Solving Cartan's Realization Problem

Rui Loja Fernandes

University of Illinois at Urbana-Champaign, USA

43rd Winter School Geometry and Physics Czech Republic, Srni 14-21 January 2023

Aim: How to solve classification problems in geometry which are of finite type.

Aim: How to solve classification problems in geometry which are of finite type.

Some examples:

 Classification of (complete) Riemannian metrics of constant sectional curvature [Killing–Hopf];

Aim: How to solve classification problems in geometry which are of finite type.

Some examples:

- Classification of (complete) Riemannian metrics of constant sectional curvature [Killing–Hopf];
- Classification of (complete) Bochner-Kähler metrics [Bryant];

Aim: How to solve classification problems in geometry which are of finite type.

Some examples:

- Classification of (complete) Riemannian metrics of constant sectional curvature [Killing–Hopf];
- Classification of (complete) Bochner-Kähler metrics [Bryant];
- Classification of (complete) Ricci type symplectic connections [Schwachhöfer et al.]
- ► (...)

Aim: How to solve classification problems in geometry which are of finite type.

Some examples:

- Classification of (complete) Riemannian metrics of constant sectional curvature [Killing–Hopf];
- Classification of (complete) Bochner-Kähler metrics [Bryant];
- Classification of (complete) Ricci type symplectic connections [Schwachhöfer et al.]
- ► (...)

Main message: Lie groupoids and Lie algebroids (with extra structure) provide the right language to solve equivalence problems.

Based on joint work with Ivan Struchiner (USP):

The Global Solutions to a Cartan's Realization Problem, arXiv:1907.13614.
 To appear in *Memoirs of the AMS*

Starting from the classical correspondence:

Geometric structures \longleftrightarrow *G*-structures(with connection)

The main steps of the program:

Starting from the classical correspondence:

Geometric structures \longleftrightarrow *G*-structures(with connection)

The main steps of the program:

Classification problem for a \longleftrightarrow class of geometric structures

G-structure algebroid (with connection)

Starting from the classical correspondence:

Geometric structures \longleftrightarrow *G*-structures(with connection)

The main steps of the program:

Classification problem for a class of geometric structures	$\longleftrightarrow \begin{array}{c} G\text{-structure algebroid} \\ (with connection) \end{array}$
Solutions to \longleftrightarrow classification problem	Integrate <i>G</i> -structure algebroid to <i>G</i> -structure groupoid (with connection)

Plan

Lecture 1:

- Recollection of G-structures
- Finite type vs infinite type through examples
- Cartan's Realization Problem and algebroids

Plan

Lecture 1:

- Recollection of G-structures
- Finite type vs infinite type through examples
- Cartan's Realization Problem and algebroids

Lecture 2:

- Algebroids and groupoids
- ► *G*-structure groupoids
- G-structure algebroids
- Construction of solutions: dictionary

Plan

Lecture 1:

- Recollection of G-structures
- Finite type vs infinite type through examples
- Cartan's Realization Problem and algebroids

Lecture 2:

- Algebroids and groupoids
- G-structure groupoids
- G-structure algebroids
- Construction of solutions: dictionary

Lecture 3:

- G-integrability
- Solving Cartan's Realization Problem
- Moduli space of solutions
- The example of extremal Kähler metrics on surfaces

A principal action of G on a manifold P is a proper, effective, locally free action $P \times G \rightarrow P$.

A principal action of G on a manifold P is a proper, effective, locally free action $P \times G \rightarrow P$.

The quotient M = P/G is a (effective) orbifold.

A principal action of *G* on a manifold *P* is a proper, effective, locally free action $P \times G \rightarrow P$.

The quotient M = P/G is a (effective) orbifold.

Notation: $\pi : P \to M$ is a *G*-principal bundle over the orbifold *M*.

A principal action of *G* on a manifold *P* is a proper, effective, locally free action $P \times G \rightarrow P$.

The quotient M = P/G is a (effective) orbifold.

Notation: $\pi : P \to M$ is a *G*-principal bundle over the orbifold *M*.

Example

For an effective orbifold *M* with dim M = n, its **frame bundle**:

 $\pi: \mathrm{F}(M) \to M$

is a principal $GL(n, \mathbb{R})$ -bundle.

Connections on G-principal bundles

A principal connection on $\pi : P \to M$ is a subbundle $H \subset TP$ satisfying:

- (i) horizontal: $TP = \ker d\pi \oplus H$;
- (ii) *G*-invariance: $H_{pg} = g_*H_p$, for all $g \in G$, $p \in P$.

H is called the horizontal distribution.

Connections on G-principal bundles

A principal connection on $\pi : P \to M$ is a subbundle $H \subset TP$ satisfying:

- (i) horizontal: $TP = \ker d\pi \oplus H$;
- (ii) *G*-invariance: $H_{pg} = g_* H_p$, for all $g \in G$, $p \in P$.

H is called the **horizontal distribution**.

Equivalently:

A principal connection on $\pi : P \to M$ is a form $\omega \in \Omega^1(P, \mathfrak{g})$ satisfying:

- (i) vertical: $\omega(\alpha_P) = \alpha$, for all $\alpha \in \mathfrak{g}$;
- (ii) G-invariance: $g^*\omega = \operatorname{Ad}_{g^{-1}} \omega$, for all $g \in G$.

 ω is called the **connection 1-form**.

 $H=\operatorname{Ker}\omega$

G-structures

If $G \subset GL(n, \mathbb{R})$ is a closed subgroup:

A *G*-structure over *M* is a *G*-principal subbundle of the frame bundle:

 $F_G(M) \subset F(M)$.

G-structures

If $G \subset GL(n, \mathbb{R})$ is a closed subgroup:

A *G*-structure over *M* is a *G*-principal subbundle of the frame bundle:

 $F_G(M) \subset F(M)$.

G-structures allow to encode many geometric structures, e.g.

- Coframes $\iff \{e\}$ -structures;
- Riemannian structures \iff O_n-structures;
- Almost complex structures \iff GL_n(\mathbb{C})-structures;
- Almost symplectic structures \iff Sp_n-structures;
- Almost hermitian structures \iff U_n-structures.

G-structures

If $G \subset GL(n, \mathbb{R})$ is a closed subgroup:

A *G*-structure over *M* is a *G*-principal subbundle of the frame bundle:

 $F_G(M) \subset F(M)$.

G-structures allow to encode many geometric structures, e.g.

- Coframes $\iff \{e\}$ -structures;
- Riemannian structures \iff O_n-structures;
- Almost complex structures \iff GL_n(\mathbb{C})-structures;
- Almost symplectic structures \iff Sp_n-structures;
- Almost hermitian structures \iff U_n-structures.

Note: We will assume *G* compact and connected. Results extend to more general cases with appropriate properness assumptions.

Tautological form

The tautological form of a *G*-structure $\pi : F_G(M) \to M$ is

$$\theta \in \Omega^1(\mathbf{F}_G(M), \mathbb{R}^n), \quad \theta(\xi) := p^{-1}(\mathbf{d}_p \pi(\xi))$$

(think of frames as linear isomorphisms $p : \mathbb{R}^n \to T_x M$)

Tautological form

The tautological form of a *G*-structure $\pi : F_G(M) \to M$ is

$$\theta \in \Omega^1(\mathbf{F}_G(M), \mathbb{R}^n), \quad \theta(\xi) := p^{-1}(\mathbf{d}_p \pi(\xi))$$

(think of frames as linear isomorphisms $p : \mathbb{R}^n \to T_X M$)

 $\theta \in \Omega^1(F_G(M), \mathbb{R}^n)$ satisfies:

- (i) pointwise surjective: $\theta_p : T_p F_G(M) \twoheadrightarrow \mathbb{R}^n$
- (ii) strong horizontal: $\theta(\xi) = \mathbf{0} \Leftrightarrow \xi = \alpha_P$ for $\alpha \in \mathfrak{g}$;
- (iii) *G*-equivariance: $g^*\theta = g^{-1} \cdot \theta$.

Tautological form

The tautological form of a *G*-structure $\pi : F_G(M) \to M$ is

```
\theta \in \Omega^1(\mathcal{F}_G(M), \mathbb{R}^n), \quad \theta(\xi) := p^{-1}(\mathrm{d}_p \pi(\xi))
```

(think of frames as linear isomorphisms $p : \mathbb{R}^n \to T_X M$)

 $\theta \in \Omega^1(F_G(M), \mathbb{R}^n)$ satisfies:

- (i) pointwise surjective: $\theta_p : T_p F_G(M) \twoheadrightarrow \mathbb{R}^n$
- (ii) strong horizontal: $\theta(\xi) = \mathbf{0} \Leftrightarrow \xi = \alpha_P$ for $\alpha \in \mathfrak{g}$;
- (iii) *G*-equivariance: $g^*\theta = g^{-1} \cdot \theta$.

Proposition

A *G*-principal $\pi : P \to M$ is a *G*-structure if and only if it carries a 1-form $\tilde{\theta} \in \Omega^1(P, \mathbb{R}^n)$ satisfying (i)–(iii). Each such form gives a unique isomorphism $P \simeq F_G(M)$ identifying $\tilde{\theta} \simeq \theta$.

A (local) diffeomorphism $\phi: M_1 \to M_2$ lifts to a (local) isomorphism of the frame bundles:

 $\phi_*: \mathrm{F}(M_1) \to \mathrm{F}(M_2).$

A (local) diffeomorphism $\phi: M_1 \to M_2$ lifts to a (local) isomorphism of the frame bundles:

 $\phi_*: \mathrm{F}(M_1) \to \mathrm{F}(M_2).$

Two *G*-structures $F_G(M_1)$ and $F_G(M_2)$ are (locally) equivalent if there is a (local) diffeomorphism $\phi : M_1 \to M_2$ such that:

 $\phi_*(\mathbf{F}_G(M_1)) = \mathbf{F}_G(M_2).$

A (local) diffeomorphism $\phi: M_1 \to M_2$ lifts to a (local) isomorphism of the frame bundles:

 $\phi_*: \mathrm{F}(M_1) \to \mathrm{F}(M_2).$

Two *G*-structures $F_G(M_1)$ and $F_G(M_2)$ are (locally) equivalent if there is a (local) diffeomorphism $\phi : M_1 \to M_2$ such that:

 $\phi_*(\mathbf{F}_G(M_1))=\mathbf{F}_G(M_2).$

When are two G-structures (locally) equivalent?

A (local) diffeomorphism $\phi: M_1 \to M_2$ lifts to a (local) isomorphism of the frame bundles:

 $\phi_*: \mathrm{F}(M_1) \to \mathrm{F}(M_2).$

Two *G*-structures $F_G(M_1)$ and $F_G(M_2)$ are (locally) equivalent if there is a (local) diffeomorphism $\phi : M_1 \to M_2$ such that:

 $\phi_*(\mathbf{F}_G(M_1)) = \mathbf{F}_G(M_2).$

When are two G-structures (locally) equivalent?

Proposition A principal bundle map Φ : $F_G(M_1) \rightarrow F_G(M_2)$ is an equivalence if and only if $\Phi^*\theta_2 = \theta_1$.

Structure equations of a G-structure with connection

Theorem Let π : $F_G(M) \to M$ be *G*-structure with tautological form $\theta \in \Omega^1(F_G(M), \mathbb{R}^n)$ and connection 1-form $\omega \in \Omega^1(F_G(M), \mathfrak{g})$. Then the following structure equations hold:

$$\left\{ \begin{array}{l} \mathrm{d}\theta = \boldsymbol{c}(\theta \wedge \theta) - \omega \wedge \theta \\ \mathrm{d}\omega = \boldsymbol{R}(\theta \wedge \theta) - \omega \wedge \omega \end{array} \right.$$

where:

- $c: F_G(M) \to \text{Hom}(\wedge^2 \mathbb{R}^n; \mathbb{R}^n)$ is the torsion;
- $R: F_G(M) \to \text{Hom}(\wedge^2 \mathbb{R}^n; \mathfrak{g})$ is the curvature;

Structure equations of a G-structure with connection

 $\begin{array}{l} \textbf{Theorem} \\ \textit{Let } \pi: \mathrm{F}_{G}(M) \to M \textit{ be } G\text{-structure with tautological form } \theta \in \Omega^{1}(\mathrm{F}_{G}(M), \mathbb{R}^{n}) \\ \textit{and connection 1-form } \omega \in \Omega^{1}(\mathrm{F}_{G}(M), \mathfrak{g}). \textit{ Then the following structure} \\ \textit{equations hold:} \\ & \left\{ \begin{array}{l} \mathrm{d} \theta = c(\theta \wedge \theta) - \omega \wedge \theta \\ \mathrm{d} \omega = R(\theta \wedge \theta) - \omega \wedge \omega \end{array} \right. \\ \textit{where:} \\ \blacktriangleright \ c: \mathrm{F}_{G}(M) \to \mathrm{Hom}(\wedge^{2}\mathbb{R}^{n}; \mathbb{R}^{n}) \textit{ is the torsion}; \\ \blacktriangleright \ R: \mathrm{F}_{G}(M) \to \mathrm{Hom}(\wedge^{2}\mathbb{R}^{n}; \mathfrak{g}) \textit{ is the curvature}; \end{array} \end{array}$

Remark: The pair

$$(\theta,\omega): TF_G(M) \to \mathbb{R}^n \oplus \mathfrak{g}$$

gives a coframe at each p so $F_G(M)$ is parallelizable.

.

2) Two examples: finite vs infinite type

A Kähler manifold (M, g, Ω, J) with scalar curvature R is called **extremal** if the hamiltonian vector field X_R is a Killing vector field (an infinitesimal isometry).

2) Two examples: finite vs infinite type

A Kähler manifold (M, g, Ω, J) with scalar curvature *R* is called **extremal** if the hamiltonian vector field X_R is a Killing vector field (an infinitesimal isometry).

Remark: When *M* is compact, such metrics are critical points of the Calabi functional

$$g\mapsto \int_M R^2(g)\ \Omega^n,$$

among Kähler metrics in a given Kähler class.

