Solving Cartan's Realization Problem

Rui Loja Fernandes

University of Illinois at Urbana-Champaign, USA
43rd Winter School Geometry and Physics
Czech Republic, Srni
14-21 January 2023

Overview

Aim: How to solve classification problems in geometry which are of finite type.

Overview

Aim: How to solve classification problems in geometry which are of finite type.
Some examples:

- Classification of (complete) Riemannian metrics of constant sectional curvature [Killing-Hopf];

Overview

Aim: How to solve classification problems in geometry which are of finite type.
Some examples:

- Classification of (complete) Riemannian metrics of constant sectional curvature [Killing-Hopf];
- Classification of (complete) Bochner-Kähler metrics [Bryant];

Overview

Aim: How to solve classification problems in geometry which are of finite type.
Some examples:

- Classification of (complete) Riemannian metrics of constant sectional curvature [Killing-Hopf];
- Classification of (complete) Bochner-Kähler metrics [Bryant];
- Classification of (complete) Ricci type symplectic connections [Schwachhöfer et al.]
- (...)

Overview

Aim: How to solve classification problems in geometry which are of finite type.
Some examples:

- Classification of (complete) Riemannian metrics of constant sectional curvature [Killing-Hopf];
- Classification of (complete) Bochner-Kähler metrics [Bryant];
- Classification of (complete) Ricci type symplectic connections [Schwachhöfer et al.]
- (...)

Main message: Lie groupoids and Lie algebroids (with extra structure) provide the right language to solve equivalence problems.

Based on joint work with Ivan Struchiner (USP):

- The Global Solutions to a Cartan's Realization Problem, arXiv:1907.13614. To appear in Memoirs of the AMS

Overview

Starting from the classical correspondence:
Geometric structures $\longleftrightarrow G$-structures(with connection)
The main steps of the program:

Overview

Starting from the classical correspondence:
Geometric structures $\longleftrightarrow G$-structures(with connection)
The main steps of the program:

$$
\begin{gathered}
\text { Classification problem for a } \\
\text { class of geometric structures }
\end{gathered} \longleftrightarrow \quad \begin{gathered}
\text { G-structure algebroid } \\
\text { (with connection) }
\end{gathered}
$$

Overview

Starting from the classical correspondence:
Geometric structures $\longleftrightarrow G$-structures(with connection)
The main steps of the program:

Classification problem for a class of geometric structures	G-structure algebroid (with connection)
Integrate G-structure algebroid to Solutions to classification problem\longleftrightarrow-structure groupoid (with connection)	

Plan

Lecture 1:

- Recollection of G-structures
- Finite type vs infinite type through examples
- Cartan's Realization Problem and algebroids

Plan

Lecture 1:

- Recollection of G-structures
- Finite type vs infinite type through examples
- Cartan's Realization Problem and algebroids

Lecture 2:

- Algebroids and groupoids
- G-structure groupoids
- G-structure algebroids
- Construction of solutions: dictionary

Plan

Lecture 1:

- Recollection of G-structures
- Finite type vs infinite type through examples
- Cartan's Realization Problem and algebroids

Lecture 2:

- Algebroids and groupoids
- G-structure groupoids
- G-structure algebroids
- Construction of solutions: dictionary

Lecture 3:

- G-integrability
- Solving Cartan's Realization Problem
- Moduli space of solutions
- The example of extremal Kähler metrics on surfaces

G-principal bundles

A principal action of G on a manifold P is a proper, effective, locally free action $P \times G \rightarrow P$.

G-principal bundles

A principal action of G on a manifold P is a proper, effective, locally free action $P \times G \rightarrow P$.

The quotient $M=P / G$ is a (effective) orbifold.

G-principal bundles

A principal action of G on a manifold P is a proper, effective, locally free action $P \times G \rightarrow P$.

The quotient $M=P / G$ is a (effective) orbifold.
Notation: $\pi: P \rightarrow M$ is a G-principal bundle over the orbifold M.

G-principal bundles

A principal action of G on a manifold P is a proper, effective, locally free action $P \times G \rightarrow P$.

The quotient $M=P / G$ is a (effective) orbifold.
Notation: $\pi: P \rightarrow M$ is a G-principal bundle over the orbifold M.

Example

For an effective orbifold M with $\operatorname{dim} M=n$, its frame bundle:

$$
\pi: \mathrm{F}(M) \rightarrow M
$$

is a principal $\mathrm{GL}(n, \mathbb{R})$-bundle.

Connections on G-principal bundles

A principal connection on $\pi: P \rightarrow M$ is a subbundle $H \subset T P$ satisfying:
(i) horizontal: $T P=\operatorname{ker} \mathrm{d} \pi \oplus H$;
(ii) G-invariance: $H_{p g}=g_{*} H_{p}$, for all $g \in G, p \in P$.
H is called the horizontal distribution.

Connections on G-principal bundles

A principal connection on $\pi: P \rightarrow M$ is a subbundle $H \subset T P$ satisfying:
(i) horizontal: $T P=\operatorname{ker} \mathrm{d} \pi \oplus H$;
(ii) G-invariance: $H_{p g}=g_{*} H_{p}$, for all $g \in G, p \in P$.
H is called the horizontal distribution.

Equivalently:

A principal connection on $\pi: P \rightarrow M$ is a form $\omega \in \Omega^{1}(P, \mathfrak{g})$ satisfying:
(i) vertical: $\omega\left(\alpha_{P}\right)=\alpha$, for all $\alpha \in \mathfrak{g}$;
(ii) G-invariance: $g^{*} \omega=\operatorname{Ad}_{g^{-1}} \omega$, for all $g \in G$.
ω is called the connection 1 -form.

$$
H=\operatorname{Ker} \omega
$$

G-structures

If $G \subset G L(n, \mathbb{R})$ is a closed subgroup:
A G-structure over M is a G-principal subbundle of the frame bundle:

$$
\mathrm{F}_{G}(M) \subset \mathrm{F}(M) .
$$

G-structures

If $G \subset G L(n, \mathbb{R})$ is a closed subgroup:

A G-structure over M is a G-principal subbundle of the frame bundle:

$$
\mathrm{F}_{G}(M) \subset \mathrm{F}(M)
$$

G-structures allow to encode many geometric structures, e.g.

- Coframes $\Longleftrightarrow\{e\}$-structures;
- Riemannian structures $\Longleftrightarrow \mathrm{O}_{n}$-structures;
- Almost complex structures $\Longleftrightarrow \mathrm{GL}_{n}(\mathbb{C})$-structures;
- Almost symplectic structures $\Longleftrightarrow \mathrm{Sp}_{n}$-structures;
- Almost hermitian structures $\Longleftrightarrow \mathrm{U}_{n}$-structures.

G-structures

If $G \subset G L(n, \mathbb{R})$ is a closed subgroup:

A G-structure over M is a G-principal subbundle of the frame bundle:

$$
\mathrm{F}_{G}(M) \subset \mathrm{F}(M)
$$

G-structures allow to encode many geometric structures, e.g.

- Coframes $\Longleftrightarrow\{e\}$-structures;
- Riemannian structures $\Longleftrightarrow \mathrm{O}_{n}$-structures;
- Almost complex structures $\Longleftrightarrow \mathrm{GL}_{n}(\mathbb{C})$-structures;
- Almost symplectic structures $\Longleftrightarrow \mathrm{Sp}_{n}$-structures;
- Almost hermitian structures $\Longleftrightarrow \mathrm{U}_{n}$-structures.

Note: We will assume G compact and connected. Results extend to more general cases with appropriate properness assumptions.

Tautological form

The tautological form of a G-structure $\pi: \mathrm{F}_{G}(M) \rightarrow M$ is

$$
\theta \in \Omega^{1}\left(\mathrm{~F}_{G}(M), \mathbb{R}^{n}\right), \quad \theta(\xi):=p^{-1}\left(\mathrm{~d}_{p} \pi(\xi)\right)
$$

(think of frames as linear isomorphisms $p: \mathbb{R}^{n} \rightarrow T_{x} M$)

Tautological form

The tautological form of a G-structure $\pi: \mathrm{F}_{G}(M) \rightarrow M$ is

$$
\theta \in \Omega^{1}\left(\mathrm{~F}_{G}(M), \mathbb{R}^{n}\right), \quad \theta(\xi):=p^{-1}\left(\mathrm{~d}_{p} \pi(\xi)\right)
$$

(think of frames as linear isomorphisms $p: \mathbb{R}^{n} \rightarrow T_{x} M$)
$\theta \in \Omega^{1}\left(\mathrm{~F}_{G}(M), \mathbb{R}^{n}\right)$ satisfies:
(i) pointwise surjective: $\theta_{p}: T_{p} \mathrm{~F}_{G}(M) \rightarrow \mathbb{R}^{n}$
(ii) strong horizontal: $\theta(\xi)=0 \Leftrightarrow \xi=\alpha_{P}$ for $\alpha \in \mathfrak{g}$;
(iii) G-equivariance: $g^{*} \theta=g^{-1} \cdot \theta$.

Tautological form

The tautological form of a G-structure $\pi: \mathrm{F}_{G}(M) \rightarrow M$ is

$$
\theta \in \Omega^{1}\left(\mathrm{~F}_{G}(M), \mathbb{R}^{n}\right), \quad \theta(\xi):=p^{-1}\left(\mathrm{~d}_{p} \pi(\xi)\right)
$$

(think of frames as linear isomorphisms $p: \mathbb{R}^{n} \rightarrow T_{x} M$)
$\theta \in \Omega^{1}\left(\mathrm{~F}_{G}(M), \mathbb{R}^{n}\right)$ satisfies:
(i) pointwise surjective: $\theta_{p}: T_{p} \mathrm{~F}_{G}(M) \rightarrow \mathbb{R}^{n}$
(ii) strong horizontal: $\theta(\xi)=0 \Leftrightarrow \xi=\alpha_{P}$ for $\alpha \in \mathfrak{g}$;
(iii) G-equivariance: $g^{*} \theta=g^{-1} \cdot \theta$.

Proposition

A G-principal $\pi: P \rightarrow M$ is a G-structure if and only if it carries a 1-form
$\widetilde{\theta} \in \Omega^{1}\left(P, \mathbb{R}^{n}\right)$ satisfying (i)-(iii). Each such form gives a unique isomorphism
$P \simeq \mathrm{~F}_{G}(M)$ identifying $\widetilde{\theta} \simeq \theta$.

Equivalence of G-structures

A (local) diffeomorphism $\phi: M_{1} \rightarrow M_{2}$ lifts to a (local) isomorphism of the frame bundles:

$$
\phi_{*}: \mathrm{F}\left(M_{1}\right) \rightarrow \mathrm{F}\left(M_{2}\right) .
$$

Equivalence of G-structures

A (local) diffeomorphism $\phi: M_{1} \rightarrow M_{2}$ lifts to a (local) isomorphism of the frame bundles:

$$
\phi_{*}: \mathrm{F}\left(M_{1}\right) \rightarrow \mathrm{F}\left(M_{2}\right) .
$$

Two G-structures $\mathrm{F}_{G}\left(M_{1}\right)$ and $\mathrm{F}_{G}\left(M_{2}\right)$ are (locally) equivalent if there is a (local) diffeomorphism $\phi: M_{1} \rightarrow M_{2}$ such that:

$$
\phi_{*}\left(\mathrm{~F}_{G}\left(M_{1}\right)\right)=\mathrm{F}_{G}\left(M_{2}\right)
$$

Equivalence of G-structures

A (local) diffeomorphism $\phi: M_{1} \rightarrow M_{2}$ lifts to a (local) isomorphism of the frame bundles:

$$
\phi_{*}: \mathrm{F}\left(M_{1}\right) \rightarrow \mathrm{F}\left(M_{2}\right) .
$$

Two G-structures $\mathrm{F}_{G}\left(M_{1}\right)$ and $\mathrm{F}_{G}\left(M_{2}\right)$ are (locally) equivalent if there is a (local) diffeomorphism $\phi: M_{1} \rightarrow M_{2}$ such that:

$$
\phi_{*}\left(\mathrm{~F}_{G}\left(M_{1}\right)\right)=\mathrm{F}_{G}\left(M_{2}\right)
$$

- When are two G-structures (locally) equivalent?

Equivalence of G-structures

A (local) diffeomorphism $\phi: M_{1} \rightarrow M_{2}$ lifts to a (local) isomorphism of the frame bundles:

$$
\phi_{*}: \mathrm{F}\left(M_{1}\right) \rightarrow \mathrm{F}\left(M_{2}\right) .
$$

Two G-structures $\mathrm{F}_{G}\left(M_{1}\right)$ and $\mathrm{F}_{G}\left(M_{2}\right)$ are (locally) equivalent if there is a (local) diffeomorphism $\phi: M_{1} \rightarrow M_{2}$ such that:

$$
\phi_{*}\left(\mathrm{~F}_{G}\left(M_{1}\right)\right)=\mathrm{F}_{G}\left(M_{2}\right)
$$

- When are two G-structures (locally) equivalent?

Proposition

A principal bundle map $\Phi: \mathrm{F}_{G}\left(M_{1}\right) \rightarrow \mathrm{F}_{G}\left(M_{2}\right)$ is an equivalence if and only if $\Phi^{*} \theta_{2}=\theta_{1}$.

Structure equations of a G-structure with connection

Theorem

Let $\pi: \mathrm{F}_{G}(M) \rightarrow M$ be G-structure with tautological form $\theta \in \Omega^{1}\left(\mathrm{~F}_{G}(M), \mathbb{R}^{n}\right)$ and connection 1 -form $\omega \in \Omega^{1}\left(\mathrm{~F}_{G}(M), \mathfrak{g}\right)$. Then the following structure equations hold:

$$
\left\{\begin{array}{l}
\mathrm{d} \theta=c(\theta \wedge \theta)-\omega \wedge \theta \\
\mathrm{d} \omega=R(\theta \wedge \theta)-\omega \wedge \omega
\end{array}\right.
$$

where:

- $c: \mathrm{F}_{G}(M) \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n} ; \mathbb{R}^{n}\right)$ is the torsion;
- $R: \mathrm{F}_{G}(M) \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n} ; \mathfrak{g}\right)$ is the curvature;

Structure equations of a G-structure with connection

Theorem

Let $\pi: \mathrm{F}_{G}(M) \rightarrow M$ be G-structure with tautological form $\theta \in \Omega^{1}\left(\mathrm{~F}_{G}(M), \mathbb{R}^{n}\right)$ and connection 1 -form $\omega \in \Omega^{1}\left(\mathrm{~F}_{G}(M), \mathfrak{g}\right)$. Then the following structure equations hold:

$$
\left\{\begin{array}{l}
\mathrm{d} \theta=c(\theta \wedge \theta)-\omega \wedge \theta \\
\mathrm{d} \omega=R(\theta \wedge \theta)-\omega \wedge \omega
\end{array}\right.
$$

where:

- $c: \mathrm{F}_{G}(M) \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n} ; \mathbb{R}^{n}\right)$ is the torsion;
- $R: \mathrm{F}_{G}(M) \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n} ; \mathfrak{g}\right)$ is the curvature;

Remark: The pair

$$
(\theta, \omega): T \mathrm{~F}_{G}(M) \rightarrow \mathbb{R}^{n} \oplus \mathfrak{g}
$$

gives a coframe at each p so $\mathrm{F}_{G}(M)$ is parallelizable.

2) Two examples: finite vs infinite type

A Kähler manifold (M, g, Ω, J) with scalar curvature R is called extremal if the hamiltonian vector field X_{R} is a Killing vector field (an infinitesimal isometry).

2) Two examples: finite vs infinite type

A Kähler manifold (M, g, Ω, J) with scalar curvature R is called extremal if the hamiltonian vector field X_{R} is a Killing vector field (an infinitesimal isometry).

Remark: When M is compact, such metrics are critical points of the Calabi functional

$$
g \mapsto \int_{M} R^{2}(g) \Omega^{n}
$$

among Kähler metrics in a given Kähler class.

2) Two examples: finite vs infinite type

A Kähler manifold (M, g, Ω, J) with scalar curvature R is called extremal if the hamiltonian vector field X_{R} is a Killing vector field (an infinitesimal isometry).

Remark: When M is compact, such metrics are critical points of the Calabi functional

$$
g \mapsto \int_{M} R^{2}(g) \Omega^{n}
$$

among Kähler metrics in a given Kähler class.

Problem

Classify the extremal Kähler metrics on a surface M^{2}.

