text{conormal}}{\overset{\text{subbundle}}{\underset{\text{subbundle}}{\underset{\text{for each component of a correspondence }}} (\mathcal{R}_r, \ldots, \mathcal{R}_1).$

▶ These two assignments form an *equivalence of categories*.

$$CourAlgCorr \simeq Man^2_{\mathcal{NQP}}Corr$$

Equivalence of Categories

► On *objects*:

▶ On *morphisms*, we can use:

 $\overset{\text{Dirac}}{\text{structure}} L \longmapsto \overset{\sim}{\longrightarrow} N^*[2]L[1] \overset{\text{conormal}}{\overset{\text{subbundle}}{\text{subbundle}}}$ for each component of a correspondence $(\mathcal{R}_r, \ldots, \mathcal{R}_1).$

▶ These two assignments form an *equivalence of categories*.

$$CourAlgCorr \simeq Man^2_{NQP}Corr$$

OSC := Man_{NP}^{Odd} Corr is the "minimal quantization category" wrt. the odd symplectic quantization functor [Ševera 2006]

• $Man_{NQP}^{n}Corr$ -correspondences for general n.

 $\blacktriangleright Microsymplectic \mathcal{NQP} geometry?$

- $Man_{NQP}^{n}Corr$ -correspondences for general n.
- Microsymplectic \mathcal{NQP} geometry?
- Correspondences of quantum homotopy Lie algebras in the context of homological perturbation lemma?

- $Man_{NQP}^{n}Corr$ -correspondences for general n.
- Microsymplectic \mathcal{NQP} geometry?
- Correspondences of quantum homotopy Lie algebras in the context of homological perturbation lemma?

THANK YOU FOR YOUR ATTENTION