2) Two examples: finite vs infinite type

A Kähler manifold (M, g, Ω, J) with scalar curvature *R* is called **extremal** if the hamiltonian vector field X_R is a Killing vector field (an infinitesimal isometry).

Remark: When *M* is compact, such metrics are critical points of the Calabi functional

$$g\mapsto \int_M R^2(g)\ \Omega^n,$$

among Kähler metrics in a given Kähler class.

Problem Classify the extremal Kähler metrics on a surface M².

Differential analysis

 $-(M^2, g, \Omega, J)$ – extremal Kähler surface

Differential analysis

 $-(M^2, g, \Omega, J)$ – extremal Kähler surface

 $-P := F_{U(1)} \rightarrow M$ – unitary frame bundle with tautological form $\theta \in \Omega^1(P, \mathbb{C})$ and Levi-Civita connection $\omega \in \Omega^1(P, i\mathbb{R})$

 $-(M^2, g, \Omega, J)$ – extremal Kähler surface

 $-P := F_{U(1)} \rightarrow M$ – unitary frame bundle with tautological form $\theta \in \Omega^1(P, \mathbb{C})$ and Levi-Civita connection $\omega \in \Omega^1(P, i\mathbb{R})$

- Structure equations:

$$\begin{cases} d\theta = -\omega \wedge \theta \\ d\omega = \frac{K}{2} \theta \wedge \bar{\theta} \end{cases}$$

where $K = R/2 : P \rightarrow \mathbb{R}$ is the Gaussian curvature.

 $-(M^2, g, \Omega, J)$ – extremal Kähler surface

 $-P := F_{U(1)} \rightarrow M$ – unitary frame bundle with tautological form $\theta \in \Omega^1(P, \mathbb{C})$ and Levi-Civita connection $\omega \in \Omega^1(P, i\mathbb{R})$

- Structure equations:

$$\begin{cases} d\theta = -\omega \wedge \theta \\ d\omega = \frac{K}{2} \theta \wedge \bar{\theta} \end{cases}$$

where $K = R/2 : P \rightarrow \mathbb{R}$ is the Gaussian curvature.

 $-(M^2, g, \Omega, J)$ – extremal Kähler surface

 $-P := F_{U(1)} \rightarrow M$ – unitary frame bundle with tautological form $\theta \in \Omega^1(P, \mathbb{C})$ and Levi-Civita connection $\omega \in \Omega^1(P, i\mathbb{R})$

- Structure equations:

$$\begin{cases} d\theta = -\omega \wedge \theta \\ d\omega = \frac{K}{2} \theta \wedge \bar{\theta} \end{cases}$$

where $K = R/2 : P \rightarrow \mathbb{R}$ is the Gaussian curvature.

$$\left\{ \begin{array}{ll} \mathrm{d} \mathcal{K} = -(\bar{T}\theta + T\bar{\theta}) & \text{ where } & T = i_{\widetilde{X_{\mathcal{K}}}}\theta : \mathcal{P} \to \mathbb{C}, \end{array} \right.$$

 $-(M^2, g, \Omega, J)$ – extremal Kähler surface

 $-P := F_{U(1)} \rightarrow M$ – unitary frame bundle with tautological form $\theta \in \Omega^1(P, \mathbb{C})$ and Levi-Civita connection $\omega \in \Omega^1(P, i\mathbb{R})$

- Structure equations:

$$\begin{cases} d\theta = -\omega \wedge \theta \\ d\omega = \frac{K}{2} \theta \wedge \bar{\theta} \end{cases}$$

where $K = R/2 : P \rightarrow \mathbb{R}$ is the Gaussian curvature.

$$\begin{cases} d\mathcal{K} = -(\bar{T}\theta + T\bar{\theta}) & \text{where} & T = i_{\widetilde{X_{\mathcal{K}}}}\theta : \mathcal{P} \to \mathbb{C}, \\ dT = U\theta - T\omega & U = i_{\widetilde{X_{\mathcal{K}}}}\omega : \mathcal{P} \to \mathbb{R} \end{cases}$$

 $-(M^2, g, \Omega, J)$ – extremal Kähler surface

 $-P := F_{U(1)} \rightarrow M$ – unitary frame bundle with tautological form $\theta \in \Omega^1(P, \mathbb{C})$ and Levi-Civita connection $\omega \in \Omega^1(P, i\mathbb{R})$

- Structure equations:

$$\begin{cases} d\theta = -\omega \wedge \theta \\ d\omega = \frac{K}{2} \theta \wedge \bar{\theta} \end{cases}$$

where $K = R/2 : P \rightarrow \mathbb{R}$ is the Gaussian curvature.

$$\begin{cases} dK = -(\bar{T}\theta + T\bar{\theta}) & \text{where} & T = i_{\widetilde{X_{K}}}\theta : P \to \mathbb{C}, \\ dT = U\theta - T\omega & U = i_{\widetilde{X_{K}}}\omega : P \to \mathbb{R} \\ dU = -\frac{\kappa}{2}(\bar{T}\theta + T\bar{\theta}) \end{cases}$$

 $-(M^2, g, \Omega, J)$ – extremal Kähler surface

 $-P := F_{U(1)} \rightarrow M$ – unitary frame bundle with tautological form $\theta \in \Omega^1(P, \mathbb{C})$ and Levi-Civita connection $\omega \in \Omega^1(P, i\mathbb{R})$

- Structure equations:

$$\begin{cases} d\theta = -\omega \wedge \theta \\ d\omega = \frac{K}{2} \theta \wedge \bar{\theta} \end{cases}$$

where $K = R/2 : P \rightarrow \mathbb{R}$ is the Gaussian curvature.

– Differentiating *K*:

 $\begin{cases} dK = -(\bar{T}\theta + T\bar{\theta}) & \text{where} & T = i_{\widetilde{X_{K}}}\theta : P \to \mathbb{C}, \\ dT = U\theta - T\omega & U = i_{\widetilde{X_{K}}}\omega : P \to \mathbb{R} \\ dU = -\frac{K}{2}(\bar{T}\theta + T\bar{\theta}) & \end{cases}$

The classification problem amounts to:

Find all U(1)-structures $P \to M$ with tautological form θ , connection form ω and function $(K, T, U) : P \to \mathbb{R} \oplus \mathbb{C} \oplus \mathbb{R}$, such that the pde's above hold.

Problem *Classify the oriented Riemann surfaces* (M^2, g) *with* $|\nabla K| = 1$.

Problem Classify the oriented Riemann surfaces (M^2, g) with $|\nabla K| = 1$.

 $-\pi: P = F_{SO(2)}(M) \rightarrow M$ orthogonal frame bundle with tautological form $\theta \in \Omega^1(P, \mathbb{R}^2)$ and Levi-Civita connection form $\omega \in \Omega^1(P, \mathfrak{so}(2))$,

Problem Classify the oriented Riemann surfaces (M^2, g) with $|\nabla K| = 1$.

 $-\pi: P = F_{SO(2)}(M) \rightarrow M$ orthogonal frame bundle with tautological form $\theta \in \Omega^1(P, \mathbb{R}^2)$ and Levi-Civita connection form $\omega \in \Omega^1(P, \mathfrak{so}(2))$,

- Structure equations:

$$\begin{cases} d\theta^1 = -\omega \wedge \theta^2, \\ d\theta^2 = \omega \wedge \theta^1, \\ d\omega = K \theta^1 \wedge \theta^2 \end{cases}$$

where $K = R/2 : P \rightarrow \mathbb{R}$ is the Gaussian curvature.

Problem Classify the oriented Riemann surfaces (M^2, g) with $|\nabla K| = 1$.

 $-\pi: P = F_{SO(2)}(M) \rightarrow M$ orthogonal frame bundle with tautological form $\theta \in \Omega^1(P, \mathbb{R}^2)$ and Levi-Civita connection form $\omega \in \Omega^1(P, \mathfrak{so}(2))$,

- Structure equations:

$$\begin{cases} d\theta^1 = -\omega \wedge \theta^2, \\ d\theta^2 = \omega \wedge \theta^1, \\ d\omega = K \theta^1 \wedge \theta^2 \end{cases}$$

where $K = R/2 : P \rightarrow \mathbb{R}$ is the Gaussian curvature.

Problem Classify the oriented Riemann surfaces (M^2, g) with $|\nabla K| = 1$.

 $-\pi: P = F_{SO(2)}(M) \rightarrow M$ orthogonal frame bundle with tautological form $\theta \in \Omega^1(P, \mathbb{R}^2)$ and Levi-Civita connection form $\omega \in \Omega^1(P, \mathfrak{so}(2))$,

- Structure equations:

$$\begin{cases} d\theta^1 = -\omega \wedge \theta^2, \\ d\theta^2 = \omega \wedge \theta^1, \\ d\omega = K \theta^1 \wedge \theta^2 \end{cases}$$

where $K = R/2 : P \rightarrow \mathbb{R}$ is the Gaussian curvature.

– Differentiating *K*:

 $\int dK = \cos \phi \, \theta^1 + \sin \phi \, \theta^2, \qquad \qquad \text{where} \qquad \phi : P \to \mathbb{R},$

Problem Classify the oriented Riemann surfaces (M^2, g) with $|\nabla K| = 1$.

 $-\pi: P = F_{SO(2)}(M) \rightarrow M$ orthogonal frame bundle with tautological form $\theta \in \Omega^1(P, \mathbb{R}^2)$ and Levi-Civita connection form $\omega \in \Omega^1(P, \mathfrak{so}(2))$,

- Structure equations:

$$\begin{cases} d\theta^1 = -\omega \wedge \theta^2, \\ d\theta^2 = \omega \wedge \theta^1, \\ d\omega = K \theta^1 \wedge \theta^2 \end{cases}$$

where $K = R/2 : P \rightarrow \mathbb{R}$ is the Gaussian curvature.

ſ	$dK = \cos\phi \theta^1 + \sin\phi \theta^2,$	where	$\phi: \boldsymbol{P} \to \mathbb{R},$
	$\mathrm{d}\phi=\omega+J_1(-\sin\phi heta^1+\cos\phi heta^2),$		$J_1: P ightarrow \mathbb{R}$

Problem Classify the oriented Riemann surfaces (M^2, g) with $|\nabla K| = 1$.

 $-\pi: P = F_{SO(2)}(M) \rightarrow M$ orthogonal frame bundle with tautological form $\theta \in \Omega^1(P, \mathbb{R}^2)$ and Levi-Civita connection form $\omega \in \Omega^1(P, \mathfrak{so}(2))$,

- Structure equations:

$$\left\{ \begin{array}{l} \mathrm{d}\theta^1 = -\omega \wedge \theta^2, \\ \mathrm{d}\theta^2 = \omega \wedge \theta^1, \\ \mathrm{d}\omega = K \, \theta^1 \wedge \theta^2 \end{array} \right.$$

where $K = R/2 : P \rightarrow \mathbb{R}$ is the Gaussian curvature.

$$\begin{cases} dK = \cos \phi \, \theta^1 + \sin \phi \, \theta^2, & \text{where} & \phi : P \to \mathbb{R}, \\ d\phi = \omega + J_1(-\sin \phi \, \theta^1 + \cos \phi \, \theta^2), & J_1 : P \to \mathbb{R} \\ dJ_1 = -(K + J_1^2)(\cos \phi \, \theta^1 + \sin \phi \, \theta^2) + J_2(-\sin \phi \, \theta^1 + \cos \phi \, \theta^2), & J_2 : P \to \mathbb{R} \end{cases}$$

Problem Classify the oriented Riemann surfaces (M^2, g) with $|\nabla K| = 1$.

 $-\pi: P = F_{SO(2)}(M) \rightarrow M$ orthogonal frame bundle with tautological form $\theta \in \Omega^1(P, \mathbb{R}^2)$ and Levi-Civita connection form $\omega \in \Omega^1(P, \mathfrak{so}(2))$,

- Structure equations:

$$\left\{ \begin{array}{l} \mathrm{d}\theta^1 = -\omega \wedge \theta^2, \\ \mathrm{d}\theta^2 = \omega \wedge \theta^1, \\ \mathrm{d}\omega = K \, \theta^1 \wedge \theta^2 \end{array} \right.$$

where $K = R/2 : P \rightarrow \mathbb{R}$ is the Gaussian curvature.

$$\begin{cases} dK = \cos \phi \, \theta^1 + \sin \phi \, \theta^2, & \text{where} & \phi : P \to \mathbb{R}, \\ d\phi = \omega + J_1(-\sin \phi \, \theta^1 + \cos \phi \, \theta^2), & J_1 : P \to \mathbb{R} \\ dJ_1 = -(K + J_1^2)(\cos \phi \, \theta^1 + \sin \phi \, \theta^2) + J_2(-\sin \phi \, \theta^1 + \cos \phi \, \theta^2), & J_2 : P \to \mathbb{R} \\ \dots \\ dJ_k = F_k(K, J_1, \dots, J_k)(\cos \phi \, \theta^1 + \sin \phi \, \theta^2) + \\ + J_{k+1}(-\sin \phi \, \theta^1 + \cos \phi \, \theta^2), & J_{k+1} : P \to \mathbb{R} \end{cases}$$

Problem Classify the oriented Riemann surfaces (M^2, g) with $|\nabla K| = 1$.

 $-\pi: P = F_{SO(2)}(M) \rightarrow M$ orthogonal frame bundle with tautological form $\theta \in \Omega^1(P, \mathbb{R}^2)$ and Levi-Civita connection form $\omega \in \Omega^1(P, \mathfrak{so}(2))$,

- Structure equations:

$$\left\{ \begin{array}{l} \mathrm{d}\theta^1 = -\omega \wedge \theta^2, \\ \mathrm{d}\theta^2 = \omega \wedge \theta^1, \\ \mathrm{d}\omega = K \, \theta^1 \wedge \theta^2 \end{array} \right.$$

where $K = R/2 : P \rightarrow \mathbb{R}$ is the Gaussian curvature.