Differential analysis

- $\left(M^{2}, g, \Omega, J\right)$ - extremal Kähler surface

Differential analysis

- $\left(M^{2}, g, \Omega, J\right)$ - extremal Kähler surface
- $P:=F_{U(1)} \rightarrow M$ - unitary frame bundle with tautological form $\theta \in \Omega^{1}(P, \mathbb{C})$ and Levi-Civita connection $\omega \in \Omega^{1}(P, i \mathbb{R})$

Differential analysis

- $\left(M^{2}, g, \Omega, J\right)$ - extremal Kähler surface
- $P:=F_{U(1)} \rightarrow M$ - unitary frame bundle with tautological form $\theta \in \Omega^{1}(P, \mathbb{C})$ and Levi-Civita connection $\omega \in \Omega^{1}(P, i \mathbb{R})$
- Structure equations:

$$
\left\{\begin{array}{l}
\mathrm{d} \theta=-\omega \wedge \theta \\
\mathrm{d} \omega=\frac{K}{2} \theta \wedge \bar{\theta}
\end{array}\right.
$$

where $K=R / 2: P \rightarrow \mathbb{R}$ is the Gaussian curvature.

Differential analysis

- $\left(M^{2}, g, \Omega, J\right)$ - extremal Kähler surface
- $P:=F_{U(1)} \rightarrow M$ - unitary frame bundle with tautological form $\theta \in \Omega^{1}(P, \mathbb{C})$ and Levi-Civita connection $\omega \in \Omega^{1}(P, i \mathbb{R})$
- Structure equations:

$$
\left\{\begin{array}{l}
\mathrm{d} \theta=-\omega \wedge \theta \\
\mathrm{d} \omega=\frac{K}{2} \theta \wedge \bar{\theta}
\end{array}\right.
$$

where $K=R / 2: P \rightarrow \mathbb{R}$ is the Gaussian curvature.

- Differentiating K :

Differential analysis

- $\left(M^{2}, g, \Omega, J\right)$ - extremal Kähler surface
- $P:=F_{U(1)} \rightarrow M$ - unitary frame bundle with tautological form $\theta \in \Omega^{1}(P, \mathbb{C})$ and Levi-Civita connection $\omega \in \Omega^{1}(P, i \mathbb{R})$
- Structure equations:

$$
\left\{\begin{array}{l}
\mathrm{d} \theta=-\omega \wedge \theta \\
\mathrm{d} \omega=\frac{K}{2} \theta \wedge \bar{\theta}
\end{array}\right.
$$

where $K=R / 2: P \rightarrow \mathbb{R}$ is the Gaussian curvature.

- Differentiating K :

$$
\begin{cases}\mathrm{d} K=-(\bar{T} \theta+T \bar{\theta}) \quad \text { where } \quad T=i_{\widetilde{x_{K}}} \theta: P \rightarrow \mathbb{C},\end{cases}
$$

Differential analysis

- $\left(M^{2}, g, \Omega, J\right)$ - extremal Kähler surface
- $P:=F_{U(1)} \rightarrow M$ - unitary frame bundle with tautological form $\theta \in \Omega^{1}(P, \mathbb{C})$ and Levi-Civita connection $\omega \in \Omega^{1}(P, i \mathbb{R})$
- Structure equations:

$$
\left\{\begin{array}{l}
\mathrm{d} \theta=-\omega \wedge \theta \\
\mathrm{d} \omega=\frac{K}{2} \theta \wedge \bar{\theta}
\end{array}\right.
$$

where $K=R / 2: P \rightarrow \mathbb{R}$ is the Gaussian curvature.

- Differentiating K :

$$
\left\{\begin{array}{lll}
\mathrm{d} K=-(\bar{T} \theta+T \bar{\theta}) & \text { where } & T=i_{\widetilde{x_{K}}} \theta: P \rightarrow \mathbb{C} \\
\mathrm{~d} T=U \theta-T \omega & U=i_{\widetilde{x_{K}}} \omega: P \rightarrow \mathbb{R}
\end{array}\right.
$$

Differential analysis

- $\left(M^{2}, g, \Omega, J\right)$ - extremal Kähler surface
- $P:=F_{U(1)} \rightarrow M$ - unitary frame bundle with tautological form $\theta \in \Omega^{1}(P, \mathbb{C})$ and Levi-Civita connection $\omega \in \Omega^{1}(P, i \mathbb{R})$
- Structure equations:

$$
\left\{\begin{array}{l}
\mathrm{d} \theta=-\omega \wedge \theta \\
\mathrm{d} \omega=\frac{K}{2} \theta \wedge \bar{\theta}
\end{array}\right.
$$

where $K=R / 2: P \rightarrow \mathbb{R}$ is the Gaussian curvature.

- Differentiating K :

$$
\left\{\begin{array}{lll}
\mathrm{d} K=-(\bar{T} \theta+T \bar{\theta}) & \text { where } & T=i_{\widetilde{X_{K}}} \theta: P \rightarrow \mathbb{C} \\
\mathrm{~d} T=U \theta-T \omega & U=i_{\widetilde{x_{K}}} \omega: P \rightarrow \mathbb{R} \\
\mathrm{~d} U=-\frac{K}{2}(\bar{T} \theta+T \bar{\theta}) & &
\end{array}\right.
$$

Differential analysis

- $\left(M^{2}, g, \Omega, J\right)$ - extremal Kähler surface
- $P:=F_{U(1)} \rightarrow M$ - unitary frame bundle with tautological form $\theta \in \Omega^{1}(P, \mathbb{C})$ and Levi-Civita connection $\omega \in \Omega^{1}(P, i \mathbb{R})$
- Structure equations:

$$
\left\{\begin{array}{l}
\mathrm{d} \theta=-\omega \wedge \theta \\
\mathrm{d} \omega=\frac{K}{2} \theta \wedge \bar{\theta}
\end{array}\right.
$$

where $K=R / 2: P \rightarrow \mathbb{R}$ is the Gaussian curvature.

- Differentiating K :

$$
\left\{\begin{array}{lll}
\mathrm{d} K=-(\bar{T} \theta+T \bar{\theta}) & \text { where } & T=i_{\widetilde{\chi_{K}}} \theta: P \rightarrow \mathbb{C} \\
\mathrm{~d} T=U \theta-T \omega & U=i_{\widetilde{x_{K}}} \omega: P \rightarrow \mathbb{R} \\
\mathrm{~d} U=-\frac{K}{2}(\bar{T} \theta+T \bar{\theta}) & &
\end{array}\right.
$$

The classification problem amounts to:

Find all $U(1)$-structures $P \rightarrow M$ with tautological form θ, connection form ω and function $(K, T, U): P \rightarrow \mathbb{R} \oplus \mathbb{C} \oplus \mathbb{R}$, such that the pde's above hold.

Surface metrics with $|\nabla K|=1$

Problem

Classify the oriented Riemann surfaces $\left(M^{2}, g\right)$ with $|\nabla K|=1$.

Surface metrics with $|\nabla K|=1$

Problem

Classify the oriented Riemann surfaces $\left(M^{2}, g\right)$ with $|\nabla K|=1$.
$-\pi: P=\mathrm{F}_{\text {SO(2) }}(M) \rightarrow M$ orthogonal frame bundle with tautological form
$\theta \in \Omega^{1}\left(P, \mathbb{R}^{2}\right)$ and Levi-Civita connection form $\omega \in \Omega^{1}(P, \mathfrak{s o}(2))$,

Surface metrics with $|\nabla K|=1$

Problem

Classify the oriented Riemann surfaces $\left(M^{2}, g\right)$ with $|\nabla K|=1$.
$-\pi: P=\mathrm{F}_{\text {SO(2) }}(M) \rightarrow M$ orthogonal frame bundle with tautological form $\theta \in \Omega^{1}\left(P, \mathbb{R}^{2}\right)$ and Levi-Civita connection form $\omega \in \Omega^{1}(P, \mathfrak{s o}(2))$,

- Structure equations:

$$
\left\{\begin{array}{l}
\mathrm{d} \theta^{1}=-\omega \wedge \theta^{2}, \\
\mathrm{~d} \theta^{2}=\omega \wedge \theta^{1}, \\
\mathrm{~d} \omega=K \theta^{1} \wedge \theta^{2}
\end{array}\right.
$$

where $K=R / 2: P \rightarrow \mathbb{R}$ is the Gaussian curvature.

Surface metrics with $|\nabla K|=1$

Problem

Classify the oriented Riemann surfaces $\left(M^{2}, g\right)$ with $|\nabla K|=1$.
$-\pi: P=\mathrm{F}_{\text {SO(2) }}(M) \rightarrow M$ orthogonal frame bundle with tautological form $\theta \in \Omega^{1}\left(P, \mathbb{R}^{2}\right)$ and Levi-Civita connection form $\omega \in \Omega^{1}(P, \mathfrak{s o}(2))$,

- Structure equations:

$$
\left\{\begin{array}{l}
\mathrm{d} \theta^{1}=-\omega \wedge \theta^{2}, \\
\mathrm{~d} \theta^{2}=\omega \wedge \theta^{1}, \\
\mathrm{~d} \omega=K \theta^{1} \wedge \theta^{2}
\end{array}\right.
$$

where $K=R / 2: P \rightarrow \mathbb{R}$ is the Gaussian curvature.

- Differentiating K :

Surface metrics with $|\nabla K|=1$

Problem

Classify the oriented Riemann surfaces $\left(M^{2}, g\right)$ with $|\nabla K|=1$.
$-\pi: P=\mathrm{F}_{\text {SO(2) }}(M) \rightarrow M$ orthogonal frame bundle with tautological form $\theta \in \Omega^{1}\left(P, \mathbb{R}^{2}\right)$ and Levi-Civita connection form $\omega \in \Omega^{1}(P, \mathfrak{s o}(2))$,

- Structure equations:

$$
\left\{\begin{array}{l}
\mathrm{d} \theta^{1}=-\omega \wedge \theta^{2}, \\
\mathrm{~d} \theta^{2}=\omega \wedge \theta^{1}, \\
\mathrm{~d} \omega=K \theta^{1} \wedge \theta^{2}
\end{array}\right.
$$

where $K=R / 2: P \rightarrow \mathbb{R}$ is the Gaussian curvature.

- Differentiating K :

Surface metrics with $|\nabla K|=1$

Problem

Classify the oriented Riemann surfaces $\left(M^{2}, g\right)$ with $|\nabla K|=1$.
$-\pi: P=\mathrm{F}_{\text {SO(2) }}(M) \rightarrow M$ orthogonal frame bundle with tautological form $\theta \in \Omega^{1}\left(P, \mathbb{R}^{2}\right)$ and Levi-Civita connection form $\omega \in \Omega^{1}(P, \mathfrak{s o}(2))$,

- Structure equations:

$$
\left\{\begin{array}{l}
\mathrm{d} \theta^{1}=-\omega \wedge \theta^{2}, \\
\mathrm{~d} \theta^{2}=\omega \wedge \theta^{1}, \\
\mathrm{~d} \omega=K \theta^{1} \wedge \theta^{2}
\end{array}\right.
$$

where $K=R / 2: P \rightarrow \mathbb{R}$ is the Gaussian curvature.

- Differentiating K :

$$
\begin{array}{lll}
\mathrm{d} K=\cos \phi \theta^{1}+\sin \phi \theta^{2}, & \text { where } & \phi: P \rightarrow \mathbb{R} \\
\mathrm{~d} \phi=\omega+J_{1}\left(-\sin \phi \theta^{1}+\cos \phi \theta^{2}\right), & & J_{1}: P \rightarrow \mathbb{R}
\end{array}
$$

Surface metrics with $|\nabla K|=1$

Problem

Classify the oriented Riemann surfaces $\left(M^{2}, g\right)$ with $|\nabla K|=1$.
$-\pi: P=\mathrm{F}_{\text {SO(2) }}(M) \rightarrow M$ orthogonal frame bundle with tautological form $\theta \in \Omega^{1}\left(P, \mathbb{R}^{2}\right)$ and Levi-Civita connection form $\omega \in \Omega^{1}(P, \mathfrak{s o}(2))$,

- Structure equations:

$$
\left\{\begin{array}{l}
\mathrm{d} \theta^{1}=-\omega \wedge \theta^{2}, \\
\mathrm{~d} \theta^{2}=\omega \wedge \theta^{1}, \\
\mathrm{~d} \omega=K \theta^{1} \wedge \theta^{2}
\end{array}\right.
$$

where $K=R / 2: P \rightarrow \mathbb{R}$ is the Gaussian curvature.

- Differentiating K :

$$
\begin{array}{ll}
\mathrm{d} K=\cos \phi \theta^{1}+\sin \phi \theta^{2}, & \text { where } \\
\mathrm{d} \phi=\omega+J_{1}\left(-\sin \phi \theta^{1}+\cos \phi \theta^{2}\right), & J_{1}: P \rightarrow \mathbb{R}, \\
\mathrm{~d} J_{1}=-\left(K+J_{1}^{2}\right)\left(\cos \phi \theta^{1}+\sin \phi \theta^{2}\right)+J_{2}\left(-\sin \phi \theta^{1}+\cos \phi \theta^{2}\right), & J_{2}: P \rightarrow \mathbb{R}
\end{array}
$$

Surface metrics with $|\nabla K|=1$

Problem

Classify the oriented Riemann surfaces $\left(M^{2}, g\right)$ with $|\nabla K|=1$.
$-\pi: P=\mathrm{F}_{\text {SO(2) }}(M) \rightarrow M$ orthogonal frame bundle with tautological form $\theta \in \Omega^{1}\left(P, \mathbb{R}^{2}\right)$ and Levi-Civita connection form $\omega \in \Omega^{1}(P, \mathfrak{s o}(2))$,

- Structure equations:

$$
\left\{\begin{array}{l}
\mathrm{d} \theta^{1}=-\omega \wedge \theta^{2}, \\
\mathrm{~d} \theta^{2}=\omega \wedge \theta^{1}, \\
\mathrm{~d} \omega=K \theta^{1} \wedge \theta^{2}
\end{array}\right.
$$

where $K=R / 2: P \rightarrow \mathbb{R}$ is the Gaussian curvature.

- Differentiating K :

$$
\left\{\begin{array}{lc}
\mathrm{d} K=\cos \phi \theta^{1}+\sin \phi \theta^{2}, & \text { where } \\
\mathrm{d} \phi=\omega+J_{1}\left(-\sin \phi \theta^{1}+\cos \phi \theta^{2}\right), & \phi: P \rightarrow \mathbb{R}, \\
\mathrm{~d} J_{1}=-\left(K+J_{1}^{2}\right)\left(\cos \phi \theta^{1}+\sin \phi \theta^{2}\right)+J_{2}\left(-\sin \phi \theta^{1}+\cos \phi \theta^{2}\right), & J_{1}: P \rightarrow \mathbb{R} \\
& J_{2}: P \rightarrow \mathbb{R} \\
\mathrm{~d} J_{k}=F_{k}\left(K, J_{1}, \ldots, J_{k}\right)\left(\cos \phi \theta^{1}+\sin \phi \theta^{2}\right)+ & \cdots \\
+J_{k+1}\left(-\sin \phi \theta^{1}+\cos \phi \theta^{2}\right), & J_{k+1}: P \rightarrow \mathbb{R}
\end{array}\right.
$$

Surface metrics with $|\nabla K|=1$

Problem

Classify the oriented Riemann surfaces $\left(M^{2}, g\right)$ with $|\nabla K|=1$.
$-\pi: P=\mathrm{F}_{\text {SO(2) }}(M) \rightarrow M$ orthogonal frame bundle with tautological form $\theta \in \Omega^{1}\left(P, \mathbb{R}^{2}\right)$ and Levi-Civita connection form $\omega \in \Omega^{1}(P, \mathfrak{s o}(2))$,

- Structure equations:

$$
\left\{\begin{array}{l}
\mathrm{d} \theta^{1}=-\omega \wedge \theta^{2}, \\
\mathrm{~d} \theta^{2}=\omega \wedge \theta^{1}, \\
\mathrm{~d} \omega=K \theta^{1} \wedge \theta^{2}
\end{array}\right.
$$

where $K=R / 2: P \rightarrow \mathbb{R}$ is the Gaussian curvature.