– Differentiating *K*:

$$\begin{cases} dK = \cos \phi \, \theta^1 + \sin \phi \, \theta^2, & \text{where} & \phi : P \to \mathbb{R}, \\ d\phi = \omega + J_1(-\sin \phi \, \theta^1 + \cos \phi \, \theta^2), & J_1 : P \to \mathbb{R} \\ dJ_1 = -(K + J_1^2)(\cos \phi \, \theta^1 + \sin \phi \, \theta^2) + J_2(-\sin \phi \, \theta^1 + \cos \phi \, \theta^2), & J_2 : P \to \mathbb{R} \\ \dots & \dots & \dots \\ dJ_k = F_k(K, J_1, \dots, J_k)(\cos \phi \, \theta^1 + \sin \phi \, \theta^2) + \\ + J_{k+1}(-\sin \phi \, \theta^1 + \cos \phi \, \theta^2), & J_{k+1} : P \to \mathbb{R} \end{cases}$$

The method does not apply (yet) to such **infinite type** problems.

3) Cartan's Realization Problem

One is given Cartan Data:

- (i) a connected, closed, Lie subgroup $G \subset GL(n, \mathbb{R})$;
- (ii) a proper *G*-manifold *X* with infinitesimal action $\psi : X \times \mathfrak{g} \to TX$;
- (iii) G-equivariant maps:

 $c: X \to \operatorname{Hom}(\wedge^2 \mathbb{R}^n, \mathbb{R}^n), \ R: X \to \operatorname{Hom}(\wedge^2 \mathbb{R}^n, \mathfrak{g}), \ F: X \times \mathbb{R}^n \to TX$

3) Cartan's Realization Problem

One is given Cartan Data:

- (i) a connected, closed, Lie subgroup $G \subset GL(n, \mathbb{R})$;
- (ii) a proper *G*-manifold *X* with infinitesimal action $\psi : X \times \mathfrak{g} \to TX$;
- (iii) G-equivariant maps:

 $c: X \to \operatorname{Hom}(\wedge^2 \mathbb{R}^n, \mathbb{R}^n), \ R: X \to \operatorname{Hom}(\wedge^2 \mathbb{R}^n, \mathfrak{g}), \ F: X \times \mathbb{R}^n \to TX$

and asks for the existence of solutions:

- an n-dimensional orbifold M;
- a G-structure F_G(M) → M with tautological form θ ∈ Ω¹(F_G(M), ℝⁿ) and connection 1-form ω ∈ Ω¹(F_G(M), g);
- an equivariant map $h : F_G(M) \to X$;

satisfying the structure equations

 $d\theta = c \circ h(\theta \land \theta) - \omega \land \theta$ $d\omega = R \circ h(\theta \land \theta) - \omega \land \omega$ $dh = F(h, \theta) + \psi(h, \omega)$

Cartan's Realization Problem - Aims

- Characterize all solutions up to equivalence
- Determine group of symmetries/Lie algebra of symmetries of solutions
- Find if moduli space of solutions has some differential or stacky structure
- Determine if "complete" solutions (e.g., metric complete solutions) exist

Cartan Data (G, X, c, R, F) determines:

- vector bundle $A = X \times (\mathbb{R}^n \oplus \mathfrak{g}) \to X$

Cartan Data (G, X, c, R, F) determines:

- vector bundle $A = X \times (\mathbb{R}^n \oplus \mathfrak{g}) \to X$
- vector bundle map (anchor) $\rho : A \rightarrow TX$:

$$\rho(\boldsymbol{u},\alpha) := \boldsymbol{F}(\boldsymbol{u}) + \psi(\alpha), \quad (\boldsymbol{u},\alpha) \in \mathbb{R}^n \oplus \mathfrak{g};$$

Cartan Data (G, X, c, R, F) determines:

- vector bundle $A = X \times (\mathbb{R}^n \oplus \mathfrak{g}) \to X$
- vector bundle map (anchor) $\rho : A \rightarrow TX$:

$$\rho(u,\alpha) := F(u) + \psi(\alpha), \quad (u,\alpha) \in \mathbb{R}^n \oplus \mathfrak{g};$$

– a Lie bracket [,]: $\Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$ on constant sections:

$$[(u,\alpha),(v,\beta)] := (\alpha \cdot v - \beta \cdot u - c(u,v), [\alpha,\beta]_{\mathfrak{g}} - R(u,v)),$$

and extended to any sections by imposing Leibniz.

Cartan Data (G, X, c, R, F) determines:

- vector bundle $A = X \times (\mathbb{R}^n \oplus \mathfrak{g}) \to X$
- vector bundle map (anchor) $\rho : A \rightarrow TX$:

$$\rho(u,\alpha) := F(u) + \psi(\alpha), \quad (u,\alpha) \in \mathbb{R}^n \oplus \mathfrak{g};$$

– a Lie bracket $[,] : \Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$ on constant sections:

$$[(u,\alpha),(v,\beta)] := (\alpha \cdot v - \beta \cdot u - c(u,v), [\alpha,\beta]_{\mathfrak{g}} - R(u,v)),$$

and extended to any sections by imposing Leibniz.

The triple $(A, [\cdot, \cdot], \rho)$ is an example of a Lie algebroid

Example: extremal Kähler surfaces

• $X = \mathbb{R} \times \mathbb{C} \times \mathbb{R}$, with coordinates (*K*, *T*, *U*)

$$A = X \times (\mathbb{C} \oplus i\mathbb{R}) \to X$$

Bracket of constant sections:

$$[(\boldsymbol{z},\alpha),(\boldsymbol{w},\beta)]|_{(\boldsymbol{K},\boldsymbol{T},\boldsymbol{U})}:=(\alpha\boldsymbol{w}-\beta\boldsymbol{z},-\frac{\boldsymbol{K}}{2}(\boldsymbol{z}\boldsymbol{\bar{w}}-\boldsymbol{\bar{z}}\boldsymbol{w}))$$

Anchor:

$$\rho(z,\alpha)|_{(K,T,U)} := \left(-T\bar{z} - \bar{T}z, Uz - \alpha T, -\frac{K}{2}T\bar{z} - \frac{K}{2}\bar{T}z\right)$$

Example: extremal Kähler surfaces

• $X = \mathbb{R} \times \mathbb{C} \times \mathbb{R}$, with coordinates (K, T, U)

$$A = X \times (\mathbb{C} \oplus i\mathbb{R}) \to X$$

$$[(z,\alpha),(w,\beta)]|_{(K,T,U)} := (\alpha w - \beta z, -\frac{K}{2}(z\bar{w} - \bar{z}w))$$

Anchor:

$$\rho(z,\alpha)|_{(K,T,U)} := \left(-T\bar{z} - \bar{T}z, Uz - \alpha T, -\frac{K}{2}T\bar{z} - \frac{K}{2}\bar{T}z\right)$$

Remark. In this formulation, there are no more unknown objects!!

Next time: What does it mean to solve the problem, in this Lie algebroid language?

Solving Cartan's Realization Problem

Lecture 2

Starting from the classical correspondence:

Geometric structures \longleftrightarrow *G*-structures (with connection)

The main steps of the program:

Starting from the classical correspondence:

Geometric structures \longleftrightarrow G-structures (with connection)

The main steps of the program:

Classification problem for a finite type class \longleftrightarrow Cartan's realization problem of geometric structures (Cartan Data)

Starting from the classical correspondence:

Geometric structures \longleftrightarrow G-structures (with connection)

The main steps of the program:

 $\begin{array}{ccc} \text{Classification problem for a} & \longleftrightarrow & \text{Cartan's realization problem} \\ \text{of geometric structures} & & & (Cartan Data) \end{array}$ $\begin{array}{ccc} \text{Cartan Data} & \longleftrightarrow & \textbf{G-structure algebroid} \\ & & (with connection) \end{array}$

Starting from the classical correspondence:

Geometric structures \longleftrightarrow *G*-structures (with connection)

The main steps of the program:

Classification problem for a finite type class ↔ of geometric structures	Cartan's realization problem (Cartan Data)
Cartan Data \longleftrightarrow	<i>G</i> -structure algebroid (with connection)
Solutions to \longleftrightarrow classification problem	Integrate G-structure algebroid to G-structure groupoid (with connection)

Finite type classification problem \leftrightarrow Cartan's realization problem

Cartan's realization problem

One is given Cartan Data:

- (i) a closed, Lie subgroup $G \subset GL(n, \mathbb{R})$;
- (ii) a proper *G*-manifold *X* with infinitesimal action $\psi : X \times \mathfrak{g} \to TX$;
- (iii) G-equivariant maps:

 $c: X \to \operatorname{Hom}(\wedge^2 \mathbb{R}^n, \mathbb{R}^n), \ R: X \to \operatorname{Hom}(\wedge^2 \mathbb{R}^n, \mathfrak{g}), \ F: X \times \mathbb{R}^n \to TX$

Finite type classification problem \leftrightarrow Cartan's realization problem

Cartan's realization problem

One is given Cartan Data:

- (i) a closed, Lie subgroup $G \subset GL(n, \mathbb{R})$;
- (ii) a proper *G*-manifold *X* with infinitesimal action $\psi : X \times \mathfrak{g} \to TX$;
- (iii) G-equivariant maps:

 $c: X \to \operatorname{Hom}(\wedge^2 \mathbb{R}^n, \mathbb{R}^n), \ R: X \to \operatorname{Hom}(\wedge^2 \mathbb{R}^n, \mathfrak{g}), \ F: X \times \mathbb{R}^n \to TX$

and asks for the existence of solutions:

- an n-dimensional orbifold M;
- a G-structure F_G(M) → M with tautological form θ ∈ Ω¹(F_G(M), ℝⁿ) and connection 1-form ω ∈ Ω¹(F_G(M), g);
- an equivariant map $h : F_G(M) \to X$;

satisfying the structure equations

 $d\theta = c \circ h(\theta \land \theta) - \omega \land \theta$ $d\omega = R \circ h(\theta \land \theta) - \omega \land \omega$ $dh = F(h, \theta) + \psi(h, \omega)$

Finite type classification problem \leftrightarrow Cartan's realization problem

Cartan's realization problem

One is given Cartan Data:

- (i) a closed, Lie subgroup $G \subset GL(n, \mathbb{R})$;
- (ii) a proper *G*-manifold *X* with infinitesimal action $\psi : X \times \mathfrak{g} \to TX$;
- (iii) G-equivariant maps:

 $c: X \to \operatorname{Hom}(\wedge^2 \mathbb{R}^n, \mathbb{R}^n), \ R: X \to \operatorname{Hom}(\wedge^2 \mathbb{R}^n, \mathfrak{g}), \ F: X \times \mathbb{R}^n \to TX$

Finite type classification problem \leftrightarrow Cartan's realization problem

Cartan's realization problem

One is given Cartan Data:

- (i) a closed, Lie subgroup $G \subset GL(n, \mathbb{R})$;
- (ii) a proper *G*-manifold *X* with infinitesimal action $\psi : X \times \mathfrak{g} \to TX$;
- (iii) G-equivariant maps:

 $c: X \to \operatorname{Hom}(\wedge^2 \mathbb{R}^n, \mathbb{R}^n), \ R: X \to \operatorname{Hom}(\wedge^2 \mathbb{R}^n, \mathfrak{g}), \ F: X \times \mathbb{R}^n \to TX$

and asks for the existence of solutions:

Finite type classification problem \leftrightarrow Cartan's realization problem

Cartan's realization problem

One is given Cartan Data:

- (i) a closed, Lie subgroup $G \subset GL(n, \mathbb{R})$;
- (ii) a proper *G*-manifold *X* with infinitesimal action $\psi : X \times \mathfrak{g} \to TX$;
- (iii) G-equivariant maps:

 $c: X \to \operatorname{Hom}(\wedge^2 \mathbb{R}^n, \mathbb{R}^n), \ R: X \to \operatorname{Hom}(\wedge^2 \mathbb{R}^n, \mathfrak{g}), \ F: X \times \mathbb{R}^n \to TX$

and asks for the existence of solutions:

an n-dimensional orbifold M;

Finite type classification problem \leftrightarrow Cartan's realization problem

Cartan's realization problem

One is given Cartan Data:

- (i) a closed, Lie subgroup $G \subset GL(n, \mathbb{R})$;
- (ii) a proper *G*-manifold *X* with infinitesimal action $\psi : X \times \mathfrak{g} \to TX$;
- (iii) G-equivariant maps:

 $c: X \to \operatorname{Hom}(\wedge^2 \mathbb{R}^n, \mathbb{R}^n), \ R: X \to \operatorname{Hom}(\wedge^2 \mathbb{R}^n, \mathfrak{g}), \ F: X \times \mathbb{R}^n \to TX$

and asks for the existence of solutions:

- an n-dimensional orbifold M;
- a G-structure F_G(M) → M with tautological form θ ∈ Ω¹(F_G(M), ℝⁿ) and connection 1-form ω ∈ Ω¹(F_G(M), g);

Finite type classification problem \leftrightarrow Cartan's realization problem

Cartan's realization problem

One is given Cartan Data:

- (i) a closed, Lie subgroup $G \subset GL(n, \mathbb{R})$;
- (ii) a proper *G*-manifold *X* with infinitesimal action $\psi : X \times \mathfrak{g} \to TX$;
- (iii) G-equivariant maps:

 $c: X \to \operatorname{Hom}(\wedge^2 \mathbb{R}^n, \mathbb{R}^n), \ R: X \to \operatorname{Hom}(\wedge^2 \mathbb{R}^n, \mathfrak{g}), \ F: X \times \mathbb{R}^n \to TX$

and asks for the existence of solutions:

- an n-dimensional orbifold M;
- a G-structure F_G(M) → M with tautological form θ ∈ Ω¹(F_G(M), ℝⁿ) and connection 1-form ω ∈ Ω¹(F_G(M), g);
- an equivariant map $h : F_G(M) \to X$;

satisfying the structure equations

 $d\theta = c \circ h(\theta \land \theta) - \omega \land \theta$ $d\omega = R \circ h(\theta \land \theta) - \omega \land \omega$ $dh = F(h, \theta) + \psi(h, \omega)$

Cartan's data \leftrightarrow Lie algebroid

Algebroid of a Cartan's realization problem

Cartan Data (G, X, c, R, F) determines:

- vector bundle $A = X \times (\mathbb{R}^n \oplus \mathfrak{g}) \to X$

Cartan's data \leftrightarrow Lie algebroid

Algebroid of a Cartan's realization problem

Cartan Data (G, X, c, R, F) determines:

- vector bundle $A = X \times (\mathbb{R}^n \oplus \mathfrak{g}) \to X$
- vector bundle map (anchor) $\rho : A \rightarrow TX$:

 $\rho(\mathbf{u},\alpha) := F(\mathbf{u}) + \psi(\alpha), \quad (\mathbf{u},\alpha) \in \mathbb{R}^n \oplus \mathfrak{g};$

Cartan's data \leftrightarrow Lie algebroid

Algebroid of a Cartan's realization problem

Cartan Data (G, X, c, R, F) determines:

- vector bundle $A = X \times (\mathbb{R}^n \oplus \mathfrak{g}) \to X$
- vector bundle map (anchor) $\rho : A \rightarrow TX$:

$$\rho(u,\alpha) := F(u) + \psi(\alpha), \quad (u,\alpha) \in \mathbb{R}^n \oplus \mathfrak{g};$$

- a Lie bracket $[,]: \Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$ on constant sections:

$$[(u,\alpha),(v,\beta)] := (\alpha \cdot v - \beta \cdot u - c(u,v), [\alpha,\beta]_{\mathfrak{g}} - R(u,v)),$$

and extended to any sections by imposing Leibniz.

Cartan's data \leftrightarrow Lie algebroid

Algebroid of a Cartan's realization problem

Cartan Data (G, X, c, R, F) determines:

- vector bundle $A = X \times (\mathbb{R}^n \oplus \mathfrak{g}) \to X$
- vector bundle map (anchor) $\rho : A \rightarrow TX$:

$$\rho(u,\alpha) := F(u) + \psi(\alpha), \quad (u,\alpha) \in \mathbb{R}^n \oplus \mathfrak{g};$$

- a Lie bracket $[,]: \Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$ on constant sections:

$$[(u,\alpha),(v,\beta)]:=(\alpha\cdot v-\beta\cdot u-c(u,v),[\alpha,\beta]_{\mathfrak{g}}-R(u,v)),$$

and extended to any sections by imposing Leibniz. The triple $(A, [\cdot, \cdot], \rho)$ is a *G*-structure Lie algebroid with connection.

Extremal Kähler surfaces. To find such metrics amounts to find all U(1)-structures $P \to M$ with tautological form θ , connection form ω and function $(K, T, U) : P \to \mathbb{R} \oplus \mathbb{C} \oplus \mathbb{R}$, such that

$$\begin{cases} d\theta = -\omega \land \theta \\ d\omega = \frac{\kappa}{2} \theta \land \overline{\theta} \\ dK = -(\overline{T}\theta + T\overline{\theta}) \\ dT = U\theta - T\omega \\ dU = -\frac{\kappa}{2}(\overline{T}\theta + T\overline{\theta}) \end{cases}$$

Extremal Kähler surfaces. To find such metrics amounts to find all U(1)-structures $P \to M$ with tautological form θ , connection form ω and function $(K, T, U) : P \to \mathbb{R} \oplus \mathbb{C} \oplus \mathbb{R}$, such that

$$\begin{cases} d\theta = -\omega \land \theta \\ d\omega = \frac{\kappa}{2} \theta \land \overline{\theta} \\ dK = -(\overline{T}\theta + T\overline{\theta}) \\ dT = U\theta - T\omega \\ dU = -\frac{\kappa}{2}(\overline{T}\theta + T\overline{\theta}) \end{cases}$$

Associated algebroid:

$$A = (\mathbb{R} \times \mathbb{C} \times \mathbb{R}) \times (\mathbb{C} \oplus i\mathbb{R}) \longrightarrow X = \mathbb{R} \times \mathbb{C} \times \mathbb{R}$$

(with global coordinates (K, T, U))

Lie bracket:
$$[(z, \alpha), (w, \beta)]|_{(K, T, U)} := (\alpha w - \beta z, -\frac{\kappa}{2}(z\bar{w} - \bar{z}w))$$

Anchor: $\rho(z, \alpha)|_{(K, T, U)} := (-T\bar{z} - \bar{T}z, Uz - \alpha T, -\frac{\kappa}{2}T\bar{z} - \frac{\kappa}{2}\bar{T}z)$

It comes with a right U(1)-action:

$$(K, T, U, z, \alpha)g = (K, g^{-1}T, U, g^{-1}z, \alpha).$$

Another example

Metrics of constant sectional curvature. To find such metrics amounts to find all SO(*n*)-structures $P \to M$ with tautological form θ , connection form ω and function $K : P \to \mathbb{R}$, such that

$$\begin{cases} d\theta = -\omega \wedge \theta \\ d\omega = R(\theta \wedge \theta) - \omega \wedge \omega \\ dK = 0 \end{cases}$$

where

$$R(u, v)w = K(\langle w, v \rangle u - \langle w, u \rangle v).$$

Another example

Metrics of constant sectional curvature. To find such metrics amounts to find all SO(*n*)-structures $P \to M$ with tautological form θ , connection form ω and function $K : P \to \mathbb{R}$, such that

$$\begin{cases} d\theta = -\omega \land \theta \\ d\omega = R(\theta \land \theta) - \omega \land \omega \\ dK = 0 \end{cases}$$

where

$$R(u, v)w = K(\langle w, v \rangle u - \langle w, u \rangle v).$$

Associated algebroid:

$$A = \mathbb{R}^n \times (\mathbb{R}^n \oplus \mathfrak{so}(n, \mathbb{R})) \longrightarrow X = \mathbb{R}$$

(with global coordinate K)

Lie bracket: $[(u, \alpha), (v, \beta)]|_{\mathcal{K}} := (\alpha v - \beta u, [\alpha, \beta] - R(u, v))$ Anchor: $\rho(u, \alpha)|_{\mathcal{K}} := 0$

It comes with a right SO(n)-action:

$$(K, u, \alpha)g = (K, g^{-1}u, g^{-1}\alpha g).$$

Plan

Lecture 1:

- Recollection of G-structures
- Finite type vs infinite type through examples
- Cartan's Realization Problem and algebroids

Lecture 2:

- Algebroids and groupoids
- ► *G*-structure groupoids
- G-structure algebroids
- Construction of solutions

Plan

Lecture 1:

- Recollection of G-structures
- Finite type vs infinite type through examples
- Cartan's Realization Problem and algebroids

Lecture 2:

- Algebroids and groupoids
- ► G-structure groupoids
- G-structure algebroids
- Construction of solutions

Lecture 3:

- G-integrability
- Solving Cartan's Realization Problem
- Moduli space of solutions
- The example of extremal Kähler metrics on surfaces

1) Crash course on Lie algebroids and groupoids

A Lie algebroid is a vector bundle $A \to X$ with: 1. A Lie bracket $[\cdot, \cdot]_A$; $\Gamma(A) \times \Gamma(A) \to \Gamma(A)$; 2. A anchor map $\rho_A : A \to TX$; satisfying: $[s_1, f s_2]_A = f[s_1, s_2]_A + \rho(s_1)(f) s_2$.

Main idea: Think of $(A, [\cdot, \cdot]_A, \rho_A)$ as a generalized tangent bundle.

1) Crash course on Lie algebroids and groupoids

A Lie algebroid is a vector bundle $A \rightarrow X$ with:

- 1. A Lie bracket $[\cdot, \cdot]_A$; $\Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$;
- 2. A anchor map $\rho_A : A \to TX$;

satisfying:

$$[s_1, f s_2]_A = f[s_1, s_2]_A + \rho(s_1)(f) s_2.$$

Main idea: Think of $(A, [\cdot, \cdot]_A, \rho_A)$ as a generalized tangent bundle.

Alternative definition:

A Lie algebroid is a vector bundle $A \rightarrow X$ with a linear operator:

$$\mathrm{d}_{A}: \Omega^{\bullet}(A) \to \Omega^{\bullet+1}(A),$$

satisfying:

1.
$$d_A^2 = 0;$$

2. $d_A(\alpha \wedge \beta) = d_A \alpha \wedge \beta + (-1)^{|\alpha|} \alpha \wedge d_A \beta$

1) Crash course on Lie algebroids and groupoids

A Lie algebroid is a vector bundle $A \rightarrow X$ with a linear operator

 $d_A: \Omega^{\bullet}(A) \to \Omega^{\bullet+1}(A),$

satisfying:

1.
$$d_A^2 = 0;$$

2. $d_A(\alpha \wedge \beta) = d_A \alpha \wedge \beta + (-1)^{|\alpha|} \alpha \wedge d_A \beta$.

A Lie algebroid morphism is a vector bundle map

$$\begin{array}{c} A_1 \xrightarrow{\Phi} A_2 \\ \downarrow \\ X_1 \xrightarrow{\phi} X_2 \end{array}$$

that intertwines the differentials: $\Phi^* d_{A_2} = d_{A_1} \Phi^*$.

Geometry on Lie algebroids

Basic properties of $(A, \rho, [\cdot, \cdot])$:

- characteristic foliation of X: integrates the (singular) distribution Im $\rho \subset TX$;
- **isotropy Lie algebras**: for each $x \in X$, $g_x := \text{Ker } \rho_x$ is a finite dim Lie algebra.

Geometry on Lie algebroids

Basic properties of $(A, \rho, [\cdot, \cdot])$:

- characteristic foliation of X: integrates the (singular) distribution Im $\rho \subset TX$;
- **isotropy Lie algebras**: for each $x \in X$, $g_x := \text{Ker } \rho_x$ is a finite dim Lie algebra.

One works with A as if it was the tangent bundle. For example:

- A-symplectic form: ω ∈ Ω²(A) such that d_Aω = 0 and A → A^{*}, α ↦ i_αω, is isomorphism;
- A-complex structure: $J : A \to A$ such that $J^2 = -I$ and

$$N_J(\alpha,\beta) := [J\alpha, J\beta] - J([J\alpha,\beta] + [\alpha, J\beta]) - [\alpha,\beta] = 0.$$

• *A*-connection: $\nabla : \Gamma(A) \times \Gamma(E) \to \Gamma(A)$ a \mathbb{R} -bilinear map such that:

$$\nabla_{f\alpha} \mathbf{s} = f \nabla_{\alpha} \mathbf{s}, \quad \nabla_{\alpha} f \mathbf{s} = f \nabla_{\alpha} \mathbf{s} + \rho(\alpha)(f) \mathbf{s}.$$

Some classes of examples

Tangent bundles TX;

- Lie algebras g;
- Bundle of Lie algebras;
- Lie algebra actions $\psi : \mathfrak{g} \to \mathfrak{X}(X)$;
- Prequantization (X, ω) ;
- Poisson structures (X, π)
- ► (...)

A groupoid is a small category where every morphism is an isomorphism.

A groupoid is a small category where every morphism is an isomorphism.

 $\Gamma \equiv$ set of arrows $X \equiv$ set of objects.

A groupoid is a small category where every morphism is an isomorphism.

 $\Gamma \equiv \text{set of arrows}$ $X \equiv \text{set of objects.}$

source and **target** maps:

A groupoid is a small category where every morphism is an isomorphism.

 $\Gamma \equiv$ set of arrows $X \equiv$ set of objects.

source and target maps:

product:

 $\Gamma^{(2)} = \{(h,g) \in \Gamma \times \Gamma : \mathbf{s}(h) = \mathbf{t}(g)\}$ $m : \Gamma^{(2)} \to \Gamma$

A groupoid is a small category where every morphism is an isomorphism.

 $\Gamma \equiv$ set of arrows $X \equiv$ set of objects.

identity:

 $u: X \hookrightarrow \Gamma$

A groupoid is a small category where every morphism is an isomorphism.

A groupoid is a small category where every morphism is an isomorphism.

A morphism of groupoids is a functor $\mathcal{F}: \Gamma_1 \to \Gamma_2$.

A groupoid is a small category where every morphism is an isomorphism.

A morphism of groupoids is a functor $\mathcal{F} : \Gamma_1 \to \Gamma_2$.

This means we have a map $\mathcal{F} : \Gamma_1 \to \Gamma_2$ between the sets of arrows, and a map $f : X_1 \to X_2$ between the sets of objects, such that:

- if $g: x \longrightarrow y$ is in Γ_1 , then $\mathcal{F}(g): f(x) \longrightarrow f(y)$ in Γ_2 .
- if $g, h \in \Gamma_2$ are composable, then $\mathcal{F}(gh) = \mathcal{F}(g)\mathcal{F}(h)$.

• if
$$x \in X_1$$
, then $\mathcal{F}(1_x) = 1_{f(x)}$.