- Differentiating K :

$$
\begin{aligned}
& \left(\mathrm{d} K=\cos \phi \theta^{1}+\sin \phi \theta^{2}, \quad \text { where } \quad \phi: P \rightarrow \mathbb{R},\right. \\
& \mathrm{d} \phi=\omega+J_{1}\left(-\sin \phi \theta^{1}+\cos \phi \theta^{2}\right), \quad J_{1}: P \rightarrow \mathbb{R} \\
& \mathrm{~d} J_{1}=-\left(K+J_{1}^{2}\right)\left(\cos \phi \theta^{1}+\sin \phi \theta^{2}\right)+J_{2}\left(-\sin \phi \theta^{1}+\cos \phi \theta^{2}\right), \quad J_{2}: P \rightarrow \mathbb{R} \\
& \mathrm{~d} J_{k}=F_{k}\left(K, J_{1}, \ldots, J_{k}\right)\left(\cos \phi \theta^{1}+\sin \phi \theta^{2}\right)+ \\
& +J_{k+1}\left(-\sin \phi \theta^{1}+\cos \phi \theta^{2}\right), \quad J_{k+1}: P \rightarrow \mathbb{R}
\end{aligned}
$$

The method does not apply (yet) to such infinite type problems.

3) Cartan's Realization Problem

One is given Cartan Data:
(i) a connected, closed, Lie subgroup $G \subset G L(n, \mathbb{R})$;
(ii) a proper G-manifold X with infinitesimal action $\psi: X \times \mathfrak{g} \rightarrow T X$;
(iii) G-equivariant maps:

$$
c: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathbb{R}^{n}\right), R: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathfrak{g}\right), F: X \times \mathbb{R}^{n} \rightarrow T X
$$

3) Cartan's Realization Problem

One is given Cartan Data:
(i) a connected, closed, Lie subgroup $G \subset G L(n, \mathbb{R})$;
(ii) a proper G-manifold X with infinitesimal action $\psi: X \times \mathfrak{g} \rightarrow T X$;
(iii) G-equivariant maps:

$$
c: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathbb{R}^{n}\right), R: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathfrak{g}\right), F: X \times \mathbb{R}^{n} \rightarrow T X
$$

and asks for the existence of solutions:

- an n-dimensional orbifold M;
- a G-structure $\mathrm{F}_{G}(M) \rightarrow M$ with tautological form $\theta \in \Omega^{1}\left(\mathrm{~F}_{G}(M), \mathbb{R}^{n}\right)$ and connection 1 -form $\omega \in \Omega^{1}\left(\mathrm{~F}_{G}(M), \mathfrak{g}\right)$;
- an equivariant map $h: \mathrm{F}_{G}(M) \rightarrow X$;
satisfying the structure equations

$$
\begin{aligned}
\mathrm{d} \theta & =c \circ h(\theta \wedge \theta)-\omega \wedge \theta \\
\mathrm{d} \omega & =R \circ h(\theta \wedge \theta)-\omega \wedge \omega \\
\mathrm{d} h & =F(h, \theta)+\psi(h, \omega)
\end{aligned}
$$

Cartan's Realization Problem - Aims

- Characterize all solutions up to equivalence
- Determine group of symmetries/Lie algebra of symmetries of solutions
- Find if moduli space of solutions has some differential or stacky structure
- Determine if "complete" solutions (e.g., metric complete solutions) exist

Associated algebroid

Cartan Data (G, X, c, R, F) determines:

- vector bundle $A=X \times\left(\mathbb{R}^{n} \oplus \mathfrak{g}\right) \rightarrow X$

Associated algebroid

Cartan Data (G, X, C, R, F) determines:

- vector bundle $A=X \times\left(\mathbb{R}^{n} \oplus \mathfrak{g}\right) \rightarrow X$
- vector bundle map (anchor) $\rho: A \rightarrow T X$:

$$
\rho(u, \alpha):=F(u)+\psi(\alpha), \quad(u, \alpha) \in \mathbb{R}^{n} \oplus \mathfrak{g}
$$

Associated algebroid

Cartan Data (G, X, c, R, F) determines:

- vector bundle $A=X \times\left(\mathbb{R}^{n} \oplus \mathfrak{g}\right) \rightarrow X$
- vector bundle map (anchor) $\rho: A \rightarrow T X$:

$$
\rho(u, \alpha):=F(u)+\psi(\alpha), \quad(u, \alpha) \in \mathbb{R}^{n} \oplus \mathfrak{g}
$$

- a Lie bracket [,]: $\Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$ on constant sections:

$$
[(u, \alpha),(v, \beta)]:=\left(\alpha \cdot v-\beta \cdot u-c(u, v),[\alpha, \beta]_{\mathfrak{g}}-R(u, v)\right)
$$

and extended to any sections by imposing Leibniz.

Associated algebroid

Cartan Data (G, X, c, R, F) determines:

- vector bundle $A=X \times\left(\mathbb{R}^{n} \oplus \mathfrak{g}\right) \rightarrow X$
- vector bundle map (anchor) $\rho: A \rightarrow T X$:

$$
\rho(u, \alpha):=F(u)+\psi(\alpha), \quad(u, \alpha) \in \mathbb{R}^{n} \oplus \mathfrak{g}
$$

- a Lie bracket [,]: $\Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$ on constant sections:

$$
[(u, \alpha),(v, \beta)]:=\left(\alpha \cdot v-\beta \cdot u-c(u, v),[\alpha, \beta]_{\mathfrak{g}}-R(u, v)\right)
$$

and extended to any sections by imposing Leibniz.

The triple $(A,[\cdot, \cdot], \rho)$ is an example of a Lie algebroid

Example: extremal Kähler surfaces

- $X=\mathbb{R} \times \mathbb{C} \times \mathbb{R}$, with coordinates (K, T, U)
- $A=X \times(\mathbb{C} \oplus i \mathbb{R}) \rightarrow X$
- Bracket of constant sections:

$$
\left.[(z, \alpha),(w, \beta)]\right|_{(K, T, U)}:=\left(\alpha w-\beta z,-\frac{K}{2}(z \bar{w}-\bar{z} w)\right)
$$

- Anchor:

$$
\left.\rho(z, \alpha)\right|_{(K, T, U)}:=\left(-T \bar{z}-\bar{T} z, U z-\alpha T,-\frac{K}{2} T \bar{z}-\frac{K}{2} \bar{T} z\right)
$$

Example: extremal Kähler surfaces

- $X=\mathbb{R} \times \mathbb{C} \times \mathbb{R}$, with coordinates (K, T, U)
- $A=X \times(\mathbb{C} \oplus i \mathbb{R}) \rightarrow X$
- Bracket of constant sections:

$$
\left.[(z, \alpha),(w, \beta)]\right|_{(K, T, U)}:=\left(\alpha w-\beta z,-\frac{K}{2}(z \bar{w}-\bar{z} w)\right)
$$

- Anchor:

$$
\left.\rho(z, \alpha)\right|_{(K, T, U)}:=\left(-T \bar{z}-\bar{T} z, U z-\alpha T,-\frac{K}{2} T \bar{z}-\frac{K}{2} \bar{T} z\right)
$$

Remark. In this formulation, there are no more unknown objects!!

Next time: What does it mean to solve the problem, in this Lie algebroid language?

Solving Cartan's Realization Problem

Lecture 2

Overview

Starting from the classical correspondence:
Geometric structures $\longleftrightarrow G$-structures (with connection)
The main steps of the program:

Overview

Starting from the classical correspondence:
Geometric structures $\longleftrightarrow \quad G$-structures (with connection)
The main steps of the program:

Classification problem for a finite type class
of geometric structures

Cartan's realization problem
(Cartan Data)

Overview

Starting from the classical correspondence:

$$
\text { Geometric structures } \longleftrightarrow \quad \text {-structures (with connection) }
$$

The main steps of the program:

Classification problem for a finite type class
of geometric structures
$\longleftrightarrow \quad$ Cartan's realization problem
(Cartan Data)

Cartan Data $\longleftrightarrow \quad \begin{gathered}G \text {-structure algebroid } \\ \text { (with connection) }\end{gathered}$

Overview

Starting from the classical correspondence:

$$
\text { Geometric structures } \longleftrightarrow \quad \text {-structures (with connection) }
$$

The main steps of the program:

Classification problem for a finite type class
of geometric structures

Cartan Data $\longleftrightarrow \quad$-structure algebroid (with connection)

Solutions to classification problem

Integrate G-structure algebroid to G-structure groupoid (with connection)

Last time

Finite type classification problem \leftrightarrow Cartan's realization problem

Cartan's realization problem

One is given Cartan Data:

(i) a closed, Lie subgroup $G \subset G L(n, \mathbb{R})$;
(ii) a proper G-manifold X with infinitesimal action $\psi: X \times \mathfrak{g} \rightarrow T X$;
(iii) G-equivariant maps:

$$
c: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathbb{R}^{n}\right), R: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathfrak{g}\right), F: X \times \mathbb{R}^{n} \rightarrow T X
$$

Last time

Cartan's realization problem

One is given Cartan Data:

(i) a closed, Lie subgroup $G \subset G L(n, \mathbb{R})$;
(ii) a proper G-manifold X with infinitesimal action $\psi: X \times \mathfrak{g} \rightarrow T X$;
(iii) G-equivariant maps:

$$
c: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathbb{R}^{n}\right), R: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathfrak{g}\right), F: X \times \mathbb{R}^{n} \rightarrow T X
$$

and asks for the existence of solutions:

- an n-dimensional orbifold M;
- a G-structure $\mathrm{F}_{G}(M) \rightarrow M$ with tautological form $\theta \in \Omega^{1}\left(\mathrm{~F}_{G}(M), \mathbb{R}^{n}\right)$ and connection 1-form $\omega \in \Omega^{1}\left(\mathrm{~F}_{G}(M), \mathfrak{g}\right)$;
- an equivariant map $h: \mathrm{F}_{G}(M) \rightarrow X$;
satisfying the structure equations

$$
\begin{aligned}
\mathrm{d} \theta & =c \circ h(\theta \wedge \theta)-\omega \wedge \theta \\
\mathrm{d} \omega & =R \circ h(\theta \wedge \theta)-\omega \wedge \omega \\
\mathrm{d} h & =F(h, \theta)+\psi(h, \omega)
\end{aligned}
$$

Last time

Finite type classification problem \leftrightarrow Cartan's realization problem

Cartan's realization problem

One is given Cartan Data:

(i) a closed, Lie subgroup $G \subset G L(n, \mathbb{R})$;
(ii) a proper G-manifold X with infinitesimal action $\psi: X \times \mathfrak{g} \rightarrow T X$;
(iii) G-equivariant maps:

$$
c: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathbb{R}^{n}\right), R: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathfrak{g}\right), F: X \times \mathbb{R}^{n} \rightarrow T X
$$

Last time

Finite type classification problem \leftrightarrow Cartan's realization problem
Cartan's realization problem
One is given Cartan Data:
(i) a closed, Lie subgroup $G \subset G L(n, \mathbb{R})$;
(ii) a proper G-manifold X with infinitesimal action $\psi: X \times \mathfrak{g} \rightarrow T X$;
(iii) G-equivariant maps:

$$
c: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathbb{R}^{n}\right), R: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathfrak{g}\right), F: X \times \mathbb{R}^{n} \rightarrow T X
$$

and asks for the existence of solutions:

Last time

Finite type classification problem \leftrightarrow Cartan's realization problem
Cartan's realization problem
One is given Cartan Data:
(i) a closed, Lie subgroup $G \subset G L(n, \mathbb{R})$;
(ii) a proper G-manifold X with infinitesimal action $\psi: X \times \mathfrak{g} \rightarrow T X$;
(iii) G-equivariant maps:

$$
c: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathbb{R}^{n}\right), R: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathfrak{g}\right), F: X \times \mathbb{R}^{n} \rightarrow T X
$$

and asks for the existence of solutions:

- an n-dimensional orbifold M;

Last time

Finite type classification problem \leftrightarrow Cartan's realization problem
Cartan's realization problem
One is given Cartan Data:
(i) a closed, Lie subgroup $G \subset G L(n, \mathbb{R})$;
(ii) a proper G-manifold X with infinitesimal action $\psi: X \times \mathfrak{g} \rightarrow T X$;
(iii) G-equivariant maps:

$$
c: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathbb{R}^{n}\right), R: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathfrak{g}\right), F: X \times \mathbb{R}^{n} \rightarrow T X
$$

and asks for the existence of solutions:

- an n-dimensional orbifold M;
- a G-structure $\mathrm{F}_{G}(M) \rightarrow M$ with tautological form $\theta \in \Omega^{1}\left(\mathrm{~F}_{G}(M), \mathbb{R}^{n}\right)$ and connection 1 -form $\omega \in \Omega^{1}\left(\mathrm{~F}_{G}(M), \mathfrak{g}\right)$;

Last time

Finite type classification problem \leftrightarrow Cartan's realization problem

Cartan's realization problem

One is given Cartan Data:
(i) a closed, Lie subgroup $G \subset G L(n, \mathbb{R})$;
(ii) a proper G-manifold X with infinitesimal action $\psi: X \times \mathfrak{g} \rightarrow T X$;
(iii) G-equivariant maps:

$$
c: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathbb{R}^{n}\right), R: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathfrak{g}\right), F: X \times \mathbb{R}^{n} \rightarrow T X
$$

and asks for the existence of solutions:

- an n-dimensional orbifold M;
- a G-structure $\mathrm{F}_{G}(M) \rightarrow M$ with tautological form $\theta \in \Omega^{1}\left(\mathrm{~F}_{G}(M), \mathbb{R}^{n}\right)$ and connection 1-form $\omega \in \Omega^{1}\left(\mathrm{~F}_{G}(M), \mathfrak{g}\right)$;
- an equivariant map $h: \mathrm{F}_{G}(M) \rightarrow X$;
satisfying the structure equations

$$
\begin{aligned}
\mathrm{d} \theta & =c \circ h(\theta \wedge \theta)-\omega \wedge \theta \\
\mathrm{d} \omega & =R \circ h(\theta \wedge \theta)-\omega \wedge \omega \\
\mathrm{d} h & =F(h, \theta)+\psi(h, \omega)
\end{aligned}
$$

Last time

Cartan's data \leftrightarrow Lie algebroid

Algebroid of a Cartan's realization problem
Cartan Data (G, X, c, R, F) determines:

- vector bundle $A=X \times\left(\mathbb{R}^{n} \oplus \mathfrak{g}\right) \rightarrow X$

Last time

Cartan's data \leftrightarrow Lie algebroid

Algebroid of a Cartan's realization problem

Cartan Data (G, X, c, R, F) determines:

- vector bundle $A=X \times\left(\mathbb{R}^{n} \oplus \mathfrak{g}\right) \rightarrow X$
- vector bundle map (anchor) $\rho: A \rightarrow T X$:

$$
\rho(u, \alpha):=F(u)+\psi(\alpha), \quad(u, \alpha) \in \mathbb{R}^{n} \oplus \mathfrak{g} ;
$$

Last time

Cartan's data \leftrightarrow Lie algebroid

Algebroid of a Cartan's realization problem

Cartan Data (G, X, c, R, F) determines:

- vector bundle $A=X \times\left(\mathbb{R}^{n} \oplus \mathfrak{g}\right) \rightarrow X$
- vector bundle map (anchor) $\rho: A \rightarrow T X$:

$$
\rho(u, \alpha):=F(u)+\psi(\alpha), \quad(u, \alpha) \in \mathbb{R}^{n} \oplus \mathfrak{g}
$$

- a Lie bracket [,] : $\Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$ on constant sections:

$$
[(u, \alpha),(v, \beta)]:=\left(\alpha \cdot v-\beta \cdot u-c(u, v),[\alpha, \beta]_{\mathfrak{g}}-R(u, v)\right)
$$

and extended to any sections by imposing Leibniz.

Last time

Cartan's data \leftrightarrow Lie algebroid

Algebroid of a Cartan's realization problem

Cartan Data (G, X, c, R, F) determines:

- vector bundle $A=X \times\left(\mathbb{R}^{n} \oplus \mathfrak{g}\right) \rightarrow X$
- vector bundle map (anchor) $\rho: A \rightarrow T X$:

$$
\rho(u, \alpha):=F(u)+\psi(\alpha), \quad(u, \alpha) \in \mathbb{R}^{n} \oplus \mathfrak{g}
$$

- a Lie bracket [,] : $\Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$ on constant sections:

$$
[(u, \alpha),(v, \beta)]:=\left(\alpha \cdot v-\beta \cdot u-c(u, v),[\alpha, \beta]_{\mathfrak{g}}-R(u, v)\right)
$$

and extended to any sections by imposing Leibniz.
The triple $(A,[\cdot, \cdot], \rho)$ is a G-structure Lie algebroid with connection.