• if $g: x \longrightarrow y$, then $\mathcal{F}(g^{-1}) = \mathcal{F}(g)^{-1}$.

right multiplication by $g: y \leftarrow x$ is a bijection between **s**-fibers:

$$R_g: \mathbf{s}^{-1}(y) \longrightarrow \mathbf{s}^{-1}(x), \quad h \mapsto hg.$$

right multiplication by $g: y \leftarrow x$ is a bijection between **s**-fibers:

$$R_g: \mathbf{s}^{-1}(y) \longrightarrow \mathbf{s}^{-1}(x), \quad h \mapsto hg.$$

▶ left multiplication by *g* : *y* ← *x* is a bijection between t-fibers:

$$L_g: \mathbf{t}^{-1}(x) \longrightarrow \mathbf{t}^{-1}(y), \quad h \mapsto gh.$$

right multiplication by $g: y \leftarrow x$ is a bijection between **s**-fibers:

$$R_g: \mathbf{s}^{-1}(y) \longrightarrow \mathbf{s}^{-1}(x), \quad h \mapsto hg.$$

► left multiplication by g : y ← x is a bijection between t-fibers:

$$L_g: \mathbf{t}^{-1}(x) \longrightarrow \mathbf{t}^{-1}(y), \quad h \mapsto gh.$$

the isotropy group at x:

$$\Gamma_x = \mathbf{s}^{-1}(x) \cap \mathbf{t}^{-1}(x).$$

right multiplication by $g: y \leftarrow x$ is a bijection between **s**-fibers:

$$R_g: \mathbf{s}^{-1}(y) \longrightarrow \mathbf{s}^{-1}(x), \quad h \mapsto hg.$$

► left multiplication by g : y ← x is a bijection between t-fibers:

$$L_g: \mathbf{t}^{-1}(x) \longrightarrow \mathbf{t}^{-1}(y), \quad h \mapsto gh.$$

the isotropy group at x:

$$\Gamma_x = \mathbf{s}^{-1}(x) \cap \mathbf{t}^{-1}(x).$$

the orbit through x:

$$\mathcal{O}_x := \mathbf{t}(\mathbf{s}^{-1}(x)) = \{ y \in M : \exists g : x \longrightarrow y \}$$

Lie groupoids

Definition

A Lie groupoid is a groupoid $\Gamma \Rightarrow X$ whose spaces of arrows and objects are both manifolds, the structure maps $\mathbf{s}, \mathbf{t}, u, m, i$ are all smooth maps and such that \mathbf{s} and \mathbf{t} are submersions.

Lie groupoids

Definition A Lie groupoid is a groupoid $\Gamma \Rightarrow X$ whose spaces of arrows and objects are both manifolds, the structure maps **s**, **t**, *u*, *m*, *i* are all smooth maps and such that **s** and **t** are submersions.

Basic Properties For a Lie groupoid $\Gamma \rightrightarrows X$ and $x \in X$, one has that:

- 1. the isotropy groups Γ_x are Lie groups;
- 2. the orbits \mathcal{O}_X are (regular immersed) submanifolds in *X*;
- 3. the unit map $u : X \to \Gamma$ is an embedding;
- 4. $\mathbf{t} : \mathbf{s}^{-1}(x) \to \mathcal{O}_X$ is a principal Γ_X -bundle.

Some classes of examples

- Pair groupoid $X \times X \Rightarrow X$;
- Fundamental groupoid $\Pi(X) \rightrightarrows X$;
- Lie group $G \rightrightarrows \{*\};$
- Bundle of Lie groups;
- Lie group actions $G \times X \rightarrow X$;
- Gauge groupoid of principal bundle $G \curvearrowright P \to X$;
- Symplectic groupoids $(\Sigma, \Omega) \rightrightarrows X$.

 $A{=}T_X^{\ s}\Gamma$

 $A{=}T_X^{\ s}\Gamma$

$$\mathbf{A} = \mathbf{T}_{\mathbf{X}}^{\mathbf{S}} \mathbf{\Gamma} \qquad \mathbf{\rho} = dt \Big|_{\mathbf{A}}$$

From Lie groupoids to Lie algebroids

 $\mathbf{A} = \mathbf{T}_{\mathbf{X}}^{\mathbf{s}} \mathbf{\Gamma} \qquad \qquad \mathbf{\rho} = \mathbf{dt} \,\Big|_{\mathbf{A}}$

From Lie groupoids to Lie algebroids

$$\mathbf{A} = \mathbf{T}_{\mathbf{X}}^{\mathbf{S}} \mathbf{\Gamma} \qquad \mathbf{\rho} = dt \Big|_{\mathbf{A}}$$

From Lie groupoids to Lie algebroids

PS: Can also use t-fibers and left-invariant vector fields! That is our convention here.

2) G-structure groupoids

Definition

• A *G*-principal groupoid is a Lie groupoid $\Gamma \Rightarrow X$ with a principal action of *G* satisfying:

$$(\gamma_1 \cdot \gamma_2) g = \gamma_1 \cdot (\gamma_2 g), \quad \forall (\gamma_1, \gamma_2) \in \Gamma^{(2)}, \ g \in G.$$

• A morphism of *G*-principal groupoids is a groupoid morphism $\Phi: \Gamma_1 \to \Gamma_2$ which is *G*-equivariant.

2) G-structure groupoids

Definition

• A *G*-principal groupoid is a Lie groupoid $\Gamma \Rightarrow X$ with a principal action of *G* satisfying:

$$(\gamma_1 \cdot \gamma_2) g = \gamma_1 \cdot (\gamma_2 g), \quad \forall (\gamma_1, \gamma_2) \in \Gamma^{(2)}, \ g \in G.$$

• A morphism of *G*-principal groupoids is a groupoid morphism $\Phi: \Gamma_1 \to \Gamma_2$ which is *G*-equivariant.

 \implies each fiber $t^{-1}(x)$ is a *G*-principal bundle. So $t : \Gamma \to X$ is a family of *G*-principal bundles parameterized by *X*

2) G-structure groupoids

Definition

• A *G*-principal groupoid is a Lie groupoid $\Gamma \Rightarrow X$ with a principal action of *G* satisfying:

$$(\gamma_1 \cdot \gamma_2) g = \gamma_1 \cdot (\gamma_2 g), \quad \forall (\gamma_1, \gamma_2) \in \Gamma^{(2)}, \ g \in G.$$

• A morphism of *G*-principal groupoids is a groupoid morphism $\Phi: \Gamma_1 \to \Gamma_2$ which is *G*-equivariant.

 \implies each fiber $t^{-1}(x)$ is a *G*-principal bundle. So $t : \Gamma \to X$ is a family of *G*-principal bundles parameterized by *X*

Alternative point of view: action morphism

$$\begin{cases} G \text{-principal groupoid} \\ \Gamma \rightrightarrows X \end{cases} \xrightarrow{1-1} \begin{cases} \text{groupoid morphism } \iota : X \rtimes G \to \Gamma \\ \text{locally injective and effective} \end{cases}$$

A connection 1-form on a *G*-principal groupoid $\Gamma \Rightarrow X$ is a g-valued, left-invariant 1-form, $\Omega \in \Omega^1_I(\Gamma; \mathfrak{g})$ satisfying:

(i) vertical: $\Omega(\alpha_{\Gamma}) = \alpha$, for all $\alpha \in \mathfrak{g}$

(ii) *G*-equivariance:
$$g^*\Omega = \operatorname{Ad}_{g^{-1}} \Omega$$
.

A connection 1-form on a *G*-principal groupoid $\Gamma \Rightarrow X$ is a g-valued, left-invariant 1-form, $\Omega \in \Omega^1_I(\Gamma; \mathfrak{g})$ satisfying:

(i) vertical: $\Omega(\alpha_{\Gamma}) = \alpha$, for all $\alpha \in \mathfrak{g}$

(ii) *G*-equivariance:
$$g^*\Omega = \operatorname{Ad}_{g^{-1}} \Omega$$
.

 \implies each fiber $\mathbf{t}^{-1}(x)$ is a principal *G*-bundle with connection form $\omega_x = \Omega|_{\mathbf{t}^{-1}(x)}$.

A connection 1-form on a *G*-principal groupoid $\Gamma \Rightarrow X$ is a g-valued, left-invariant 1-form, $\Omega \in \Omega^1_I(\Gamma; \mathfrak{g})$ satisfying:

- (i) vertical: $\Omega(\alpha_{\Gamma}) = \alpha$, for all $\alpha \in \mathfrak{g}$
- (ii) *G*-equivariance: $g^*\Omega = \operatorname{Ad}_{g^{-1}} \Omega$.

 \implies each fiber $\mathbf{t}^{-1}(x)$ is a principal *G*-bundle with connection form $\omega_x = \Omega|_{\mathbf{t}^{-1}(x)}$.

Let $G \subset GL(n, \mathbb{R})$ be a closed subgroup:

A *G*-structure groupoid is a *G*-principal groupoid $\Gamma \rightrightarrows X$ with a pointwise surjective left-invariant form $\Theta \in \Omega^1_L(\Gamma; \mathbb{R}^n)$ such:

- (i) horizontal: $\Theta(v) = 0$ if and only $v = \alpha_{\Gamma}$ for some $\alpha \in \mathfrak{g}$
- (ii) *G*-equivariance: $g^*\Omega = g^{-1} \cdot \Omega$.

A connection 1-form on a *G*-principal groupoid $\Gamma \Rightarrow X$ is a g-valued, left-invariant 1-form, $\Omega \in \Omega^1_I(\Gamma; \mathfrak{g})$ satisfying:

- (i) vertical: $\Omega(\alpha_{\Gamma}) = \alpha$, for all $\alpha \in \mathfrak{g}$
- (ii) *G*-equivariance: $g^*\Omega = \operatorname{Ad}_{g^{-1}} \Omega$.

 \implies each fiber $\mathbf{t}^{-1}(x)$ is a principal *G*-bundle with connection form $\omega_x = \Omega|_{\mathbf{t}^{-1}(x)}$.

Let $G \subset GL(n, \mathbb{R})$ be a closed subgroup:

A *G*-structure groupoid is a *G*-principal groupoid $\Gamma \rightrightarrows X$ with a pointwise surjective left-invariant form $\Theta \in \Omega^1_L(\Gamma; \mathbb{R}^n)$ such:

- (i) horizontal: $\Theta(v) = 0$ if and only $v = \alpha_{\Gamma}$ for some $\alpha \in \mathfrak{g}$
- (ii) *G*-equivariance: $g^*\Omega = g^{-1} \cdot \Omega$.

 \implies each fiber $\mathbf{t}^{-1}(x)$ is a *G*-structure with tautological form $\theta_x = \Theta|_{\mathbf{t}^{-1}(x)}$.

G-structure groupoids with connection

 $\begin{array}{l} \label{eq:proposition} \\ \mbox{Let } \Gamma \rightrightarrows X \mbox{ be a G-structure groupoid with connection. The tautological form} \\ \Theta \in \Omega^1_L(\Gamma; \mathbb{R}^n) \mbox{ and the connection form } \Omega \in \Omega^1_L(\Gamma; \mathfrak{g}) \mbox{ satisfy:} \\ \\ \mbox{d} \Theta = -\Omega \wedge \Theta + \mbox{Tors}(\Omega) \\ \mbox{d} \Omega = -\Omega \wedge \Omega + \mbox{Curv}(\Omega) \end{array}$

In this proposition:

- d denotes the t-foliated de Rham differential;
- $\operatorname{Tors}(\Omega) \in \Omega^2_L(\Gamma; \mathbb{R}^n)$ is given by $\operatorname{Tors}(\Omega)(v, w) = d\Theta(h(v), h(w));$
- $\operatorname{Curv}(\Omega) \in \Omega^2_L(\Gamma; \mathfrak{g})$ is given by $\operatorname{Curv}(\Omega)(v, w) = d\Omega(h(v), h(w))$.

3) G-structure algebroids

• A *G*-principal algebroid is a Lie algebroid $A \rightarrow X$ with a *G*-action by automorphisms and an injective morphism $i : X \rtimes \mathfrak{g} \rightarrow A$ such that:

 $\hat{\psi}(\alpha) = [i(\alpha), \cdot].$

• A morphism of *G*-principal algebroids is a morphism $\Phi : A_1 \rightarrow A_2$ which is *G*-equivariant and intertwines the action morphisms:

$$\Phi \circ i_1 = i_2 \circ (\phi \times I).$$

3) G-structure algebroids

• A *G*-principal algebroid is a Lie algebroid $A \rightarrow X$ with a *G*-action by automorphisms and an injective morphism $i : X \rtimes \mathfrak{g} \rightarrow A$ such that:

 $\hat{\psi}(\alpha) = [i(\alpha), \cdot].$

• A morphism of *G*-principal algebroids is a morphism $\Phi : A_1 \rightarrow A_2$ which is *G*-equivariant and intertwines the action morphisms:

$$\Phi \circ i_1 = i_2 \circ (\phi \times I).$$

Proposition

• If $\Gamma \rightrightarrows X$ is a G-principal groupoid then its Lie algebroid $A \rightarrow X$ is a G-principal algebroid.

• If $\Phi : \Gamma_1 \to \Gamma_2$ is a morphism of *G*-principal groupoids then $(\Phi)_* : A_1 \to A_2$ is a morphism of *G*-principal algebroids.

A connection 1-form on a *G*-principal algebroid $A \to X$ is a g-valued *A*-form $\omega \in \Omega^1(A; \mathfrak{g})$ satisfying:

- (i) vertical: $\omega(i(x\alpha) = \alpha, \text{ for all } x \in X, \alpha \in \mathfrak{g}$
- (ii) G-equivariance: $g^*\omega = \operatorname{Ad}_{g^{-1}} \omega$.

A connection 1-form on a *G*-principal algebroid $A \to X$ is a g-valued *A*-form $\omega \in \Omega^1(A; \mathfrak{g})$ satisfying:

- (i) vertical: $\omega(i(x\alpha) = \alpha, \text{ for all } x \in X, \alpha \in \mathfrak{g}$
- (ii) *G*-equivariance: $g^*\omega = \operatorname{Ad}_{g^{-1}} \omega$.

Let $G \subset GL(n, \mathbb{R})$ be closed:

A *G*-structure algebroid is a *G*-principal algebroid $A \to X$ equipped with a fiberwise surjective *A*-form $\theta \in \Omega^1(A; \mathbb{R}^n)$ satisfying:

(i) horizontal: $\theta_x(\xi) = 0$ iff $\xi = i(x, \alpha)$, for some $\alpha \in \mathfrak{g}$.

(ii) *G*-equivariance: $g^*\theta = g^{-1} \cdot \theta$, $\forall g \in G$.

 θ is called the **tautological form** of the *G*-structure algebroid.

G-structure algebroids with connection

Proposition

Let $A \to X$ be a *G*-structure algebroid with connection. The tautological form $\theta \in \Omega^1(A; \mathbb{R}^n)$ and the connection form $\omega \in \Omega^1(A; \mathfrak{g})$ satisfy:

$$d_{A}\theta = -\omega \wedge \theta + \mathsf{Tors}(\omega)$$
$$d_{A}\omega = -\omega \wedge \omega + \mathsf{Curv}(\omega)$$

where $\operatorname{Tors}(\omega) \in \Omega^2(A; \mathbb{R}^n)$ and $\operatorname{Curv}(\omega) \in \Omega^2(A; \mathfrak{g})$.

G-structure algebroids with connection

Proposition

Let $A \to X$ be a *G*-structure algebroid with connection. The tautological form $\theta \in \Omega^1(A; \mathbb{R}^n)$ and the connection form $\omega \in \Omega^1(A; \mathfrak{g})$ satisfy:

 $d_{A}\theta = -\omega \wedge \theta + \mathsf{Tors}(\omega)$ $d_{A}\omega = -\omega \wedge \omega + \mathsf{Curv}(\omega)$

where $\operatorname{Tors}(\omega) \in \Omega^2(A; \mathbb{R}^n)$ and $\operatorname{Curv}(\omega) \in \Omega^2(A; \mathfrak{g})$.

Proposition

Fix any *G*-principal groupoid $\Gamma \rightrightarrows X$ with Lie algebroid $A \rightarrow X$. Then there are 1:1 correspondences:

$$\begin{cases} \text{connection 1-forms on } \Gamma \\ \Omega \in \Omega_L^1(\Gamma; \mathfrak{g}) \end{cases} \xrightarrow{1-1} \begin{cases} \text{connection 1-forms on } A \\ \omega \in \Omega^1(A; \mathfrak{g}) \end{cases} \\ \begin{cases} \text{tautological forms on } \Gamma \\ \Theta \in \Omega_L^1(\Gamma; \mathbb{R}^n) \end{cases} \xrightarrow{1-1} \begin{cases} \text{tautological forms on } A \\ \theta \in \Omega^1(A; \mathbb{R}^n) \end{cases} \end{cases}$$

4) Construction of solutions

Theorem

Any G-structure algebroid with connection $A \rightarrow X$ is naturally isomorphic to one in **canonical form**.

4) Construction of solutions

Theorem

Any *G*-structure algebroid with connection $A \rightarrow X$ is naturally isomorphic to one in **canonical form**. Under the isomorphism

$$(\theta,\omega): A \xrightarrow{\cong} X \times (\mathbb{R}^n \oplus \mathfrak{g}), \quad \xi_x \mapsto (x,\theta(\xi),\omega(\xi)).$$

one has that:

4) Construction of solutions

Theorem

Any *G*-structure algebroid with connection $A \rightarrow X$ is naturally isomorphic to one in **canonical form**. Under the isomorphism

$$(\theta,\omega): A \xrightarrow{\cong} X \times (\mathbb{R}^n \oplus \mathfrak{g}), \quad \xi_x \mapsto (x,\theta(\xi),\omega(\xi)).$$

one has that:

- the action morphism becomes i : X ⋊ 𝔅 → A, (x, α)) ↦ (x, 0, α);
- the tautological form becomes $\theta : X \times (\mathbb{R}^n \oplus \mathfrak{g}) \to \mathbb{R}^n$;
- the connection form becomes $\omega : X \times (\mathbb{R}^n \oplus \mathfrak{g}) \to \mathfrak{g};$
- the *G*-action on *A* becomes $(x, u, \alpha) g = (x g, g^{-1} u, Ad_{g^{-1}} \cdot \alpha);$

Moreover, the anchor and bracket on constant sections become:

$$\rho(\boldsymbol{u},\alpha) = \boldsymbol{F}(\boldsymbol{u}) + \psi(\alpha),$$

$$[(\boldsymbol{u},\alpha), (\boldsymbol{v},\beta)] = (\alpha \cdot \boldsymbol{v} - \beta \cdot \boldsymbol{u} - \boldsymbol{c}(\boldsymbol{u},\boldsymbol{v}), [\alpha,\beta]_{\mathfrak{g}} - \boldsymbol{R}(\boldsymbol{u},\boldsymbol{v})),$$

where $c: X \to \text{Hom}(\wedge^2 \mathbb{R}^n, \mathbb{R}^n)$, $R: X \to \text{Hom}(\wedge^2 \mathbb{R}^n, \mathfrak{g})$ and $F: X \times \mathbb{R}^n \to TX$ are *G*-equivariant maps.

Construction of solutions

Conclusion:

$$\begin{cases} \text{Cartan Data} \\ (G, X, c, R, F) \end{cases} \xrightarrow{1-1} \begin{cases} \text{G-structure algebroids} \\ \text{with connection } A \to X \end{cases}$$

Construction of solutions

Conclusion:

$$\left\{ \begin{array}{c} \text{Cartan Data} \\ (G, X, c, R, F) \end{array} \right\} \xrightarrow{1-1} \left\{ \begin{array}{c} \text{G-structure algebroids} \\ \text{with connection } A \to X \end{array} \right\}$$

Theorem

Given Cartan Data with associated *G*-structure algebroid with connection $(A, \theta, \omega) \rightarrow X$, let $(\Gamma, \Theta, \Omega) \rightrightarrows X$ be a *G*-structure groupoid integrating it. Then for each $x \in X$

$$(\mathbf{t}^{-1}(x), \Theta|_{\mathbf{t}^{-1}(x)}, \Omega|_{\mathbf{t}^{-1}(x)})$$

is a *G*-structure with connection over $M = \mathbf{t}^{-1}(x)/G$ which solves Cartan's realization problem with $h := \mathbf{s} : \mathbf{t}^{-1}(x) \to X$.

Construction of solutions

Conclusion:

$$\left\{ \begin{array}{c} \text{Cartan Data} \\ (G, X, c, R, F) \end{array} \right\} \xrightarrow{1-1} \left\{ \begin{array}{c} \text{G-structure algebroids} \\ \text{with connection } A \to X \end{array} \right\}$$

Theorem

Given Cartan Data with associated *G*-structure algebroid with connection $(A, \theta, \omega) \rightarrow X$, let $(\Gamma, \Theta, \Omega) \rightrightarrows X$ be a *G*-structure groupoid integrating it. Then for each $x \in X$

$$(\mathbf{t}^{-1}(x), \Theta|_{\mathbf{t}^{-1}(x)}, \Omega|_{\mathbf{t}^{-1}(x)})$$

is a *G*-structure with connection over $M = t^{-1}(x)/G$ which solves Cartan's realization problem with $h := \mathbf{s} : t^{-1}(x) \to X$.

 \implies integrations gives rise to family of solutions

Easy example: Metrics of constant sectional curvature

Associated SO(n)-structure algebroid with connection:

 $A = \mathbb{R}^n \times (\mathbb{R}^n \oplus \mathfrak{so}(n, \mathbb{R})) \longrightarrow X = \mathbb{R}$

(with global coordinate K)

Lie bracket: $[(u, \alpha), (v, \beta)]|_{K} := (\alpha v - \beta u, [\alpha, \beta] - K(\langle \cdot, v \rangle u - \langle \cdot, u \rangle v))$ Anchor: $\rho(u, \alpha)|_{K} := 0$ SO(*n*)-action: $(K, u, \alpha)g = (K, g^{-1}u, g^{-1}\alpha g)$

Easy example: Metrics of constant sectional curvature

Associated SO(n)-structure algebroid with connection:

 $A = \mathbb{R}^n \times (\mathbb{R}^n \oplus \mathfrak{so}(n, \mathbb{R})) \longrightarrow X = \mathbb{R}$

(with global coordinate K)

Lie bracket: $[(u, \alpha), (v, \beta)]|_{K} := (\alpha v - \beta u, [\alpha, \beta] - K(\langle \cdot, v \rangle u - \langle \cdot, u \rangle v))$ Anchor: $\rho(u, \alpha)|_{K} := 0$ SO(*n*)-action: $(K, u, \alpha)g = (K, g^{-1}u, g^{-1}\alpha g)$

Associated SO(n)-structure groupoid with connection:

Bundle of Lie groups $p = \mathbf{s} = \mathbf{t} : \Gamma \to \mathbb{R}$ with fibers

$$\mathbf{t}^{-1}(K) \simeq \left\{ \begin{array}{ll} \mathrm{SO}(n+1), & \text{ if } K > 0\\ \mathrm{SO}(n) \ltimes \mathbb{R}^n, & \text{ if } K = 0\\ \mathrm{SO}^+(n,1), & \text{ if } K < 0 \end{array} \right.$$

These SO(*n*)-structures are the oriented orthogonal frame bundles of the 1-connected space forms:

$$\mathbf{t}^{-1}(\mathbf{x})/\operatorname{SO}(n) \simeq \begin{cases} \mathbb{S}^n, & \text{if } K > 0\\ \mathbb{R}^n, & \text{if } K = 0\\ \mathbb{H}^n, & \text{if } K < 0 \end{cases}$$

Construction of solutions: dictionary

Several important questions left:

- Do we get all solutions in this way?
- Do integrations/solutions all exist?
- What can we say about symmetries of solutions and their moduli spaces?
- Can this be used in "real" problems?

... to be discussed in the next lecture.

Solving Cartan's Realization Problem

Lecture 3

Overview

Starting from the classical correspondence:

Geometric structures \longleftrightarrow *G*-structures (with connection)

The main steps of the program:

Classification problem for a finite type class ↔ of geometric structures	Cartan's realization problem (Cartan Data)
Cartan Data \longleftrightarrow	<i>G</i> -structure algebroid (with connection)
Solutions to \longleftrightarrow classification problem	Integrate G-structure algebroid to G-structure groupoid (with connection)

Easy example: Metrics of constant sectional curvature

Associated SO(n)-structure algebroid with connection:

 $A = \mathbb{R}^n \times (\mathbb{R}^n \oplus \mathfrak{so}(n, \mathbb{R})) \longrightarrow X = \mathbb{R}$

(with global coordinate K)

Lie bracket: $[(u, \alpha), (v, \beta)]|_{K} := (\alpha v - \beta u, [\alpha, \beta] - K(\langle \cdot, v \rangle u - \langle \cdot, u \rangle v))$ Anchor: $\rho(u, \alpha)|_{K} := 0$ SO(*n*)-action: $(K, u, \alpha)g = (K, g^{-1}u, g^{-1}\alpha g)$

Easy example: Metrics of constant sectional curvature

Associated SO(n)-structure algebroid with connection:

 $A = \mathbb{R}^n \times (\mathbb{R}^n \oplus \mathfrak{so}(n, \mathbb{R})) \longrightarrow X = \mathbb{R}$

(with global coordinate K)

Lie bracket: $[(u, \alpha), (v, \beta)]|_{K} := (\alpha v - \beta u, [\alpha, \beta] - K(\langle \cdot, v \rangle u - \langle \cdot, u \rangle v))$ Anchor: $\rho(u, \alpha)|_{K} := 0$ SO(*n*)-action: $(K, u, \alpha)g = (K, g^{-1}u, g^{-1}\alpha g)$

Associated SO(n)-structure groupoid with connection:

Bundle of Lie groups $p = \mathbf{s} = \mathbf{t} : \Gamma \to \mathbb{R}$ with fibers

$$\mathbf{t}^{-1}(K) \simeq \left\{ \begin{array}{ll} \mathrm{SO}(n+1), & \text{ if } K > 0\\ \mathrm{SO}(n) \ltimes \mathbb{R}^n, & \text{ if } K = 0\\ \mathrm{SO}^+(n,1), & \text{ if } K < 0 \end{array} \right.$$

These SO(*n*)-structures are the oriented orthogonal frame bundles of the 1-connected space forms:

$$\mathbf{t}^{-1}(\mathbf{x})/\operatorname{SO}(n) \simeq \begin{cases} \mathbb{S}^n, & \text{if } K > 0\\ \mathbb{R}^n, & \text{if } K = 0\\ \mathbb{H}^n, & \text{if } K < 0 \end{cases}$$

Plan

Lecture 1:

- Recollection of G-structures
- Finite type vs infinite type through examples
- Cartan's Realization Problem and algebroids

Lecture 2:

- Algebroids and groupoids
- G-structure groupoids
- G-structure algebroids
- Construction of solutions

Lecture 3:

- G-integrability
- Solving Cartan's Realization Problem
- The example of extremal Kähler metrics on surfaces
- Moduli space of solutions

1) G-Integrability

Theorem (Lie I)

Let Γ be a Lie groupoid with Lie algebroid *A*. There exists a unique (up to isomorphism) source 1-connected Lie groupoid $\widetilde{\Gamma}$ with Lie algebroid *A*.

 $\bullet\ \widetilde{\Gamma}$ is called the canonical integration

1) G-Integrability

Theorem (Lie I)

Let Γ be a Lie groupoid with Lie algebroid *A*. There exists a unique (up to isomorphism) source 1-connected Lie groupoid $\widetilde{\Gamma}$ with Lie algebroid *A*.

$\bullet\ \widetilde{\Gamma}$ is called the canonical integration

Theorem (Lie II)

Let Γ_1 and Γ_2 be Lie groupoids with Lie algebroids A_1 and A_2 , where Γ_1 is source 1-connected. Given a Lie algebroid homomorphism $\phi : A_1 \to A_2$, there exists a unique Lie groupoid homomorphism $\Phi : \Gamma_1 \to \Gamma_2$ with $(\Phi)_* = \phi$.

1) G-Integrability

Theorem (Lie I)

Let Γ be a Lie groupoid with Lie algebroid *A*. There exists a unique (up to isomorphism) source 1-connected Lie groupoid $\widetilde{\Gamma}$ with Lie algebroid *A*.

$\bullet\ \widetilde{\Gamma}$ is called the canonical integration

Theorem (Lie II)

Let Γ_1 and Γ_2 be Lie groupoids with Lie algebroids A_1 and A_2 , where Γ_1 is source 1-connected. Given a Lie algebroid homomorphism $\phi : A_1 \to A_2$, there exists a unique Lie groupoid homomorphism $\Phi : \Gamma_1 \to \Gamma_2$ with $(\Phi)_* = \phi$.

... Lie III does not hold!