Last time

Extremal Kähler surfaces. To find such metrics amounts to find all $U(1)-$ structures $P \rightarrow M$ with tautological form θ, connection form ω and function $(K, T, U): P \rightarrow \mathbb{R} \oplus \mathbb{C} \oplus \mathbb{R}$, such that

$$
\left\{\begin{array}{l}
\mathrm{d} \theta=-\omega \wedge \theta \\
\mathrm{d} \omega=\frac{K}{2} \theta \wedge \bar{\theta} \\
\mathrm{~d} K=-(\bar{T} \theta+T \bar{\theta}) \\
\mathrm{d} T=U \theta-T \omega \\
\mathrm{~d} U=-\frac{K}{2}(\bar{T} \theta+T \bar{\theta})
\end{array}\right.
$$

Last time

Extremal Kähler surfaces. To find such metrics amounts to find all $U(1)$ structures $P \rightarrow M$ with tautological form θ, connection form ω and function $(K, T, U): P \rightarrow \mathbb{R} \oplus \mathbb{C} \oplus \mathbb{R}$, such that

$$
\left\{\begin{array}{l}
\mathrm{d} \theta=-\omega \wedge \theta \\
\mathrm{d} \omega=\frac{K}{2} \theta \wedge \bar{\theta} \\
\mathrm{~d} K=-(\bar{T} \theta+T \bar{\theta}) \\
\mathrm{d} T=U \theta-T \omega \\
\mathrm{~d} U=-\frac{K}{2}(\bar{T} \theta+T \bar{\theta})
\end{array}\right.
$$

Associated algebroid:

$$
A=(\mathbb{R} \times \mathbb{C} \times \mathbb{R}) \times(\mathbb{C} \oplus i \mathbb{R}) \longrightarrow X=\mathbb{R} \times \mathbb{C} \times \mathbb{R}
$$

(with global coordinates (K, T, U))
Lie bracket: $\left.[(z, \alpha),(w, \beta)]\right|_{(K, T, U)}:=\left(\alpha w-\beta z,-\frac{K}{2}(z \bar{w}-\bar{z} w)\right)$
Anchor: $\left.\rho(z, \alpha)\right|_{(K, T, U)}:=\left(-T \bar{z}-\bar{T} z, U z-\alpha T,-\frac{K}{2} T \bar{z}-\frac{K}{2} \bar{T} z\right)$
It comes with a right $U(1)$-action:

$$
(K, T, U, z, \alpha) g=\left(K, g^{-1} T, U, g^{-1} z, \alpha\right)
$$

Another example

Metrics of constant sectional curvature. To find such metrics amounts to find all SO(n)-structures $P \rightarrow M$ with tautological form θ, connection form ω and function $K: P \rightarrow \mathbb{R}$, such that

$$
\left\{\begin{array}{l}
\mathrm{d} \theta=-\omega \wedge \theta \\
\mathrm{d} \omega=R(\theta \wedge \theta)-\omega \wedge \omega \\
\mathrm{d} K=0
\end{array}\right.
$$

where

$$
R(u, v) w=K(\langle w, v\rangle u-\langle w, u\rangle v) .
$$

Another example

Metrics of constant sectional curvature. To find such metrics amounts to find all SO(n)-structures $P \rightarrow M$ with tautological form θ, connection form ω and function $K: P \rightarrow \mathbb{R}$, such that

$$
\left\{\begin{array}{l}
\mathrm{d} \theta=-\omega \wedge \theta \\
\mathrm{d} \omega=R(\theta \wedge \theta)-\omega \wedge \omega \\
\mathrm{d} K=0
\end{array}\right.
$$

where

$$
R(u, v) w=K(\langle w, v\rangle u-\langle w, u\rangle v) .
$$

Associated algebroid:

$$
A=\mathbb{R}^{n} \times\left(\mathbb{R}^{n} \oplus \mathfrak{s o}(n, \mathbb{R})\right) \longrightarrow X=\mathbb{R}
$$

(with global coordinate K)
Lie bracket: $\left.[(u, \alpha),(v, \beta)]\right|_{K}:=(\alpha v-\beta u,[\alpha, \beta]-R(u, v))$
Anchor: $\left.\rho(u, \alpha)\right|_{K}:=0$
It comes with a right $\mathrm{SO}(n)$-action:

$$
(K, u, \alpha) g=\left(K, g^{-1} u, g^{-1} \alpha g\right)
$$

Plan

Lecture 1:

- Recollection of G-structures
- Finite type vs infinite type through examples
- Cartan's Realization Problem and algebroids

Lecture 2:

- Algebroids and groupoids
- G-structure groupoids
- G-structure algebroids
- Construction of solutions

Plan

Lecture 1:

- Recollection of G-structures
- Finite type vs infinite type through examples
- Cartan's Realization Problem and algebroids

Lecture 2:

- Algebroids and groupoids
- G-structure groupoids
- G-structure algebroids
- Construction of solutions

Lecture 3:

- G-integrability
- Solving Cartan's Realization Problem
- Moduli space of solutions
- The example of extremal Kähler metrics on surfaces

1) Crash course on Lie algebroids and groupoids

A Lie algebroid is a vector bundle $A \rightarrow X$ with:

1. A Lie bracket $[\cdot, \cdot]_{A} ; \Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$;
2. A anchor map $\rho_{A}: A \rightarrow T X$;
satisfying:

$$
\left[s_{1}, f s_{2}\right]_{A}=f\left[s_{1}, s_{2}\right]_{A}+\rho\left(s_{1}\right)(f) s_{2}
$$

Main idea: Think of $\left(A,[\cdot, \cdot]_{A}, \rho_{A}\right)$ as a generalized tangent bundle.

1) Crash course on Lie algebroids and groupoids

A Lie algebroid is a vector bundle $A \rightarrow X$ with:

1. A Lie bracket $[\cdot, \cdot]_{A} ; \Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$;
2. A anchor map $\rho_{A}: A \rightarrow T X$;
satisfying:

$$
\left[s_{1}, f s_{2}\right]_{A}=f\left[s_{1}, s_{2}\right]_{A}+\rho\left(s_{1}\right)(f) s_{2}
$$

Main idea: Think of $\left(A,[\cdot, \cdot]_{A}, \rho_{A}\right)$ as a generalized tangent bundle.
Alternative definition:

A Lie algebroid is a vector bundle $A \rightarrow X$ with a linear operator:

$$
\mathrm{d}_{A}: \Omega^{\bullet}(A) \rightarrow \Omega^{\bullet+1}(A)
$$

satisfying:

1. $\mathrm{d}_{A}^{2}=0$;
2. $\mathrm{d}_{A}(\alpha \wedge \beta)=\mathrm{d}_{A} \alpha \wedge \beta+(-1)^{|\alpha|} \alpha \wedge \mathrm{d}_{A} \beta$.

1) Crash course on Lie algebroids and groupoids

A Lie algebroid is a vector bundle $A \rightarrow X$ with a linear operator

$$
\mathrm{d}_{A}: \Omega^{\bullet}(A) \rightarrow \Omega^{\bullet+1}(A),
$$

satisfying:

1. $\mathrm{d}_{A}^{2}=0$;
2. $\mathrm{d}_{A}(\alpha \wedge \beta)=\mathrm{d}_{A} \alpha \wedge \beta+(-1)^{|\alpha|} \alpha \wedge \mathrm{d}_{A} \beta$.

A Lie algebroid morphism is a vector bundle map

that intertwines the differentials: $\Phi^{*} \mathrm{~d}_{A_{2}}=\mathrm{d}_{A_{1}} \Phi^{*}$.

Geometry on Lie algebroids

Basic properties of $(A, \rho,[\cdot, \cdot])$:

- characteristic foliation of X : integrates the (singular) distribution $\operatorname{Im} \rho \subset T X$;
- isotropy Lie algebras: for each $x \in X, \mathfrak{g}_{x}:=\operatorname{Ker} \rho_{X}$ is a finite dim Lie algebra.

Geometry on Lie algebroids

Basic properties of $(A, \rho,[\cdot, \cdot])$:

- characteristic foliation of X : integrates the (singular) distribution $\operatorname{Im} \rho \subset T X$;
- isotropy Lie algebras: for each $x \in X, \mathfrak{g}_{x}:=\operatorname{Ker} \rho_{X}$ is a finite dim Lie algebra.

One works with A as if it was the tangent bundle. For example:

- A-symplectic form: $\omega \in \Omega^{2}(A)$ such that $\mathrm{d}_{A} \omega=0$ and $A \rightarrow A^{*}, \alpha \mapsto i_{\alpha} \omega$, is isomorphism;
- A-complex structure: $J: A \rightarrow A$ such that $J^{2}=-I$ and

$$
N_{J}(\alpha, \beta):=[J \alpha, J \beta]-J([J \alpha, \beta]+[\alpha, J \beta])-[\alpha, \beta]=0 .
$$

- A-connection: $\nabla: \Gamma(A) \times \Gamma(E) \rightarrow \Gamma(A)$ a \mathbb{R}-bilinear map such that:

$$
\nabla_{f_{\alpha}} s=f \nabla_{\alpha} s, \quad \nabla_{\alpha} f s=f \nabla_{\alpha} s+\rho(\alpha)(f) s
$$

Some classes of examples

- Tangent bundles $T X$;
- Lie algebras \mathfrak{g};
- Bundle of Lie algebras;
- Lie algebra actions $\psi: \mathfrak{g} \rightarrow \mathfrak{X}(X)$;
- Prequantization (X, ω);
- Poisson structures (X, π)
- (...)

Groupoids

A groupoid is a small category where every morphism is an isomorphism.

Groupoids

A groupoid is a small category where every morphism is an isomorphism.

$$
\Gamma \equiv \text { set of arrows } \quad X \equiv \text { set of objects. }
$$

Groupoids

A groupoid is a small category where every morphism is an isomorphism.

$$
\Gamma \equiv \text { set of arrows } \quad X \equiv \text { set of objects. }
$$

- source and target maps:

Groupoids

A groupoid is a small category where every morphism is an isomorphism.

$$
\Gamma \equiv \text { set of arrows } \quad X \equiv \text { set of objects. }
$$

- source and target maps:

- product:

Groupoids

A groupoid is a small category where every morphism is an isomorphism.

$$
\Gamma \equiv \text { set of arrows } \quad X \equiv \text { set of objects. }
$$

- identity:

$$
u: X \hookrightarrow \Gamma
$$

Groupoids

A groupoid is a small category where every morphism is an isomorphism.

$$
\Gamma \equiv \text { set of arrows } \quad X \equiv \text { set of objects. }
$$

- identity:

- inverse:

$$
\iota: \Gamma \longrightarrow \Gamma
$$

Groupoids

A groupoid is a small category where every morphism is an isomorphism.
A morphism of groupoids is a functor $\mathcal{F}: \Gamma_{1} \rightarrow \Gamma_{2}$.

Groupoids

A groupoid is a small category where every morphism is an isomorphism.
A morphism of groupoids is a functor $\mathcal{F}: \Gamma_{1} \rightarrow \Gamma_{2}$.
This means we have a map $\mathcal{F}: \Gamma_{1} \rightarrow \Gamma_{2}$ between the sets of arrows, and a map $f: X_{1} \rightarrow X_{2}$ between the sets of objects, such that:

- if $g: x \longrightarrow y$ is in Γ_{1}, then $\mathcal{F}(g): f(x) \longrightarrow f(y)$ in Γ_{2}.
- if $g, h \in \Gamma_{2}$ are composable, then $\mathcal{F}(g h)=\mathcal{F}(g) \mathcal{F}(h)$.
- if $x \in X_{1}$, then $\mathcal{F}\left(1_{x}\right)=1_{f(x)}$.
- if $g: x \longrightarrow y$, then $\mathcal{F}\left(g^{-1}\right)=\mathcal{F}(g)^{-1}$.

Groupoids: basic concepts

- right multiplication by $g: y \longleftarrow x$ is a bijection between \mathbf{s}-fibers:

$$
R_{g}: \mathbf{s}^{-1}(y) \longrightarrow \mathbf{s}^{-1}(x), \quad h \mapsto h g .
$$

Groupoids: basic concepts

- right multiplication by $g: y \longleftarrow x$ is a bijection between \mathbf{s}-fibers:

$$
R_{g}: \mathbf{s}^{-1}(y) \longrightarrow \mathbf{s}^{-1}(x), \quad h \mapsto h g .
$$

- left multiplication by $g: y \longleftarrow x$ is a bijection between \mathbf{t}-fibers:

$$
L_{g}: \mathbf{t}^{-1}(x) \longrightarrow \mathbf{t}^{-1}(y), \quad h \mapsto g h .
$$

Groupoids: basic concepts

- right multiplication by $g: y \longleftarrow x$ is a bijection between \mathbf{s}-fibers:

$$
R_{g}: \mathbf{s}^{-1}(y) \longrightarrow \mathbf{s}^{-1}(x), \quad h \mapsto h g
$$

- left multiplication by $g: y \longleftarrow x$ is a bijection between \mathbf{t}-fibers:

$$
L_{g}: \mathbf{t}^{-1}(x) \longrightarrow \mathbf{t}^{-1}(y), \quad h \mapsto g h .
$$

- the isotropy group at x :

$$
\Gamma_{x}=\mathbf{s}^{-1}(x) \cap \mathbf{t}^{-1}(x)
$$

Groupoids: basic concepts

- right multiplication by $g: y \longleftarrow x$ is a bijection between \mathbf{s}-fibers:

$$
R_{g}: \mathbf{s}^{-1}(y) \longrightarrow \mathbf{s}^{-1}(x), \quad h \mapsto h g
$$

- left multiplication by $g: y \longleftarrow x$ is a bijection between \mathbf{t}-fibers:

$$
L_{g}: \mathbf{t}^{-1}(x) \longrightarrow \mathbf{t}^{-1}(y), \quad h \mapsto g h .
$$

- the isotropy group at x :

$$
\Gamma_{x}=\mathbf{s}^{-1}(x) \cap \mathbf{t}^{-1}(x)
$$

- the orbit through x :

$$
\mathcal{O}_{x}:=\mathbf{t}\left(\mathbf{s}^{-1}(x)\right)=\{y \in M: \exists g: x \longrightarrow y\}
$$

Lie groupoids

Definition

A Lie groupoid is a groupoid $\Gamma \rightrightarrows X$ whose spaces of arrows and objects are both manifolds, the structure maps $\mathbf{s}, \mathbf{t}, u, m, i$ are all smooth maps and such that \mathbf{s} and \mathbf{t} are submersions.

Lie groupoids

Definition

A Lie groupoid is a groupoid $\Gamma \rightrightarrows X$ whose spaces of arrows and objects are both manifolds, the structure maps $\mathbf{s}, \mathbf{t}, u, m, i$ are all smooth maps and such that \mathbf{s} and \mathbf{t} are submersions.

Basic Properties For a Lie groupoid $\Gamma \rightrightarrows X$ and $x \in X$, one has that:

1. the isotropy groups Γ_{X} are Lie groups;
2. the orbits \mathcal{O}_{X} are (regular immersed) submanifolds in X;
3. the unit map $u: X \rightarrow \Gamma$ is an embedding;
4. $\mathbf{t}: \mathbf{s}^{-1}(x) \rightarrow \mathcal{O}_{x}$ is a principal Γ_{x}-bundle.

Some classes of examples

- Pair groupoid $X \times X \rightrightarrows X$;
- Fundamental groupoid $\Pi(X) \rightrightarrows X$;
- Lie group $G \rightrightarrows\{*\}$;
- Bundle of Lie groups;
- Lie group actions $G \times X \rightarrow X$;
- Gauge groupoid of principal bundle $G \curvearrowright P \rightarrow X$;
- Symplectic groupoids $(\Sigma, \Omega) \rightrightarrows X$.
- (...)

From Lie groupoids to Lie algebroids

PS: Can also use t-fibers and left-invariant vector fields! That is our convention here.

2) G-structure groupoids

Definition

- A G-principal groupoid is a Lie groupoid $\Gamma \rightrightarrows X$ with a principal action of G satisfying:

$$
\left(\gamma_{1} \cdot \gamma_{2}\right) g=\gamma_{1} \cdot\left(\gamma_{2} g\right), \quad \forall\left(\gamma_{1}, \gamma_{2}\right) \in \Gamma^{(2)}, g \in G .
$$

- A morphism of G-principal groupoids is a groupoid morphism $\Phi: \Gamma_{1} \rightarrow \Gamma_{2}$ which is G-equivariant.