Obstructions to integrability

Theorem [Crainic & RLF, 2003]

For a Lie algebroid *A*, there exist *monodromy groups* $N_x \subset A_x$ such that *A* is integrable iff the groups N_x are uniformly discrete for $x \in X$.

Obstructions to integrability

Theorem [Crainic & RLF, 2003]

For a Lie algebroid *A*, there exist *monodromy groups* $N_x \subset A_x$ such that *A* is integrable iff the groups N_x are uniformly discrete for $x \in X$.

Each N_x is the image of a monodromy map:

$$\partial: \pi_2(L, x) \to Z(\mathfrak{g}_x)$$

This map (hence the monodromy groups) is computable.

Obstructions to integrability

Theorem [Crainic & RLF, 2003]

For a Lie algebroid A, there exist *monodromy groups* $N_x \subset A_x$ such that A is integrable iff the groups N_x are uniformly discrete for $x \in X$.

Each N_x is the image of a monodromy map:

$$\partial: \pi_2(L, x) \to Z(\mathfrak{g}_x)$$

This map (hence the monodromy groups) is computable.

Example. For prequantization algebroid *A* defined by $\omega \in \Omega^2_{cl}(M)$:

$$N_{x} = \left\{ \int_{\sigma} \omega : [\sigma] \in \pi_{2}(M) \right\} \subset \mathbb{R} = \mathfrak{g}_{x}.$$

So A is integrable if and only if ω has discrete spherical periods.

Lie Functor for G-principal groupoids/algebroids

Theorem (Lie I)

Let Γ be a *G*-principal groupoid with Lie algebroid *A*. There exists a unique (up to isomorphism) *G*-principal groupoid $\widetilde{\Gamma}_G$ with Lie algebroid *A* and $\mathbf{s}^{-1}(x)/G$ all 1-connected.

 $\bullet\ \widetilde{\Gamma}_{\textit{G}}$ is called the canonical G-integration

Lie Functor for G-principal groupoids/algebroids

Theorem (Lie I)

Let Γ be a *G*-principal groupoid with Lie algebroid *A*. There exists a unique (up to isomorphism) *G*-principal groupoid $\widetilde{\Gamma}_G$ with Lie algebroid *A* and $\mathbf{s}^{-1}(x)/G$ all 1-connected.

• $\widetilde{\Gamma}_G$ is called the canonical *G*-integration

Theorem (Lie II)

Let Γ_1, Γ_2 be *G*-principal groupoids with algebroids A_1, A_2 , and $\mathbf{s}_1^{-1}(x)/G$ all 1-connnected. Given morphism of *G*-principal algebroids $\phi : A_1 \to A_2$, there exists a unique morphism of *G*-principal groupoids $\Phi : \Gamma_1 \to \Gamma_2$ with $(\Phi)_* = \phi$.

Lie Functor for G-principal groupoids/algebroids

Theorem (Lie I)

Let Γ be a *G*-principal groupoid with Lie algebroid *A*. There exists a unique (up to isomorphism) *G*-principal groupoid $\widetilde{\Gamma}_G$ with Lie algebroid *A* and $\mathbf{s}^{-1}(x)/G$ all 1-connected.

• $\widetilde{\Gamma}_G$ is called the canonical *G*-integration

Theorem (Lie II)

Let Γ_1, Γ_2 be *G*-principal groupoids with algebroids A_1, A_2 , and $\mathbf{s}_1^{-1}(x)/G$ all 1-connnected. Given morphism of *G*-principal algebroids $\phi : A_1 \to A_2$, there exists a unique morphism of *G*-principal groupoids $\Phi : \Gamma_1 \to \Gamma_2$ with $(\Phi)_* = \phi$.

Note: Lie III fails even when A is integrable. In general,

A is integrable \Rightarrow A is G-integrable

G-Integrability

Problem. When is a *G*-principal algebroid $A \rightarrow X$ *G*-integrable?

We are looking for:

- a Lie groupoid $\Gamma \rightrightarrows X$ which integrates *A*;
- a morphism $\iota : X \rtimes G \to \Gamma$ which integrates $i : X \rtimes \mathfrak{g} \to A$.

G-Integrability

Problem. When is a *G*-principal algebroid $A \rightarrow X$ *G*-integrable?

We are looking for:

- a Lie groupoid $\Gamma \rightrightarrows X$ which integrates *A*;
- a morphism $\iota : X \rtimes G \to \Gamma$ which integrates $i : X \rtimes \mathfrak{g} \to A$.

Remark. We only care about *G*-principal groupoids: if *A* has a tautological form or a connection form they "integrate for free".

Assume A is an integrable G-principal groupoid and let $\tilde{\Gamma}$ be its canonical integration.

Assume A is an integrable G-principal groupoid and let $\tilde{\Gamma}$ be its canonical integration.

Definition. The **extended** *G*-monodromy at $x \in X$ is the image $\widetilde{\mathcal{N}}_{x}^{G}$ of the map

$$\partial_x^G: \pi_1(G) \to \widetilde{\Gamma}_x, \quad g \mapsto \widetilde{\iota}(x,g).$$

These groups assemble to a normal sub-bundle of groups contained in the center of the isotropy groups:

$$\widetilde{\mathcal{N}}^G = \bigcup_{x \in X} \widetilde{\mathcal{N}}_x^G.$$

Assume A is an integrable G-principal groupoid and let $\tilde{\Gamma}$ be its canonical integration.

Definition. The **extended** *G*-monodromy at $x \in X$ is the image $\widetilde{\mathcal{N}}_{x}^{G}$ of the map

$$\partial_x^G: \pi_1(G) \to \widetilde{\Gamma}_x, \quad g \mapsto \widetilde{\iota}(x,g).$$

These groups assemble to a normal sub-bundle of groups contained in the center of the isotropy groups:

$$\widetilde{\mathcal{N}}^G = \bigcup_{x \in X} \widetilde{\mathcal{N}}_x^G.$$

Theorem. Let A be a G-principal algebroid which is integrable. Then A is G-integrable if and only if $\widetilde{\mathcal{N}}^G \subset \widetilde{\Gamma}$ is uniformly discrete.

Assume A is an integrable G-principal groupoid and let $\tilde{\Gamma}$ be its canonical integration.

Definition. The **extended** *G*-monodromy at $x \in X$ is the image $\widetilde{\mathcal{N}}_{x}^{G}$ of the map

$$\partial_x^G: \pi_1(G) \to \widetilde{\Gamma}_x, \quad g \mapsto \widetilde{\iota}(x,g).$$

These groups assemble to a normal sub-bundle of groups contained in the center of the isotropy groups:

$$\widetilde{\mathcal{N}}^G = \bigcup_{x \in X} \widetilde{\mathcal{N}}_x^G.$$

Theorem. Let A be a G-principal algebroid which is integrable. Then A is G-integrable if and only if $\widetilde{\mathcal{N}}^G \subset \widetilde{\Gamma}$ is uniformly discrete.

In this case the canonical G-integration of A is:

 $\widetilde{\Gamma}_{G}=\widetilde{\Gamma}/\widetilde{\mathcal{N}}_{x}^{G}.$

The *G*-monodromy at $x \in X$ is the subgroup $\mathcal{N}_{x}^{\mathcal{G}} \subset Z(\ker \rho_{x})$ such that

 $\exp(\mathcal{N}_{x}^{G}) = \widetilde{\mathcal{N}}_{x}^{G} \cap Z(\widetilde{\Gamma}_{x})^{0}.$

The *G*-monodromy at $x \in X$ is the subgroup $\mathcal{N}_x^G \subset Z(\ker \rho_x)$ such that

 $\exp(\mathcal{N}_{x}^{G}) = \widetilde{\mathcal{N}}_{x}^{G} \cap Z(\widetilde{\Gamma}_{x})^{0}.$

• A is G-integrable if and only if $\mathcal{N}^G \subset A$ is uniformly discrete.

The *G*-monodromy at $x \in X$ is the subgroup $\mathcal{N}_x^G \subset Z(\ker \rho_x)$ such that

$$\exp(\mathcal{N}_{X}^{G}) = \widetilde{\mathcal{N}}_{X}^{G} \cap Z(\widetilde{\Gamma}_{X})^{0}.$$

• A is G-integrable if and only if $\mathcal{N}^G \subset A$ is uniformly discrete.

A G-splitting along a leaf L is a splitting of the short exact sequence:

$$0 \longrightarrow \operatorname{Ker} \rho|_{L} \longrightarrow A|_{L} \xrightarrow[\sigma]{\rho} TL \longrightarrow 0$$

compatible with the action morphism $i : X \rtimes \mathfrak{g} \to A$ and with center-valued curvature 2-form:

$$\Omega_{\sigma}(X,Y) = \sigma([X,Y] - [\sigma(X),\sigma(Y)] \in Z(\ker \rho|_L).$$

The *G*-monodromy at $x \in X$ is the subgroup $\mathcal{N}_x^G \subset Z(\ker \rho_x)$ such that

$$\exp(\mathcal{N}_{X}^{G}) = \widetilde{\mathcal{N}}_{X}^{G} \cap Z(\widetilde{\Gamma}_{X})^{0}.$$

• A is G-integrable if and only if $\mathcal{N}^G \subset A$ is uniformly discrete.

A G-splitting along a leaf L is a splitting of the short exact sequence:

$$0 \longrightarrow \operatorname{Ker} \rho|_{L} \longrightarrow A|_{L} \xrightarrow{\rho} TL \longrightarrow 0$$

compatible with the action morphism $i : X \rtimes \mathfrak{g} \to A$ and with center-valued curvature 2-form:

$$\Omega_{\sigma}(X,Y) = \sigma([X,Y] - [\sigma(X),\sigma(Y)] \in Z(\ker \rho|_L).$$

Proposition. If the action is locally free at *x* and the leaf $L \subset X$ admits a *G*-splitting $\sigma : TL \rightarrow A|_L$ then

$$\mathcal{N}_{x}^{G} = \left\{ \int_{c} \Omega_{\sigma} \mid c: D^{2} \rightarrow L, \ c|_{\partial D^{2}} \subset x \cdot G \right\}.$$

Theorem (local solutions).

Let (G, X, c, R, F) be Cartan Data defining a *G*-structure Lie algebroid with connection $A \rightarrow X$. For each $x \in X$ there exists a *G*-invariant, open neighborhood $x \in U \subset L$ such that $A|_U$ is *G*-integrable.

Theorem (local solutions).

Let (G, X, c, R, F) be Cartan Data defining a *G*-structure Lie algebroid with connection $A \rightarrow X$. For each $x \in X$ there exists a *G*-invariant, open neighborhood $x \in U \subset L$ such that $A|_U$ is *G*-integrable.

In particular, there exists a solution ($F_G(M)$, (θ, ω) , h) with $x \in Im h$ and:

- the germ of solutions at x is unique up to equivalence;
- if x and x' belong to same leaf of A, the germs of solutions at x and x' are isomorphic;
- the Lie algebra of symmetries of the solution is the isotropy Lie algebra of *A* at *x*;

Theorem (local solutions).

```
Let (G, X, c, R, F) be Cartan Data defining a G-structure Lie algebroid with connection A \rightarrow X. For each x \in X there exists a G-invariant, open neighborhood x \in U \subset L such that A|_U is G-integrable.
```

In particular, there exists a solution ($F_G(M)$, (θ, ω) , h) with $x \in \text{Im } h$ and:

- the germ of solutions at x is unique up to equivalence;
- if x and x' belong to same leaf of A, the germs of solutions at x and x' are isomorphic;
- the Lie algebra of symmetries of the solution is the isotropy Lie algebra of *A* at *x*;

Sketch of proof.

(i) For first part, use G-splitting to show G-monodromy is discrete.

Theorem (local solutions).

```
Let (G, X, c, R, F) be Cartan Data defining a G-structure Lie algebroid with connection A \to X. For each x \in X there exists a G-invariant, open neighborhood x \in U \subset L such that A|_U is G-integrable.
```

In particular, there exists a solution ($F_G(M)$, (θ, ω) , h) with $x \in \text{Im } h$ and:

- the germ of solutions at x is unique up to equivalence;
- if x and x' belong to same leaf of A, the germs of solutions at x and x' are isomorphic;
- the Lie algebra of symmetries of the solution is the isotropy Lie algebra of *A* at *x*;

Sketch of proof.

- (i) For first part, use *G*-splitting to show *G*-monodromy is discrete.
- (ii) For second part, use any *G*-integration.

Theorem (local solutions).

```
Let (G, X, c, R, F) be Cartan Data defining a G-structure Lie algebroid with connection A \to X. For each x \in X there exists a G-invariant, open neighborhood x \in U \subset L such that A|_U is G-integrable.
```

In particular, there exists a solution ($F_G(M)$, (θ, ω) , h) with $x \in \text{Im } h$ and:

- the germ of solutions at x is unique up to equivalence;
- if x and x' belong to same leaf of A, the germs of solutions at x and x' are isomorphic;
- the Lie algebra of symmetries of the solution is the isotropy Lie algebra of *A* at *x*;

Sketch of proof.

- (i) For first part, use G-splitting to show G-monodromy is discrete.
- (ii) For second part, use any *G*-integration.

Remark. According to Bryant, local existence was known to E. Cartan. I am not so sure...

Restrict to the metric type (but there is a general theory!):

A *G*-structure algebroid with connection (=Cartan data (*G*, *X*, *c*, *R*, *F*)) is said to be of **metric type** if $G \subset O(n, \mathbb{R})$ and c = 0.

Restrict to the metric type (but there is a general theory!):

A *G*-structure algebroid with connection (=Cartan data (*G*, *X*, *c*, *R*, *F*)) is said to be of **metric type** if $G \subset O(n, \mathbb{R})$ and c = 0.