2) G-structure groupoids

Definition

- A G-principal groupoid is a Lie groupoid $\Gamma \rightrightarrows X$ with a principal action of G satisfying:

$$
\left(\gamma_{1} \cdot \gamma_{2}\right) g=\gamma_{1} \cdot\left(\gamma_{2} g\right), \quad \forall\left(\gamma_{1}, \gamma_{2}\right) \in \Gamma^{(2)}, g \in G
$$

- A morphism of G-principal groupoids is a groupoid morphism $\Phi: \Gamma_{1} \rightarrow \Gamma_{2}$ which is G-equivariant.
\Longrightarrow each fiber $\mathbf{t}^{-1}(x)$ is a G-principal bundle. So $\mathbf{t}: \Gamma \rightarrow X$ is a family of G-principal bundles parameterized by X

2) G-structure groupoids

Definition

- A G-principal groupoid is a Lie groupoid $\Gamma \rightrightarrows X$ with a principal action of G satisfying:

$$
\left(\gamma_{1} \cdot \gamma_{2}\right) g=\gamma_{1} \cdot\left(\gamma_{2} g\right), \quad \forall\left(\gamma_{1}, \gamma_{2}\right) \in \Gamma^{(2)}, g \in G
$$

- A morphism of G-principal groupoids is a groupoid morphism $\Phi: \Gamma_{1} \rightarrow \Gamma_{2}$ which is G-equivariant.
\Longrightarrow each fiber $\mathbf{t}^{-1}(x)$ is a G-principal bundle. So $\mathbf{t}: \Gamma \rightarrow X$ is a family of G-principal bundles parameterized by X

Alternative point of view: action morphism

$$
\left\{\begin{array}{c}
G \text {-principal groupoid } \\
\Gamma \rightrightarrows X
\end{array}\right\} \quad \stackrel{1-1}{\longleftrightarrow} \quad\left\{\begin{array}{c}
\text { groupoid morphism } \iota: X \rtimes G \rightarrow \Gamma \\
\text { locally injective and effective }
\end{array}\right\}
$$

Connections and G-structures on groupoids

A connection 1-form on a G-principal groupoid $\Gamma \rightrightarrows X$ is a \mathfrak{g}-valued, leftinvariant 1-form, $\Omega \in \Omega_{L}^{1}(\Gamma ; \mathfrak{g})$ satisfying:
(i) vertical: $\Omega\left(\alpha_{\Gamma}\right)=\alpha$, for all $\alpha \in \mathfrak{g}$
(ii) G-equivariance: $g^{*} \Omega=\mathrm{Ad}_{g^{-1}} \Omega$.

Connections and G-structures on groupoids

A connection 1-form on a G-principal groupoid $\Gamma \rightrightarrows X$ is a \mathfrak{g}-valued, leftinvariant 1-form, $\Omega \in \Omega_{L}^{1}(\Gamma ; \mathfrak{g})$ satisfying:
(i) vertical: $\Omega\left(\alpha_{\Gamma}\right)=\alpha$, for all $\alpha \in \mathfrak{g}$
(ii) G-equivariance: $g^{*} \Omega=\mathrm{Ad}_{g^{-1}} \Omega$.
\Longrightarrow each fiber $\mathbf{t}^{-1}(x)$ is a principal G-bundle with connection form $\omega_{x}=\left.\Omega\right|_{\mathbf{t}^{-1}(x)}$.

Connections and G-structures on groupoids

A connection 1-form on a G-principal groupoid $\Gamma \rightrightarrows X$ is a \mathfrak{g}-valued, leftinvariant 1-form, $\Omega \in \Omega_{L}^{1}(\Gamma ; \mathfrak{g})$ satisfying:
(i) vertical: $\Omega\left(\alpha_{\Gamma}\right)=\alpha$, for all $\alpha \in \mathfrak{g}$
(ii) G-equivariance: $g^{*} \Omega=\mathrm{Ad}_{g^{-1}} \Omega$.
\Longrightarrow each fiber $\mathbf{t}^{-1}(x)$ is a principal G-bundle with connection form $\omega_{x}=\left.\Omega\right|_{\mathbf{t}^{-1}(x)}$.
Let $G \subset G L(n, \mathbb{R})$ be a closed subgroup:

A G-structure groupoid is a G-principal groupoid $\Gamma \rightrightarrows X$ with a pointwise surjective left-invariant form $\Theta \in \Omega_{L}^{1}\left(\Gamma ; \mathbb{R}^{n}\right)$ such:
(i) horizontal: $\Theta(v)=0$ if and only $v=\alpha_{\Gamma}$ for some $\alpha \in \mathfrak{g}$
(ii) G-equivariance: $g^{*} \Omega=g^{-1} \cdot \Omega$.

Connections and G-structures on groupoids

A connection 1-form on a G-principal groupoid $\Gamma \rightrightarrows X$ is a \mathfrak{g}-valued, leftinvariant 1-form, $\Omega \in \Omega_{L}^{1}(\Gamma ; \mathfrak{g})$ satisfying:
(i) vertical: $\Omega\left(\alpha_{\Gamma}\right)=\alpha$, for all $\alpha \in \mathfrak{g}$
(ii) G-equivariance: $g^{*} \Omega=\mathrm{Ad}_{g^{-1}} \Omega$.
\Longrightarrow each fiber $\mathbf{t}^{-1}(x)$ is a principal G-bundle with connection form $\omega_{x}=\left.\Omega\right|_{\mathbf{t}^{-1}(x)}$.
Let $G \subset G L(n, \mathbb{R})$ be a closed subgroup:

A G-structure groupoid is a G-principal groupoid $\Gamma \rightrightarrows X$ with a pointwise surjective left-invariant form $\Theta \in \Omega_{L}^{1}\left(\Gamma ; \mathbb{R}^{n}\right)$ such:
(i) horizontal: $\Theta(v)=0$ if and only $v=\alpha_{\Gamma}$ for some $\alpha \in \mathfrak{g}$
(ii) G-equivariance: $g^{*} \Omega=g^{-1} \cdot \Omega$.
\Longrightarrow each fiber $\mathbf{t}^{-1}(x)$ is a G-structure with tautological form $\theta_{x}=\left.\Theta\right|_{\mathbf{t}^{-1}(x)}$.

G-structure groupoids with connection

Proposition

Let $\Gamma \rightrightarrows X$ be a G-structure groupoid with connection. The tautological form $\Theta \in \Omega_{L}^{1}\left(\Gamma ; \mathbb{R}^{n}\right)$ and the connection form $\Omega \in \Omega_{L}^{1}(\Gamma ; \mathfrak{g})$ satisfy:

$$
\begin{aligned}
& \mathrm{d} \Theta=-\Omega \wedge \Theta+\operatorname{Tors}(\Omega) \\
& \mathrm{d} \Omega=-\Omega \wedge \Omega+\operatorname{Curv}(\Omega)
\end{aligned}
$$

In this proposition:

- d denotes the \mathbf{t}-foliated de Rham differential;
- $\operatorname{Tors}(\Omega) \in \Omega_{L}^{2}\left(\Gamma ; \mathbb{R}^{n}\right)$ is given by $\operatorname{Tors}(\Omega)(v, w)=\mathrm{d} \Theta(h(v), h(w))$;
- $\operatorname{Curv}(\Omega) \in \Omega_{L}^{2}(\Gamma ; \mathfrak{g})$ is given by $\operatorname{Curv}(\Omega)(v, w)=\mathrm{d} \Omega(h(v), h(w))$.

3) G-structure algebroids

- A G-principal algebroid is a Lie algebroid $A \rightarrow X$ with a G-action by automorphisms and an injective morphism $i: X \rtimes \mathfrak{g} \rightarrow A$ such that:

$$
\hat{\psi}(\alpha)=[i(\alpha), \cdot] .
$$

- A morphism of G-principal algebroids is a morphism $\Phi: A_{1} \rightarrow A_{2}$ which is G-equivariant and intertwines the action morphisms:

$$
\Phi \circ i_{1}=i_{2} \circ(\phi \times I)
$$

3) G-structure algebroids

- A G-principal algebroid is a Lie algebroid $A \rightarrow X$ with a G-action by automorphisms and an injective morphism $i: X \rtimes \mathfrak{g} \rightarrow A$ such that:

$$
\hat{\psi}(\alpha)=[i(\alpha), \cdot] .
$$

- A morphism of G-principal algebroids is a morphism $\Phi: A_{1} \rightarrow A_{2}$ which is G-equivariant and intertwines the action morphisms:

$$
\Phi \circ i_{1}=i_{2} \circ(\phi \times I)
$$

Proposition

- If $\Gamma \rightrightarrows X$ is a G-principal groupoid then its Lie algebroid $A \rightarrow X$ is a G-principal algebroid.
- If $\Phi: \Gamma_{1} \rightarrow \Gamma_{2}$ is a morphism of G-principal groupoids then $(\Phi)_{*}: A_{1} \rightarrow A_{2}$ is a morphism of G-principal algebroids.

Connections and G-structures on algebroids

A connection 1-form on a G-principal algebroid $A \rightarrow X$ is a \mathfrak{g}-valued A-form $\omega \in \Omega^{1}(A ; \mathfrak{g})$ satisfying:
(i) vertical: $\omega(i(x \alpha)=\alpha$, for all $x \in X, \alpha \in \mathfrak{g}$
(ii) G-equivariance: $g^{*} \omega=\operatorname{Ad}_{g^{-1}} \omega$.

Connections and G-structures on algebroids

A connection 1-form on a G-principal algebroid $A \rightarrow X$ is a \mathfrak{g}-valued A-form $\omega \in \Omega^{1}(A ; \mathfrak{g})$ satisfying:
(i) vertical: $\omega(i(x \alpha)=\alpha$, for all $x \in X, \alpha \in \mathfrak{g}$
(ii) G-equivariance: $g^{*} \omega=\mathrm{Ad}_{g^{-1}} \omega$.

Let $G \subset G L(n, \mathbb{R})$ be closed:

A G-structure algebroid is a G-principal algebroid $A \rightarrow X$ equipped with a fiberwise surjective A-form $\theta \in \Omega^{1}\left(A ; \mathbb{R}^{n}\right)$ satisfying:
(i) horizontal: $\theta_{\chi}(\xi)=0$ iff $\xi=i(x, \alpha)$, for some $\alpha \in \mathfrak{g}$.
(ii) G-equivariance: $g^{*} \theta=g^{-1} \cdot \theta, \quad \forall g \in G$.
θ is called the tautological form of the G-structure algebroid.

G-structure algebroids with connection

Proposition

Let $A \rightarrow X$ be a G-structure algebroid with connection. The tautological form $\theta \in \Omega^{1}\left(A ; \mathbb{R}^{n}\right)$ and the connection form $\omega \in \Omega^{1}(A ; \mathfrak{g})$ satisfy:

$$
\begin{aligned}
\mathrm{d}_{A} \theta & =-\omega \wedge \theta+\operatorname{Tors}(\omega) \\
\mathrm{d}_{A} \omega & =-\omega \wedge \omega+\operatorname{Curv}(\omega)
\end{aligned}
$$

where $\operatorname{Tors}(\omega) \in \Omega^{2}\left(A ; \mathbb{R}^{n}\right)$ and $\operatorname{Curv}(\omega) \in \Omega^{2}(A ; \mathfrak{g})$.

G-structure algebroids with connection

Proposition

Let $A \rightarrow X$ be a G-structure algebroid with connection. The tautological form $\theta \in \Omega^{1}\left(A ; \mathbb{R}^{n}\right)$ and the connection form $\omega \in \Omega^{1}(A ; \mathfrak{g})$ satisfy:

$$
\begin{aligned}
\mathrm{d}_{A} \theta & =-\omega \wedge \theta+\operatorname{Tors}(\omega) \\
\mathrm{d}_{A} \omega & =-\omega \wedge \omega+\operatorname{Curv}(\omega)
\end{aligned}
$$

where $\operatorname{Tors}(\omega) \in \Omega^{2}\left(A ; \mathbb{R}^{n}\right)$ and $\operatorname{Curv}(\omega) \in \Omega^{2}(A ; \mathfrak{g})$.

Proposition

Fix any G-principal groupoid $\Gamma \rightrightarrows X$ with Lie algebroid $A \rightarrow X$. Then there are 1:1 correspondences:

$$
\begin{array}{clc}
\left.\begin{array}{c}
\text { connection 1-forms on } \Gamma \\
\Omega \in \Omega_{L}^{1}(\Gamma ; \mathfrak{g})
\end{array}\right\} & \stackrel{1-1}{\longleftrightarrow} & \left.\begin{array}{c}
\text { connection 1-forms on } A \\
\omega \in \Omega^{1}(A ; \mathfrak{g})
\end{array}\right\} \\
\left\{\begin{array}{c}
\text { tautological forms on } \Gamma \\
\Theta \in \Omega_{L}^{1}\left(\Gamma ; \mathbb{R}^{n}\right)
\end{array}\right\} & \stackrel{1-1}{\longleftrightarrow} & \left\{\begin{array}{c}
\text { tautological forms on } A \\
\theta \in \Omega^{1}\left(A ; \mathbb{R}^{n}\right)
\end{array}\right\}
\end{array}
$$

4) Construction of solutions

Theorem

Any G-structure algebroid with connection $A \rightarrow X$ is naturally isomorphic to one in canonical form.

4) Construction of solutions

Theorem

Any G-structure algebroid with connection $A \rightarrow X$ is naturally isomorphic to one in canonical form. Under the isomorphism

$$
(\theta, \omega): A \xrightarrow{\cong} X \times\left(\mathbb{R}^{n} \oplus \mathfrak{g}\right), \quad \xi_{x} \mapsto(x, \theta(\xi), \omega(\xi)) .
$$

one has that:

4) Construction of solutions

Theorem

Any G-structure algebroid with connection $A \rightarrow X$ is naturally isomorphic to one in canonical form. Under the isomorphism

$$
(\theta, \omega): A \xrightarrow{\cong} X \times\left(\mathbb{R}^{n} \oplus \mathfrak{g}\right), \quad \xi_{x} \mapsto(x, \theta(\xi), \omega(\xi)) .
$$

one has that:

- the action morphism becomes $i: X \rtimes \mathfrak{g} \rightarrow A,(x, \alpha)) \mapsto(x, 0, \alpha)$;
- the tautological form becomes $\theta: X \times\left(\mathbb{R}^{n} \oplus \mathfrak{g}\right) \rightarrow \mathbb{R}^{n}$;
- the connection form becomes $\omega: X \times\left(\mathbb{R}^{n} \oplus \mathfrak{g}\right) \rightarrow \mathfrak{g}$;
- the G-action on A becomes $(x, u, \alpha) g=\left(x g, g^{-1} u, \operatorname{Ad}_{g^{-1}} \cdot \alpha\right)$;

Moreover, the anchor and bracket on constant sections become:

$$
\begin{aligned}
\rho(u, \alpha) & =F(u)+\psi(\alpha) \\
{[(u, \alpha),(v, \beta)] } & =\left(\alpha \cdot v-\beta \cdot u-c(u, v),[\alpha, \beta]_{\mathfrak{g}}-R(u, v)\right)
\end{aligned}
$$

where $c: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathbb{R}^{n}\right), R: X \rightarrow \operatorname{Hom}\left(\wedge^{2} \mathbb{R}^{n}, \mathfrak{g}\right)$ and $F: X \times \mathbb{R}^{n} \rightarrow T X$ are G-equivariant maps.

Construction of solutions

Conclusion:

$$
\left\{\begin{array}{c}
\text { Cartan Data } \\
(G, X, c, R, F)
\end{array}\right\} \quad \stackrel{1-1}{\longleftrightarrow} \quad\left\{\begin{array}{c}
G \text {-structure algebroids } \\
\text { with connection } A \rightarrow X
\end{array}\right\}
$$

Construction of solutions

Conclusion:

$$
\left\{\begin{array}{c}
\text { Cartan Data } \\
(G, X, c, R, F)
\end{array}\right\} \quad \stackrel{1-1}{\longleftrightarrow} \quad\left\{\begin{array}{c}
G \text {-structure algebroids } \\
\text { with connection } A \rightarrow X
\end{array}\right\}
$$

Theorem

Given Cartan Data with associated G-structure algebroid with connection $(A, \theta, \omega) \rightarrow X$, let $(\Gamma, \Theta, \Omega) \rightrightarrows X$ be a G-structure groupoid integrating it. Then for each $x \in X$

$$
\left(\mathbf{t}^{-1}(x),\left.\Theta\right|_{\mathbf{t}^{-1}(x)},\left.\Omega\right|_{\mathbf{t}^{-1}(x)}\right)
$$

is a G-structure with connection over $M=\mathbf{t}^{-1}(x) / G$ which solves Cartan's realization problem with $h:=\mathbf{s}: \mathbf{t}^{-1}(x) \rightarrow X$.

Construction of solutions

Conclusion:

$$
\left\{\begin{array}{c}
\text { Cartan Data } \\
(G, X, c, R, F)
\end{array}\right\} \quad \stackrel{1-1}{\longleftrightarrow} \quad\left\{\begin{array}{c}
G \text {-structure algebroids } \\
\text { with connection } A \rightarrow X
\end{array}\right\}
$$

Theorem

Given Cartan Data with associated G-structure algebroid with connection $(A, \theta, \omega) \rightarrow X$, let $(\Gamma, \Theta, \Omega) \rightrightarrows X$ be a G-structure groupoid integrating it. Then for each $x \in X$

$$
\left(\mathbf{t}^{-1}(x),\left.\Theta\right|_{\mathbf{t}^{-1}(x)},\left.\Omega\right|_{\mathbf{t}^{-1}(x)}\right)
$$

is a G-structure with connection over $M=\mathbf{t}^{-1}(x) / G$ which solves Cartan's realization problem with $h:=\mathbf{s}: \mathbf{t}^{-1}(x) \rightarrow X$.

Easy example: Metrics of constant sectional curvature

Associated $\mathrm{SO}(n)$-structure algebroid with connection:

$$
A=\mathbb{R}^{n} \times\left(\mathbb{R}^{n} \oplus \mathfrak{s o}(n, \mathbb{R})\right) \longrightarrow X=\mathbb{R}
$$

(with global coordinate K)
Lie bracket: $\left.[(u, \alpha),(v, \beta)]\right|_{K}:=(\alpha v-\beta u,[\alpha, \beta]-K(\langle\cdot, v\rangle u-\langle\cdot, u\rangle v))$
Anchor: $\left.\rho(u, \alpha)\right|_{K}:=0$
$\mathrm{SO}(n)$-action: $(K, u, \alpha) g=\left(K, g^{-1} u, g^{-1} \alpha g\right)$

Easy example: Metrics of constant sectional curvature

Associated $\mathrm{SO}(n)$-structure algebroid with connection:

$$
A=\mathbb{R}^{n} \times\left(\mathbb{R}^{n} \oplus \mathfrak{s o}(n, \mathbb{R})\right) \longrightarrow X=\mathbb{R}
$$

(with global coordinate K)
Lie bracket: $\left.[(u, \alpha),(v, \beta)]\right|_{K}:=(\alpha v-\beta u,[\alpha, \beta]-K(\langle\cdot, v\rangle u-\langle\cdot, u\rangle v))$
Anchor: $\left.\rho(u, \alpha)\right|_{K}:=0$
$\mathrm{SO}(n)$-action: $(K, u, \alpha) g=\left(K, g^{-1} u, g^{-1} \alpha g\right)$

Associated $\mathrm{SO}(n)$-structure groupoid with connection:
Bundle of Lie groups $p=\mathbf{s}=\mathbf{t}: \Gamma \rightarrow \mathbb{R}$ with fibers

$$
\mathbf{t}^{-1}(K) \simeq \begin{cases}\mathrm{SO}(n+1), & \text { if } K>0 \\ \mathrm{SO}(n) \ltimes \mathbb{R}^{n}, & \text { if } K=0 \\ \mathrm{SO}^{+}(n, 1), & \text { if } K<0\end{cases}
$$

These SO(n)-structures are the oriented orthogonal frame bundles of the 1-connected space forms:

$$
\mathbf{t}^{-1}(x) / \mathrm{SO}(n) \simeq \begin{cases}\mathbb{S}^{n}, & \text { if } K>0 \\ \mathbb{R}^{n}, & \text { if } K=0 \\ \mathbb{H}^{n}, & \text { if } K<0\end{cases}
$$

Construction of solutions: dictionary

Several important questions left:

- Do we get all solutions in this way?
- Do integrations/solutions all exist?
- What can we say about symmetries of solutions and their moduli spaces?
- Can this be used in "real" problems?
... to be discussed in the next lecture.

Solving Cartan's Realization Problem

Lecture 3

Overview

Starting from the classical correspondence:

$$
\text { Geometric structures } \longleftrightarrow \quad \text {-structures (with connection) }
$$

The main steps of the program:

Classification problem for a finite type class
of geometric structures

Cartan Data $\longleftrightarrow \quad$-structure algebroid (with connection)

Solutions to classification problem

Integrate G-structure algebroid to G-structure groupoid (with connection)

Easy example: Metrics of constant sectional curvature

Associated $\mathrm{SO}(n)$-structure algebroid with connection:

$$
A=\mathbb{R}^{n} \times\left(\mathbb{R}^{n} \oplus \mathfrak{s o}(n, \mathbb{R})\right) \longrightarrow X=\mathbb{R}
$$

(with global coordinate K)
Lie bracket: $\left.[(u, \alpha),(v, \beta)]\right|_{K}:=(\alpha v-\beta u,[\alpha, \beta]-K(\langle\cdot, v\rangle u-\langle\cdot, u\rangle v))$
Anchor: $\left.\rho(u, \alpha)\right|_{K}:=0$
$\mathrm{SO}(n)$-action: $(K, u, \alpha) g=\left(K, g^{-1} u, g^{-1} \alpha g\right)$

Easy example: Metrics of constant sectional curvature

Associated $\mathrm{SO}(n)$-structure algebroid with connection:

$$
A=\mathbb{R}^{n} \times\left(\mathbb{R}^{n} \oplus \mathfrak{s o}(n, \mathbb{R})\right) \longrightarrow X=\mathbb{R}
$$

(with global coordinate K)
Lie bracket: $\left.[(u, \alpha),(v, \beta)]\right|_{K}:=(\alpha v-\beta u,[\alpha, \beta]-K(\langle\cdot, v\rangle u-\langle\cdot, u\rangle v))$
Anchor: $\left.\rho(u, \alpha)\right|_{K}:=0$
$\mathrm{SO}(n)$-action: $(K, u, \alpha) g=\left(K, g^{-1} u, g^{-1} \alpha g\right)$

Associated $\mathrm{SO}(n)$-structure groupoid with connection:
Bundle of Lie groups $p=\mathbf{s}=\mathbf{t}: \Gamma \rightarrow \mathbb{R}$ with fibers

$$
\mathbf{t}^{-1}(K) \simeq \begin{cases}\mathrm{SO}(n+1), & \text { if } K>0 \\ \mathrm{SO}(n) \ltimes \mathbb{R}^{n}, & \text { if } K=0 \\ \mathrm{SO}^{+}(n, 1), & \text { if } K<0\end{cases}
$$

These SO(n)-structures are the oriented orthogonal frame bundles of the 1-connected space forms:

$$
\mathbf{t}^{-1}(x) / \mathrm{SO}(n) \simeq \begin{cases}\mathbb{S}^{n}, & \text { if } K>0 \\ \mathbb{R}^{n}, & \text { if } K=0 \\ \mathbb{H}^{n}, & \text { if } K<0\end{cases}
$$

Plan

Lecture 1:

- Recollection of G-structures
- Finite type vs infinite type through examples
- Cartan's Realization Problem and algebroids

Lecture 2:

- Algebroids and groupoids
- G-structure groupoids
- G-structure algebroids
- Construction of solutions

Lecture 3:

- G-integrability
- Solving Cartan's Realization Problem
- The example of extremal Kähler metrics on surfaces
- Moduli space of solutions

1) G-Integrability

Theorem (Lie I)
Let Γ be a Lie groupoid with Lie algebroid A. There exists a unique (up to isomorphism) source 1-connected Lie groupoid $\widetilde{\Gamma}$ with Lie algebroid A.

- $\widetilde{\Gamma}$ is called the canonical integration

1) G-Integrability

Theorem (Lie I)
Let Γ be a Lie groupoid with Lie algebroid A. There exists a unique (up to isomorphism) source 1-connected Lie groupoid $\widetilde{\Gamma}$ with Lie algebroid A.

- $\widetilde{\Gamma}$ is called the canonical integration

Theorem (Lie II)

Let Γ_{1} and Γ_{2} be Lie groupoids with Lie algebroids A_{1} and A_{2}, where Γ_{1} is source 1-connected. Given a Lie algebroid homomorphism $\phi: A_{1} \rightarrow A_{2}$, there exists a unique Lie groupoid homomorphism $\Phi: \Gamma_{1} \rightarrow \Gamma_{2}$ with $(\Phi)_{*}=\phi$.

1) G-Integrability

Theorem (Lie I)
Let Γ be a Lie groupoid with Lie algebroid A. There exists a unique (up to isomorphism) source 1-connected Lie groupoid $\widetilde{\Gamma}$ with Lie algebroid A.

- $\widetilde{\Gamma}$ is called the canonical integration

Theorem (Lie II)

Let Γ_{1} and Γ_{2} be Lie groupoids with Lie algebroids A_{1} and A_{2}, where Γ_{1} is source 1-connected. Given a Lie algebroid homomorphism $\phi: A_{1} \rightarrow A_{2}$, there exists a unique Lie groupoid homomorphism $\Phi: \Gamma_{1} \rightarrow \Gamma_{2}$ with $(\Phi)_{*}=\phi$.
... Lie III does not hold!

Obstructions to integrability

Theorem [Crainic \& RLF, 2003]
For a Lie algebroid A, there exist monodromy groups $N_{x} \subset A_{x}$ such that A is integrable iff the groups N_{x} are uniformly discrete for $x \in X$.

Obstructions to integrability

Theorem [Crainic \& RLF, 2003]
For a Lie algebroid A, there exist monodromy groups $N_{x} \subset A_{x}$ such that A is integrable iff the groups N_{x} are uniformly discrete for $x \in X$.

Each N_{x} is the image of a monodromy map:

$$
\partial: \pi_{2}(L, x) \rightarrow z\left(\mathfrak{g}_{x}\right)
$$

This map (hence the monodromy groups) is computable.

Obstructions to integrability

Theorem [Crainic \& RLF, 2003]

For a Lie algebroid A, there exist monodromy groups $N_{x} \subset A_{x}$ such that A is integrable iff the groups N_{x} are uniformly discrete for $x \in X$.

Each N_{x} is the image of a monodromy map:

$$
\partial: \pi_{2}(L, x) \rightarrow z\left(\mathfrak{g}_{x}\right)
$$

This map (hence the monodromy groups) is computable.
Example. For prequantization algebroid A defined by $\omega \in \Omega_{\mathrm{cl}}^{2}(M)$:

$$
N_{x}=\left\{\int_{\sigma} \omega:[\sigma] \in \pi_{2}(M)\right\} \subset \mathbb{R}=\mathfrak{g}_{x}
$$

So A is integrable if and only if ω has discrete spherical periods.

Lie Functor for G-principal groupoids/algebroids

Theorem (Lie I)
Let Γ be a G-principal groupoid with Lie algebroid A. There exists a unique (up to isomorphism) G-principal groupoid $\widetilde{\Gamma}_{G}$ with Lie algebroid A and $\mathbf{s}^{-1}(x) / G$ all 1-connected.

- $\widetilde{\Gamma}_{G}$ is called the canonical G-integration

Lie Functor for G-principal groupoids/algebroids

Theorem (Lie I)
Let Γ be a G-principal groupoid with Lie algebroid A. There exists a unique (up to isomorphism) G-principal groupoid $\widetilde{\Gamma}_{G}$ with Lie algebroid A and $\mathbf{s}^{-1}(x) / G$ all 1-connected.

- $\widetilde{\Gamma}_{G}$ is called the canonical G-integration

Theorem (Lie II)
Let Γ_{1}, Γ_{2} be G-principal groupoids with algebroids A_{1}, A_{2}, and $\mathbf{s}_{1}^{-1}(x) / G$ all 1-connnected. Given morphism of G-principal algebroids $\phi: A_{1} \rightarrow A_{2}$, there exists a unique morphism of G-principal groupoids $\Phi: \Gamma_{1} \rightarrow \Gamma_{2}$ with $(\Phi)_{*}=\phi$.

Lie Functor for G-principal groupoids/algebroids

Theorem (Lie I)
Let Γ be a G-principal groupoid with Lie algebroid A. There exists a unique (up to isomorphism) G-principal groupoid $\widetilde{\Gamma}_{G}$ with Lie algebroid A and $\mathbf{s}^{-1}(x) / G$ all 1-connected.

- $\widetilde{\Gamma}_{G}$ is called the canonical G-integration

Theorem (Lie II)

Let Γ_{1}, Γ_{2} be G-principal groupoids with algebroids A_{1}, A_{2}, and $\mathbf{s}_{1}^{-1}(x) / G$ all 1-connnected. Given morphism of G-principal algebroids $\phi: A_{1} \rightarrow A_{2}$, there exists a unique morphism of G-principal groupoids $\Phi: \Gamma_{1} \rightarrow \Gamma_{2}$ with $(\Phi)_{*}=\phi$.

Note: Lie III fails even when A is integrable. In general,
A is integrable $\nRightarrow A$ is G-integrable

G-Integrability

Problem. When is a G-principal algebroid $A \rightarrow X$ G-integrable?

We are looking for:

- a Lie groupoid $\Gamma \rightrightarrows X$ which integrates A;
- a morphism $\iota: X \rtimes G \rightarrow \Gamma$ which integrates $i: X \rtimes \mathfrak{g} \rightarrow A$.

G-Integrability

Problem. When is a G-principal algebroid $A \rightarrow X$ G-integrable?

We are looking for:

- a Lie groupoid $\Gamma \rightrightarrows X$ which integrates A;
- a morphism $\iota: X \rtimes G \rightarrow \Gamma$ which integrates $i: X \rtimes \mathfrak{g} \rightarrow A$.

Remark. We only care about G-principal groupoids: if A has a tautological form or a connection form they "integrate for free".

Extended G-Monodromy

Assume A is an integrable G-principal groupoid and let $\tilde{\Gamma}$ be its canonical integration.

Extended G-Monodromy

Assume A is an integrable G-principal groupoid and let $\widetilde{\Gamma}$ be its canonical integration.

Definition.

The extended G-monodromy at $x \in X$ is the image $\tilde{\mathcal{N}}_{x}^{G}$ of the map

$$
\partial_{x}^{G}: \pi_{1}(G) \rightarrow \tilde{\Gamma}_{x}, \quad g \mapsto \tilde{\iota}(x, g)
$$

These groups assemble to a normal sub-bundle of groups contained in the center of the isotropy groups:

$$
\tilde{\mathcal{N}}^{G}=\bigcup_{x \in X} \tilde{\mathcal{N}}_{x}^{G}
$$

Extended G-Monodromy

Assume A is an integrable G-principal groupoid and let $\widetilde{\Gamma}$ be its canonical integration.

Definition.

The extended G-monodromy at $x \in X$ is the image $\widetilde{\mathcal{N}}_{x}^{G}$ of the map

$$
\partial_{x}^{G}: \pi_{1}(G) \rightarrow \widetilde{\Gamma}_{x}, \quad g \mapsto \tilde{\iota}(x, g)
$$

These groups assemble to a normal sub-bundle of groups contained in the center of the isotropy groups:

$$
\tilde{\mathcal{N}}^{G}=\bigcup_{x \in X} \tilde{\mathcal{N}}_{x}^{G}
$$

Theorem.

Let A be a G-principal algebroid which is integrable. Then A is G-integrable if and only if $\tilde{\mathcal{N}}^{G} \subset \tilde{\Gamma}$ is uniformly discrete.

Extended G-Monodromy

Assume A is an integrable G-principal groupoid and let $\widetilde{\Gamma}$ be its canonical integration.

Definition.

The extended G-monodromy at $x \in X$ is the image $\widetilde{\mathcal{N}}_{x}^{G}$ of the map

$$
\partial_{x}^{G}: \pi_{1}(G) \rightarrow \widetilde{\Gamma}_{x}, \quad g \mapsto \tilde{\iota}(x, g)
$$

These groups assemble to a normal sub-bundle of groups contained in the center of the isotropy groups:

$$
\tilde{\mathcal{N}}^{G}=\bigcup_{x \in X} \tilde{\mathcal{N}}_{x}^{G}
$$

Theorem.

Let A be a G-principal algebroid which is integrable. Then A is G-integrable if and only if $\tilde{\mathcal{N}}^{G} \subset \tilde{\Gamma}$ is uniformly discrete.

In this case the canonical G-integration of A is:

$$
\tilde{\Gamma}_{G}=\tilde{\Gamma} / \tilde{\mathcal{N}}_{x}^{G} .
$$

Computing G-Monodromy

The G-monodromy at $x \in X$ is the subgroup $\mathcal{N}_{x}^{G} \subset Z\left(\operatorname{ker} \rho_{x}\right)$ such that

$$
\exp \left(\mathcal{N}_{x}^{G}\right)=\tilde{\mathcal{N}}_{x}^{G} \cap Z\left(\widetilde{\Gamma}_{x}\right)^{0} .
$$

Computing G-Monodromy

The G-monodromy at $x \in X$ is the subgroup $\mathcal{N}_{X}^{G} \subset Z\left(\operatorname{ker} \rho_{X}\right)$ such that

$$
\exp \left(\mathcal{N}_{x}^{G}\right)=\tilde{\mathcal{N}}_{x}^{G} \cap Z\left(\widetilde{\Gamma}_{x}\right)^{0}
$$

- A is G-integrable if and only if $\mathcal{N}^{G} \subset A$ is uniformly discrete.

Computing G-Monodromy

The G-monodromy at $x \in X$ is the subgroup $\mathcal{N}_{X}^{G} \subset Z\left(\operatorname{ker} \rho_{X}\right)$ such that

$$
\exp \left(\mathcal{N}_{x}^{G}\right)=\tilde{\mathcal{N}}_{x}^{G} \cap Z\left(\widetilde{\Gamma}_{x}\right)^{0}
$$

- A is G-integrable if and only if $\mathcal{N}^{G} \subset A$ is uniformly discrete.

A G-splitting along a leaf L is a splitting of the short exact sequence:

$$
\left.\left.0 \longrightarrow \operatorname{Ker} \rho\right|_{L} \longrightarrow A\right|_{L} \underset{\sigma}{\stackrel{\rho}{\rightleftarrows}} T L \longrightarrow 0 .
$$

compatible with the action morphism $i: X \rtimes \mathfrak{g} \rightarrow A$ and with center-valued curvature 2-form:

$$
\Omega_{\sigma}(X, Y)=\sigma\left([X, Y]-[\sigma(X), \sigma(Y)] \in Z\left(\left.\operatorname{ker} \rho\right|_{L}\right)\right.
$$

Computing G-Monodromy

The G-monodromy at $x \in X$ is the subgroup $\mathcal{N}_{X}^{G} \subset Z\left(\operatorname{ker} \rho_{X}\right)$ such that

$$
\exp \left(\mathcal{N}_{x}^{G}\right)=\tilde{\mathcal{N}}_{x}^{G} \cap Z\left(\widetilde{\Gamma}_{x}\right)^{0}
$$

- A is G-integrable if and only if $\mathcal{N}^{G} \subset A$ is uniformly discrete.

A G-splitting along a leaf L is a splitting of the short exact sequence:

$$
\left.\left.0 \longrightarrow \operatorname{Ker} \rho\right|_{L} \longrightarrow A\right|_{L} \underset{\sigma}{\stackrel{\rho}{\rightleftarrows}} T L \longrightarrow 0 .
$$

compatible with the action morphism $i: X \rtimes \mathfrak{g} \rightarrow A$ and with center-valued curvature 2-form:

$$
\Omega_{\sigma}(X, Y)=\sigma\left([X, Y]-[\sigma(X), \sigma(Y)] \in Z\left(\left.\operatorname{ker} \rho\right|_{L}\right)\right.
$$

Proposition. If the action is locally free at x and the leaf $L \subset X$ admits a G-splitting $\sigma:\left.T L \rightarrow A\right|_{L}$ then

$$
\mathcal{N}_{x}^{G}=\left\{\int_{c} \Omega_{\sigma}\left|c: D^{2} \rightarrow L, c\right|_{\partial D^{2}} \subset x \cdot G\right\}
$$

2) Solving Cartan's Realization Problem

Theorem (local solutions).

Let (G, X, c, R, F) be Cartan Data defining a G-structure Lie algebroid with connection $A \rightarrow X$. For each $x \in X$ there exists a G-invariant, open neighborhood $x \in U \subset L$ such that $\left.A\right|_{U}$ is G-integrable.

2) Solving Cartan's Realization Problem

Theorem (local solutions).

Let (G, X, c, R, F) be Cartan Data defining a G-structure Lie algebroid with connection $A \rightarrow X$. For each $x \in X$ there exists a G-invariant, open neighborhood $x \in U \subset L$ such that $\left.A\right|_{U}$ is G-integrable.
In particular, there exists a solution $\left(\mathrm{F}_{G}(M),(\theta, \omega), h\right)$ with $x \in \operatorname{Im} h$ and:

- the germ of solutions at x is unique up to equivalence;
- if x and x^{\prime} belong to same leaf of A, the germs of solutions at x and x^{\prime} are isomorphic;
- the Lie algebra of symmetries of the solution is the isotropy Lie algebra of A at x;

2) Solving Cartan's Realization Problem

Theorem (local solutions).
Let (G, X, c, R, F) be Cartan Data defining a G-structure Lie algebroid with connection $A \rightarrow X$. For each $x \in X$ there exists a G-invariant, open neighborhood $x \in U \subset L$ such that $\left.A\right|_{U}$ is G-integrable.
In particular, there exists a solution $\left(\mathrm{F}_{G}(M),(\theta, \omega), h\right)$ with $x \in \operatorname{Im} h$ and:

- the germ of solutions at x is unique up to equivalence;
- if x and x^{\prime} belong to same leaf of A, the germs of solutions at x and x^{\prime} are isomorphic;
- the Lie algebra of symmetries of the solution is the isotropy Lie algebra of A at x;

Sketch of proof.

(i) For first part, use G-splitting to show G-monodromy is discrete.

2) Solving Cartan's Realization Problem

Theorem (local solutions).
Let (G, X, c, R, F) be Cartan Data defining a G-structure Lie algebroid with connection $A \rightarrow X$. For each $x \in X$ there exists a G-invariant, open neighborhood $x \in U \subset L$ such that $\left.A\right|_{U}$ is G-integrable.
In particular, there exists a solution $\left(\mathrm{F}_{G}(M),(\theta, \omega), h\right)$ with $x \in \operatorname{Im} h$ and:

- the germ of solutions at x is unique up to equivalence;
- if x and x^{\prime} belong to same leaf of A, the germs of solutions at x and x^{\prime} are isomorphic;
- the Lie algebra of symmetries of the solution is the isotropy Lie algebra of A at x;

Sketch of proof.

(i) For first part, use G-splitting to show G-monodromy is discrete.
(ii) For second part, use any G-integration.

2) Solving Cartan's Realization Problem

Theorem (local solutions).

Let (G, X, c, R, F) be Cartan Data defining a G-structure Lie algebroid with connection $A \rightarrow X$. For each $x \in X$ there exists a G-invariant, open neighborhood $x \in U \subset L$ such that $\left.A\right|_{U}$ is G-integrable.
In particular, there exists a solution $\left(\mathrm{F}_{G}(M),(\theta, \omega), h\right)$ with $x \in \operatorname{Im} h$ and:

- the germ of solutions at x is unique up to equivalence;
- if x and x^{\prime} belong to same leaf of A, the germs of solutions at x and x^{\prime} are isomorphic;
- the Lie algebra of symmetries of the solution is the isotropy Lie algebra of A at x;

Sketch of proof.

(i) For first part, use G-splitting to show G-monodromy is discrete.
(ii) For second part, use any G-integration.

Remark. According to Bryant, local existence was known to E. Cartan. I am not so sure...

Complete solutions

Restrict to the metric type (but there is a general theory!):

A G-structure algebroid with connection (=Cartan data (G, X, c, R, F)) is said to be of metric type if $G \subset O(n, \mathbb{R})$ and $c=0$.

Complete solutions

Restrict to the metric type (but there is a general theory!):

A G-structure algebroid with connection (=Cartan data (G, X, c, R, F)) is said to be of metric type if $G \subset O(n, \mathbb{R})$ and $c=0$.

In the metric case, $A \simeq X \times\left(\mathbb{R}^{n} \oplus \mathfrak{g}\right)$ carries the canonical fiberwise metric:

$$
K_{A}((u, \alpha),(v, \beta)):=\langle u, v\rangle_{\mathbb{R}^{n}}+\langle\alpha, \beta\rangle_{\mathfrak{g}} \quad(u, \alpha),(v, \beta) \in A
$$

\Longrightarrow solutions are Riemannian manifolds and ω is the Levi-Civita connection

Complete solutions

Restrict to the metric type (but there is a general theory!):
A G-structure algebroid with connection (=Cartan data (G, X, c, R, F)) is said to be of metric type if $G \subset O(n, \mathbb{R})$ and $c=0$.

In the metric case, $A \simeq X \times\left(\mathbb{R}^{n} \oplus \mathfrak{g}\right)$ carries the canonical fiberwise metric:

$$
K_{A}((u, \alpha),(v, \beta)):=\langle u, v\rangle_{\mathbb{R}^{n}}+\langle\alpha, \beta\rangle_{\mathfrak{g}} \quad(u, \alpha),(v, \beta) \in A
$$

\Longrightarrow solutions are Riemannian manifolds and ω is the Levi-Civita connection

Lemma. The metric K_{A} induces a Riemannian metric on the leaves of A so that anchor induces for each $x \in X$ an isometry

$$
\rho:\left(\left.\operatorname{ker} \rho\right|_{x}\right)^{\perp} \rightarrow T_{x} L .
$$

Complete solutions

Restrict to the metric type (but there is a general theory!):
A G-structure algebroid with connection (=Cartan data (G, X, c, R, F)) is said to be of metric type if $G \subset O(n, \mathbb{R})$ and $c=0$.

In the metric case, $A \simeq X \times\left(\mathbb{R}^{n} \oplus \mathfrak{g}\right)$ carries the canonical fiberwise metric:

$$
K_{A}((u, \alpha),(v, \beta)):=\langle u, v\rangle_{\mathbb{R}^{n}}+\langle\alpha, \beta\rangle_{\mathfrak{g}} \quad(u, \alpha),(v, \beta) \in A
$$

\Longrightarrow solutions are Riemannian manifolds and ω is the Levi-Civita connection

Lemma. The metric K_{A} induces a Riemannian metric on the leaves of A so that anchor induces for each $x \in X$ an isometry

$$
\rho:\left(\left.\operatorname{ker} \rho\right|_{x}\right)^{\perp} \rightarrow T_{x} L
$$

\Longrightarrow leaves of A have a natural Riemannian structure.

Complete solutions

Theorem (complete solutions).
Let $A \rightarrow X$ be a G-structure algebroid with connection of metric type and let $(P,(\theta, \omega), h)$ be a solution of Cartan's realization problem. Then:

Complete solutions

Theorem (complete solutions).
Let $A \rightarrow X$ be a G-structure algebroid with connection of metric type and let $(P,(\theta, \omega), h)$ be a solution of Cartan's realization problem. Then:
(i) If $M=P / G$ is metric complete and 1-connected, then P is isomorphic to a fiber $\mathbf{t}^{-1}(x)$ of the canonical G-integration of $\left.A\right|_{L}$ for some leaf $L \subset X$. Moreover, this leaf is metric complete.

Complete solutions

Theorem (complete solutions).

Let $A \rightarrow X$ be a G-structure algebroid with connection of metric type and let $(P,(\theta, \omega), h)$ be a solution of Cartan's realization problem. Then:
(i) If $M=P / G$ is metric complete and 1-connected, then P is isomorphic to a fiber $\mathbf{t}^{-1}(x)$ of the canonical G-integration of $\left.A\right|_{L}$ for some leaf $L \subset X$. Moreover, this leaf is metric complete.
(ii) Conversely, if a leaf L is metric complete and $\left.A\right|_{L}$ is G-integrable, then any t-fiber of the canonical G-integration of $\left.A\right|_{L}$ yields a metric complete solution.

3) Example: Extremal Kähler Metrics

- $X=\mathbb{R} \times \mathbb{C} \times \mathbb{R}$ - Coordinates: (K, T, U);
- U(1)-Action: $(K, T, U) \cdot g=\left(K, g^{-1} T, U\right)$;
- $A=X \times(\mathbb{C} \oplus i \mathbb{R})$;
- Bracket of constant sections:

$$
\left.[(z, \alpha),(w, \beta)]\right|_{(K, T, U)}:=\left(\alpha w-\beta z,-\frac{K}{2}(z \bar{w}-\bar{z} w)\right)
$$

- Anchor:

$$
\left.\rho(z, \alpha)\right|_{(K, T, U)}:=\left(-T \bar{z}-\bar{T} z, U z-\alpha T,-\frac{K}{2} T \bar{z}-\frac{K}{2} \bar{T} z\right) .
$$

3) Example: Extremal Kähler Metrics

- $X=\mathbb{R} \times \mathbb{C} \times \mathbb{R}$ - Coordinates: (K, T, U);
- U(1)-Action: $(K, T, U) \cdot g=\left(K, g^{-1} T, U\right)$;
- $A=X \times(\mathbb{C} \oplus i \mathbb{R})$;
- Bracket of constant sections:

$$
\left.[(z, \alpha),(w, \beta)]\right|_{(K, T, U)}:=\left(\alpha w-\beta z,-\frac{K}{2}(z \bar{w}-\bar{z} w)\right) ;
$$

- Anchor:

$$
\left.\rho(z, \alpha)\right|_{(K, T, U)}:=\left(-T \bar{z}-\bar{T} z, U z-\alpha T,-\frac{K}{2} T \bar{z}-\frac{K}{2} \bar{T} z\right) .
$$

This Lie algebroid is not $U(1)$-integrable!
Need to investigate $U(1)$-integrability of $\left.A\right|_{L}$, for each leaf L.

3) Example: Extremal Kähler Metrics

- $X=\mathbb{R} \times \mathbb{C} \times \mathbb{R}$ - Coordinates: (K, T, U);
- U(1)-Action: $(K, T, U) \cdot g=\left(K, g^{-1} T, U\right)$;
- $A=X \times(\mathbb{C} \oplus i \mathbb{R})$;
- Bracket of constant sections:

$$
\left.[(z, \alpha),(w, \beta)]\right|_{(K, T, U)}:=\left(\alpha w-\beta z,-\frac{K}{2}(z \bar{w}-\bar{z} w)\right) ;
$$

- Anchor:

$$
\left.\rho(z, \alpha)\right|_{(K, T, U)}:=\left(-T \bar{z}-\bar{T} z, U z-\alpha T,-\frac{K}{2} T \bar{z}-\frac{K}{2} \bar{T} z\right) .
$$

In real coordinates: $\alpha=i \lambda, z=a+i b, T=X+i Y$:

$$
\begin{aligned}
\left.\rho(z, \alpha)\right|_{(K, T, U)}= & a\left(-2 X \frac{\partial}{\partial K}+U \frac{\partial}{\partial X}-K X \frac{\partial}{\partial U}\right)+ \\
& +b\left(-2 Y \frac{\partial}{\partial K}+U \frac{\partial}{\partial Y}-K Y \frac{\partial}{\partial U}\right)+\lambda\left(Y \frac{\partial}{\partial X}-X \frac{\partial}{\partial Y}\right)
\end{aligned}
$$

For constant sections $e_{1}=(1,0), e_{2}=(i, 0), e_{3}=(0, i)$:

$$
\left[e_{1}, e_{2}\right]=K e_{3}, \quad\left[e_{1}, e_{3}\right]=-e_{2}, \quad\left[e_{2}, e_{3}\right]=e_{1}
$$

Action morphism $\iota: X \rtimes i u(1) \rightarrow A$:

$$
\iota(x, i \lambda)=\lambda e_{3} .
$$

Leaves and Isotropy of A

Functions constant on the leaves of A :

$$
I_{1}=\frac{K^{2}}{4}-U, \quad I_{2}=X^{2}+Y^{2}+K U-\frac{1}{6} K^{3}
$$

These two functions are independent everywhere except at $X=Y=U=0$ when the anchor vanishes.

Leaves and Isotropy of A

Functions constant on the leaves of A :

$$
I_{1}=\frac{K^{2}}{4}-U, \quad I_{2}=X^{2}+Y^{2}+K U-\frac{1}{6} K^{3}
$$

These two functions are independent everywhere except at $X=Y=U=0$ when the anchor vanishes.

Leaves and Isotropy Lie algebras:

- the points $(K, 0,0,0)$ with isotropy Lie algebra $\mathfrak{s o}(3, \mathbb{R})$ (if $K>0$), $\mathfrak{s l}(2, \mathbb{R})$ (if $K<0$) and $\mathfrak{s o}(2, \mathbb{R}) \ltimes \mathbb{R}^{2}$ (if $K=0$);
- the 2-dimensional submanifolds of \mathbb{R}^{4} given by the connected components of the common level sets of l_{1} and l_{2}, with isotropy Lie algebra \mathbb{R}.

Fixed Points

Restriction of A to the family of 0 -dimensional leaves $\{(K, 0,0,0): K \in \mathbb{R}\}$ is automatically G-integrable;

Fixed Points

Restriction of A to the family of 0 -dimensional leaves $\{(K, 0,0,0): K \in \mathbb{R}\}$ is automatically G-integrable;

It is a bundle of $U(1)$-structure Lie algebras with connection: it Lie algebroid is the $U(1)$-structure algebroid with connection classifying constant curvature Kähler surfaces.
\Longrightarrow already seen the canonical $U(1)$-integration.

Fixed Points

Restriction of A to the family of 0 -dimensional leaves $\{(K, 0,0,0): K \in \mathbb{R}\}$ is automatically G-integrable;

It is a bundle of $U(1)$-structure Lie algebras with connection: it Lie algebroid is the $U(1)$-structure algebroid with connection classifying constant curvature Kähler surfaces.
\Longrightarrow already seen the canonical $U(1)$-integration.

It remains to analyze the 2-dimensional leaves...

2-d Leaves of A

- I_{1} and I_{2} only depend on the radius $|T|^{2}=X^{2}+Y^{2}$;
- Leaves are $U(1)$-rotations of level sets of I_{1} and I_{2} (curves in \mathbb{R}^{3}).

2-d Leaves of A

- I_{1} and I_{2} only depend on the radius $|T|^{2}=X^{2}+Y^{2}$;
- Leaves are $U(1)$-rotations of level sets of I_{1} and I_{2} (curves in \mathbb{R}^{3}).

$$
\left\{\begin{array} { l }
{ l _ { 1 } = c _ { 1 } } \\
{ l _ { 2 } = c _ { 2 } }
\end{array} \quad \Leftrightarrow \quad \left\{\begin{array}{l}
U=\frac{K^{2}}{4}-c_{1} \\
|T|^{2}=-\frac{1}{12} K^{3}+c_{1} K+c_{2}
\end{array}\right.\right.
$$

2-d Leaves of A

- I_{1} and I_{2} only depend on the radius $|T|^{2}=X^{2}+Y^{2}$;
- Leaves are $U(1)$-rotations of level sets of I_{1} and I_{2} (curves in \mathbb{R}^{3}).

$$
\left\{\begin{array} { l }
{ l _ { 1 } = c _ { 1 } } \\
{ I _ { 2 } = c _ { 2 } }
\end{array} \quad \Leftrightarrow \quad \left\{\begin{array}{l}
U=\frac{K^{2}}{4}-c_{1} \\
|T|^{2}=-\frac{1}{12} K^{3}+c_{1} K+c_{2}
\end{array}\right.\right.
$$

- Use K as a parameter;
- Depending on the values of c_{1} and c_{2}, the shape of the curve will determined if leaves have topology and hence also monodromy and/or G-monodromy;
- Note that the cubic

$$
p(K)=-\frac{1}{12} K^{3}+c_{1} K+c_{2}
$$

has discriminant:

$$
\Delta=\frac{1}{48}\left(16 c_{1}^{3}-9 c_{2}^{2}\right) .
$$

- A 0 -dimensional leaf $(K, 0,0,0)$ belongs to a common level set $l_{1}=c_{1}, l_{2}=c_{2}$, if and only if

$$
\left\{\begin{array}{l}
K^{2}=4 c_{1} \\
0=-\frac{1}{12} K^{3}+c_{1} K+c_{2}
\end{array} \Rightarrow 16 c_{1}^{3}-9 c_{2}^{2}=0 \quad \Leftrightarrow \quad \Delta=0\right.
$$

$\Delta=0, c_{1}=c_{2}=0$

$\Delta=0, c_{1}=c_{2}=0$

$p(K)$ has triple root: Level set consists of one single leaf obtained by rotating the curve

$$
\left\{\begin{array}{l}
U=K^{2} \\
|T|^{2}=-\frac{1}{12} K^{3}
\end{array} \quad K \in\right]-\infty, 0[
$$

The value $K=0$ is excluded since the origin $(0,0,0,0)$ is a 0 -dim leaf.

$\Delta=0, c_{1}=c_{2}=0$

$p(K)$ has triple root: Level set consists of one single leaf obtained by rotating the curve

$$
\left\{\begin{array}{l}
U=K^{2} \\
|T|^{2}=-\frac{1}{12} K^{3}
\end{array} \quad K \in\right]-\infty, 0[
$$

The value $K=0$ is excluded since the origin $(0,0,0,0)$ is a 0 -dim leaf.

Leaf is topological a cylinder:

$$
\pi_{1}(L)=\mathbb{Z}, \quad \pi_{2}(L)=1
$$

$\Delta=0, c_{1}=c_{2}=0$

$p(K)$ has triple root: Level set consists of one single leaf obtained by rotating the curve

$$
\left\{\begin{array}{l}
U=K^{2} \\
|T|^{2}=-\frac{1}{12} K^{3}
\end{array} \quad K \in\right]-\infty, 0[
$$

The value $K=0$ is excluded since the origin $(0,0,0,0)$ is a 0 -dim leaf.

Leaf is topological a cylinder:

$$
\pi_{1}(L)=\mathbb{Z}, \quad \pi_{2}(L)=1
$$

The extended monodromy is trivial, $\widetilde{\Gamma}_{x}^{0} \simeq \mathbb{R}$ and $\pi_{0}\left(\widetilde{\Gamma}_{x}\right)=\mathbb{Z}$.
The restricted $U(1)$-monodromy is also trivial, so $\left.A\right|_{L}$ is $U(1)$-integrable.

$\Delta=0, c_{2}<0$

$p(K)$ has 1 single real root $-4 \sqrt{C_{1}}$ and 1 double real root $2 \sqrt{C_{1}}$.
Level set consists of isolated point $\left(2 \sqrt{c_{1}}, 0,0,0\right)$ and $2-d$ leaf obtained by rotation of:

$$
\left.\left\{\begin{array}{l}
U=\frac{1}{4} K^{2}-c_{1} \\
|T|^{2}=-\frac{1}{12}\left(K-2 \sqrt{c_{1}}\right)^{2}\left(K+4 \sqrt{c_{1}}\right)
\end{array} \quad K \in\right]-\infty,-4 \sqrt{c_{1}}\right]
$$

$\Delta=0, c_{2}<0$

$p(K)$ has 1 single real root $-4 \sqrt{C_{1}}$ and 1 double real root $2 \sqrt{C_{1}}$.
Level set consists of isolated point $\left(2 \sqrt{c_{1}}, 0,0,0\right)$ and 2-d leaf obtained by rotation of:

$$
\left.\left\{\begin{array}{l}
U=\frac{1}{4} K^{2}-c_{1} \\
|T|^{2}=-\frac{1}{12}\left(K-2 \sqrt{c_{1}}\right)^{2}\left(K+4 \sqrt{c_{1}}\right)
\end{array} \quad K \in\right]-\infty,-4 \sqrt{c_{1}}\right]
$$

Leaf is topologically a plane:

$$
\pi_{1}(L)=\pi_{2}(L)=1
$$

$\left.A\right|_{L}$ is $U(1)$-integrable.

$\Delta=0, c_{2}>0$

$p(K)$ has 1 single real root $4 \sqrt{C_{1}}$ and 1 double real root $-2 \sqrt{C_{1}}$. Level set consists of a fixed point $\left(-2 \sqrt{C_{1}}, 0,0,0\right)$ and two 2-dimensional leaves obtained by rotating the curve

$$
\left.\left\{\begin{array}{l}
U=\frac{1}{4} K^{2}-c_{1} \\
|T|^{2}=-\frac{1}{12}\left(K+2 \sqrt{C_{1}}\right)^{2}\left(K-4 \sqrt{C_{1}}\right)
\end{array} \quad K \in\right]-\infty,-2 \sqrt{C_{1}}[\cup]-2 \sqrt{C_{1}}, 4 \sqrt{C_{1}}\right] .
$$

$\Delta=0, c_{2}>0$

$p(K)$ has 1 single real root $4 \sqrt{C_{1}}$ and 1 double real root $-2 \sqrt{C_{1}}$.
Level set consists of a fixed point $\left(-2 \sqrt{C_{1}}, 0,0,0\right)$ and two 2-dimensional leaves obtained by rotating the curve

$$
\left.\left\{\begin{array}{l}
U=\frac{1}{4} K^{2}-c_{1} \\
|T|^{2}=-\frac{1}{12}\left(K+2 \sqrt{C_{1}}\right)^{2}\left(K-4 \sqrt{C_{1}}\right)
\end{array} \quad K \in\right]-\infty,-2 \sqrt{C_{1}}[\cup]-2 \sqrt{C_{1}}, 4 \sqrt{C_{1}}\right] .
$$

One leaf is a cylinder and the other is a plane:

$$
\pi_{1}(L)=1 \text { or } \mathbb{Z}, \quad \pi_{2}(L)=1
$$

$\left.A\right|_{L}$ is $U(1)$-integrable.

$p(K)$ has 1 real root r and two complex conjugate roots. The level set consists of a 2-dimensional leaf obtained by rotating the curve

$$
\left\{\begin{array}{l}
U=\frac{1}{4} K^{2}-c_{1} \\
\left.\left.|T|^{2}=-\frac{1}{12}(K-r)\left(K^{2}+r K+r^{2}-12 c_{1}\right) \quad K \in\right]-\infty, r\right] .
\end{array}\right.
$$

Leaf is a plane, so $A \mid L$ is $U(1)$-integrable.

$p(K)$ has 3 real roots $r_{1}<r_{2}<r_{3}$. The level set consists of two 2-dimensional leaves obtained by rotating the curve

$$
\left\{\begin{array}{l}
U=\frac{1}{4} K^{2}-c_{1} \\
\left.\left.|T|^{2}=-\frac{1}{12}\left(K-r_{1}\right)\left(K-r_{2}\right)\left(K-r_{3}\right) \quad K \in\right]-\infty, r_{1}\right] \cup\left[r_{2}, r_{3}\right] . . . ~
\end{array}\right.
$$

One leaf is a plane L_{1} and the other leaf $L_{2} \simeq \mathbb{S}^{2}$.
L_{1} is $U(1)$-integrable.
L_{2} could fail to be $U(1)$-integrable.

G-integrability over L_{2}

Parameterization of L_{2} :

$$
\gamma(K, \theta)=\left(K, p(K)^{\frac{1}{2}} e^{i \theta}, K^{2} / 4-c_{1}\right), \quad(K, \theta) \in\left[r_{2}, r_{3}\right] \times[0,2 \pi]
$$

G-Splitting:

$$
\begin{aligned}
& \sigma\left(\frac{\partial \gamma}{\partial K}\right)=\left(-\frac{1}{2} p(K)^{-\frac{1}{2}} e^{i \theta}, 0\right) \\
& \sigma\left(\frac{\partial \gamma}{\partial \theta}\right)=\frac{1}{p(K)+\left(K^{2} / 4-c_{1}\right)^{2}}\left(p(K)^{\frac{1}{2}}\left(K^{2} / 4-c_{1}\right) i e^{i \theta},-p(K) i\right)
\end{aligned}
$$

Curvature:

$$
\Omega_{\sigma}\left(\frac{\partial \gamma}{\partial K}, \frac{\partial \gamma}{\partial \theta}\right)=\left[\sigma\left(\frac{\partial \gamma}{\partial K}\right), \sigma\left(\frac{\partial \gamma}{\partial \theta}\right)\right]=\frac{\partial}{\partial K}\left(\frac{K^{2} / 4-c_{1}}{p(K)+\left(K^{2} / 4-c_{1}\right)^{2}}\right) s_{0}
$$

Monodromy:

$$
\mathcal{N}=8 \pi \mathbb{Z}\left(\frac{1}{r_{3}^{2}-4 c_{1}}+\frac{1}{4 c_{1}-r_{2}^{2}}\right) s_{0} .
$$

G-Monodromy:

$$
\mathcal{N}^{U(1)}=\mathcal{N} \cup 2 \pi \mathbb{Z}\left(\frac{1}{r_{3}^{2} / 4-c_{1}}\right) s_{0}=\left\{8 \pi\left(\frac{n_{1}}{r_{3}^{2}-4 c_{1}}+\frac{n_{2}}{4 c_{1}-r_{2}^{2}}\right) s_{0}: n_{1}, n_{2} \in \mathbb{Z}\right\}
$$

$\left.A\right|_{L}$ is $U(1)$-integrable if and only if $\frac{4 c_{1}-r_{2}^{2}}{r_{3}^{2}-4 c_{1}} \in \mathbb{Q}$.

Table: 1-connected extremal Kähler surfaces

Conditions	U (1)-frame bundle: $\mathbf{s}^{-1}(x)$	Solutions: $\mathbf{s}^{-1}(x) / U(1)$
$K=0$	$\mathrm{SO}(2) \ltimes \mathbb{R}^{2}$	\mathbb{R}^{2}
$K=c>0$	\mathbb{S}^{3}	\mathbb{S}^{2}
$K=c<0$	$\mathrm{SO}(2,1)$	\mathbb{H}^{2}
$\Delta=0, c_{1}=c_{2}=0$	$\left(\mathbb{R}^{2} \times \mathbb{R}\right) / \mathbb{Z}$	\mathbb{R}^{2}
$\Delta=0, c_{2}<0$	$\mathbb{R}^{2} \times \mathbb{S}^{1}$	\mathbb{R}^{2}
$\Delta=0, c_{2}>0$	$\begin{gathered} \left(\mathbb{R}^{2} \times \mathbb{R}\right) / \mathbb{Z} \\ \left(\mathbb{R}^{2} \times \mathbb{S}^{1}\right) \end{gathered}$	\mathbb{R}^{2}
$\Delta<0$	$\mathbb{R}^{2} \times \mathbb{S}^{1}$	\mathbb{R}^{2}
$\begin{aligned} & \Delta>0 \\ & \text { (if } \frac{4 c_{1}-r_{2}^{2}}{r_{3}^{2}-4 c_{1}}=\frac{p}{q} \text {) } \end{aligned}$	$\begin{gathered} \mathbb{R}^{2} \times \mathbb{S}^{1} \\ \mathbb{S}^{3} \end{gathered}$	$\begin{gathered} \mathbb{R}^{2} \\ \mathbb{C P}_{p, q}^{1} \end{gathered}$

Complete extremal Kähler surfaces

- One could find explicit formulas for the metrics;
- No need! One can compute the induced metric on each leaf L explicitly and determine when it is complete.

Complete extremal Kähler surfaces

- One could find explicit formulas for the metrics;
- No need! One can compute the induced metric on each leaf L explicitly and determine when it is complete.

The 1-connected complete extremal Kähler metrics on a surface are the constant scalar curvature metrics $\mathbb{R}^{2}, \mathbb{S}^{2}, \mathbb{H}^{2}$, and two special families of metrics: one on a disk \mathbb{D}^{2} and the other on the weight projective space $\mathbb{C P}_{p, q}^{1}$.

Note: \mathbb{D}^{2} corresponds to the branch $\left.]-2 \sqrt{c_{1}}, 4 \sqrt{c_{1}}\right]$ in the case $\Delta=0, c_{2}>0$.

Complete extremal Kähler surfaces

- One could find explicit formulas for the metrics;
- No need! One can compute the induced metric on each leaf L explicitly and determine when it is complete.

The 1-connected complete extremal Kähler metrics on a surface are the constant scalar curvature metrics $\mathbb{R}^{2}, \mathbb{S}^{2}, \mathbb{H}^{2}$, and two special families of metrics: one on a disk \mathbb{D}^{2} and the other on the weight projective space $\mathbb{C P}_{p, q}^{1}$.

Note: \mathbb{D}^{2} corresponds to the branch] $-2 \sqrt{C_{1}}, 4 \sqrt{C_{1}}$] in the case $\Delta=0, c_{2}>0$.
Much more can be said about finite type.....

Complete extremal Kähler surfaces

- One could find explicit formulas for the metrics;
- No need! One can compute the induced metric on each leaf L explicitly and determine when it is complete.

The 1-connected complete extremal Kähler metrics on a surface are the constant scalar curvature metrics $\mathbb{R}^{2}, \mathbb{S}^{2}, \mathbb{H}^{2}$, and two special families of metrics: one on a disk \mathbb{D}^{2} and the other on the weight projective space $\mathbb{C P}_{p, q}^{1}$.

Note: \mathbb{D}^{2} corresponds to the branch] $-2 \sqrt{C_{1}}, 4 \sqrt{C_{1}}$] in the case $\Delta=0, c_{2}>0$.
Much more can be said about finite type.....

BIG OPEN QUESTION: What about infinite type?