In the metric case, $A \simeq X \times (\mathbb{R}^n \oplus \mathfrak{g})$ carries the canonical fiberwise metric:

 $K_{\mathsf{A}}((u,\alpha),(v,\beta)):=\langle u,v\rangle_{\mathbb{R}^n}+\langle \alpha,\beta\rangle_{\mathfrak{g}}\quad (u,\alpha),(v,\beta)\in \mathsf{A},$

 \implies solutions are Riemannian manifolds and ω is the Levi-Civita connection

Restrict to the metric type (but there is a general theory!):

A *G*-structure algebroid with connection (=Cartan data (*G*, *X*, *c*, *R*, *F*)) is said to be of **metric type** if $G \subset O(n, \mathbb{R})$ and c = 0.

In the metric case, $A \simeq X \times (\mathbb{R}^n \oplus \mathfrak{g})$ carries the canonical fiberwise metric:

$$K_{\mathcal{A}}((u,\alpha),(v,\beta)) := \langle u,v \rangle_{\mathbb{R}^n} + \langle \alpha,\beta \rangle_{\mathfrak{g}} \quad (u,\alpha),(v,\beta) \in \mathcal{A},$$

 \implies solutions are Riemannian manifolds and ω is the Levi-Civita connection

Lemma. The metric K_A induces a Riemannian metric on the leaves of A so that anchor induces for each $x \in X$ an isometry

$$\rho: (\ker \rho|_{\mathcal{X}})^{\perp} \to T_{\mathcal{X}}L.$$

Restrict to the metric type (but there is a general theory!):

A *G*-structure algebroid with connection (=Cartan data (*G*, *X*, *c*, *R*, *F*)) is said to be of **metric type** if $G \subset O(n, \mathbb{R})$ and c = 0.

In the metric case, $A \simeq X \times (\mathbb{R}^n \oplus \mathfrak{g})$ carries the canonical fiberwise metric:

$$K_{\mathcal{A}}((u,\alpha),(v,\beta)) := \langle u,v \rangle_{\mathbb{R}^n} + \langle \alpha,\beta \rangle_{\mathfrak{g}} \quad (u,\alpha),(v,\beta) \in \mathcal{A},$$

 \implies solutions are Riemannian manifolds and ω is the Levi-Civita connection

Lemma. The metric K_A induces a Riemannian metric on the leaves of A so that anchor induces for each $x \in X$ an isometry

$$\rho: (\ker \rho|_{\mathbf{X}})^{\perp} \to T_{\mathbf{X}}L.$$

 \implies leaves of A have a natural Riemannian structure.

Theorem (complete solutions).

Let $A \to X$ be a *G*-structure algebroid with connection of metric type and let $(P, (\theta, \omega), h)$ be a solution of Cartan's realization problem. Then:

Theorem (complete solutions).

Let $A \to X$ be a *G*-structure algebroid with connection of metric type and let $(P, (\theta, \omega), h)$ be a solution of Cartan's realization problem. Then:

(i) If *M* = *P*/*G* is metric complete and 1-connected, then *P* is isomorphic to a fiber t⁻¹(*x*) of the canonical *G*-integration of *A*|_L for some leaf *L* ⊂ *X*. Moreover, this leaf is metric complete.

Theorem (complete solutions).

Let $A \to X$ be a *G*-structure algebroid with connection of metric type and let $(P, (\theta, \omega), h)$ be a solution of Cartan's realization problem. Then:

- (i) If *M* = *P*/*G* is metric complete and 1-connected, then *P* is isomorphic to a fiber t⁻¹(*x*) of the canonical *G*-integration of *A*|_L for some leaf *L* ⊂ *X*. Moreover, this leaf is metric complete.
- (ii) Conversely, if a leaf *L* is metric complete and *A*|_L is *G*-integrable, then any t-fiber of the canonical *G*-integration of *A*|_L yields a metric complete solution.

.

3) Example: Extremal Kähler Metrics

- $X = \mathbb{R} \times \mathbb{C} \times \mathbb{R}$ Coordinates: (*K*, *T*, *U*);
- U(1)-Action: $(K, T, U) \cdot g = (K, g^{-1}T, U);$
- $\blacktriangleright A = X \times (\mathbb{C} \oplus i\mathbb{R});$
- Bracket of constant sections:

$$[(\boldsymbol{z},\alpha),(\boldsymbol{w},\beta)]|_{(\boldsymbol{K},\boldsymbol{T},\boldsymbol{U})}:=(\alpha\boldsymbol{w}-\beta\boldsymbol{z},-\frac{\boldsymbol{K}}{2}(\boldsymbol{z}\boldsymbol{\bar{w}}-\boldsymbol{\bar{z}}\boldsymbol{w}));$$

Anchor:

$$\rho(\boldsymbol{z},\alpha)|_{(K,T,U)} := \left(-T\bar{\boldsymbol{z}}-\bar{\boldsymbol{T}}\boldsymbol{z}, \boldsymbol{U}\boldsymbol{z}-\alpha\boldsymbol{T}, -\frac{K}{2}T\bar{\boldsymbol{z}}-\frac{K}{2}\bar{\boldsymbol{T}}\boldsymbol{z}\right).$$

3) Example: Extremal Kähler Metrics

- $X = \mathbb{R} \times \mathbb{C} \times \mathbb{R}$ Coordinates: (K, T, U);
- U(1)-Action: $(K, T, U) \cdot g = (K, g^{-1}T, U);$

$$A = X \times (\mathbb{C} \oplus i\mathbb{R});$$

Bracket of constant sections:

$$[(\boldsymbol{z},\alpha),(\boldsymbol{w},\beta)]|_{(\boldsymbol{K},\boldsymbol{T},\boldsymbol{U})}:=(\alpha\boldsymbol{w}-\beta\boldsymbol{z},-\frac{\boldsymbol{K}}{2}(\boldsymbol{z}\boldsymbol{\bar{w}}-\boldsymbol{\bar{z}}\boldsymbol{w}));$$

Anchor:

$$\rho(\boldsymbol{z},\alpha)|_{(K,T,U)} := \left(-T\bar{\boldsymbol{z}} - \bar{\boldsymbol{T}}\boldsymbol{z}, \boldsymbol{U}\boldsymbol{z} - \alpha\boldsymbol{T}, -\frac{K}{2}T\bar{\boldsymbol{z}} - \frac{K}{2}\bar{\boldsymbol{T}}\boldsymbol{z}\right).$$

This Lie algebroid is not U(1)-integrable!

Need to investigate U(1)-integrability of $A|_L$, for each leaf L.

3) Example: Extremal Kähler Metrics

•
$$X = \mathbb{R} \times \mathbb{C} \times \mathbb{R}$$
 - Coordinates: (K, T, U) ;

•
$$U(1)$$
-Action: $(K, T, U) \cdot g = (K, g^{-1}T, U);$

$$\blacktriangleright A = X \times (\mathbb{C} \oplus i\mathbb{R});$$

Bracket of constant sections:

$$[(\boldsymbol{z},\alpha),(\boldsymbol{w},\beta)]|_{(\boldsymbol{K},\boldsymbol{T},\boldsymbol{U})}:=(\alpha\boldsymbol{w}-\beta\boldsymbol{z},-\frac{\boldsymbol{K}}{2}(\boldsymbol{z}\boldsymbol{\bar{w}}-\boldsymbol{\bar{z}}\boldsymbol{w}));$$

Anchor:

$$\rho(\boldsymbol{z},\alpha)|_{(K,T,U)} := \left(-T\bar{\boldsymbol{z}} - \bar{\boldsymbol{T}}\boldsymbol{z}, \boldsymbol{U}\boldsymbol{z} - \alpha\boldsymbol{T}, -\frac{\kappa}{2}T\bar{\boldsymbol{z}} - \frac{\kappa}{2}\bar{\boldsymbol{T}}\boldsymbol{z}\right).$$

In real coordinates: $\alpha = i\lambda$, z = a + ib, T = X + iY:

$$\begin{split} \rho(z,\alpha)|_{(K,T,U)} &= a\left(-2X\frac{\partial}{\partial K} + U\frac{\partial}{\partial X} - KX\frac{\partial}{\partial U}\right) + \\ &+ b\left(-2Y\frac{\partial}{\partial K} + U\frac{\partial}{\partial Y} - KY\frac{\partial}{\partial U}\right) + \lambda\left(Y\frac{\partial}{\partial X} - X\frac{\partial}{\partial Y}\right) \end{split}$$

For constant sections $e_1 = (1,0), e_2 = (i,0), e_3 = (0,i)$:

$$[e_1, e_2] = Ke_3, \quad [e_1, e_3] = -e_2, \quad [e_2, e_3] = e_1.$$

Action morphism $\iota : X \rtimes i\mathfrak{u}(1) \to A$:

$$\iota(\mathbf{x},i\lambda)=\lambda \mathbf{e}_3.$$

Leaves and Isotropy of A

Functions constant on the leaves of A:

$$I_1 = \frac{K^2}{4} - U, \qquad I_2 = X^2 + Y^2 + KU - \frac{1}{6}K^3,$$

These two functions are independent everywhere except at X = Y = U = 0 when the anchor vanishes.

Leaves and Isotropy of A

Functions constant on the leaves of A:

$$I_1 = \frac{K^2}{4} - U, \qquad I_2 = X^2 + Y^2 + KU - \frac{1}{6}K^3,$$

These two functions are independent everywhere except at X = Y = U = 0 when the anchor vanishes.

Leaves and Isotropy Lie algebras:

- ▶ the points (K, 0, 0, 0) with isotropy Lie algebra $\mathfrak{so}(3, \mathbb{R})$ (if K > 0), $\mathfrak{sl}(2, \mathbb{R})$ (if K < 0) and $\mathfrak{so}(2, \mathbb{R}) \ltimes \mathbb{R}^2$ (if K = 0);
- ► the 2-dimensional submanifolds of R⁴ given by the connected components of the common level sets of *I*₁ and *I*₂, with isotropy Lie algebra R.

Fixed Points

Restriction of A to the family of 0-dimensional leaves $\{(K, 0, 0, 0) : K \in \mathbb{R}\}$ is automatically G-integrable;

Fixed Points

Restriction of A to the family of 0-dimensional leaves $\{(K, 0, 0, 0) : K \in \mathbb{R}\}$ is automatically G-integrable;

It is a bundle of U(1)-structure Lie algebras with connection: it Lie algebroid is the U(1)-structure algebroid with connection classifying constant curvature Kähler surfaces.

 \implies already seen the canonical U(1)-integration.

Fixed Points

Restriction of A to the family of 0-dimensional leaves $\{(K, 0, 0, 0) : K \in \mathbb{R}\}$ is automatically G-integrable;

It is a bundle of U(1)-structure Lie algebras with connection: it Lie algebroid is the U(1)-structure algebroid with connection classifying constant curvature Kähler surfaces.

 \implies already seen the canonical U(1)-integration.

It remains to analyze the 2-dimensional leaves...

2-d Leaves of A

- I_1 and I_2 only depend on the radius $|T|^2 = X^2 + Y^2$;
- Leaves are U(1)-rotations of level sets of I_1 and I_2 (curves in \mathbb{R}^3).

2-d Leaves of A

- I₁ and I_2 only depend on the radius $|T|^2 = X^2 + Y^2$;
- Leaves are U(1)-rotations of level sets of I_1 and I_2 (curves in \mathbb{R}^3).

$$\begin{cases} l_1 = c_1 \\ l_2 = c_2 \end{cases} \Leftrightarrow \begin{cases} U = \frac{K^2}{4} - c_1 \\ |T|^2 = -\frac{1}{12}K^3 + c_1K + c_2 \end{cases}$$

2-d Leaves of A

- I₁ and I_2 only depend on the radius $|T|^2 = X^2 + Y^2$;
- Leaves are U(1)-rotations of level sets of I_1 and I_2 (curves in \mathbb{R}^3).

$$\begin{cases} l_1 = c_1 \\ l_2 = c_2 \end{cases} \Leftrightarrow \begin{cases} U = \frac{K^2}{4} - c_1 \\ |T|^2 = -\frac{1}{12}K^3 + c_1K + c_2 \end{cases}$$

- Use K as a parameter;
- Depending on the values of c₁ and c₂, the shape of the curve will determined if leaves have topology and hence also monodromy and/or G-monodromy;
- Note that the cubic

$$p(K) = -\frac{1}{12}K^3 + c_1K + c_2$$

has discriminant:

$$\Delta = \frac{1}{48} (16c_1^3 - 9c_2^2).$$

A 0-dimensional leaf (K, 0, 0, 0) belongs to a common level set $I_1 = c_1$, $I_2 = c_2$, if and only if

$$\left\{ \begin{array}{ll} \mathcal{K}^2 = 4c_1 \\ 0 = -\frac{1}{12}\mathcal{K}^3 + c_1\mathcal{K} + c_2 \end{array} \quad \Rightarrow \quad 16c_1^3 - 9c_2^2 = 0 \quad \Leftrightarrow \quad \Delta = 0. \end{array} \right.$$

p(K) has triple root: Level set consists of one single leaf obtained by rotating the curve

$$\begin{cases} U = K^2 \\ |T|^2 = -\frac{1}{12}K^3 \end{cases} \quad K \in]-\infty, 0[.$$

The value K = 0 is excluded since the origin (0, 0, 0, 0) is a 0-dim leaf.

p(K) has triple root: Level set consists of one single leaf obtained by rotating the curve

$$\begin{cases} U = K^2 \\ |T|^2 = -\frac{1}{12}K^3 \end{cases} \quad K \in]-\infty, 0[.$$

The value K = 0 is excluded since the origin (0, 0, 0, 0) is a 0-dim leaf.

Leaf is topological a cylinder:

$$\pi_1(L) = \mathbb{Z}, \quad \pi_2(L) = 1.$$

p(K) has triple root: Level set consists of one single leaf obtained by rotating the curve

$$\left\{ \begin{array}{ll} U=K^2 \\ |T|^2=-\frac{1}{12}K^3 \end{array} \quad K\in]-\infty,0[. \end{array} \right.$$

The value K = 0 is excluded since the origin (0, 0, 0, 0) is a 0-dim leaf.

Leaf is topological a cylinder:

$$\pi_1(L) = \mathbb{Z}, \quad \pi_2(L) = 1.$$

The extended monodromy is trivial, $\widetilde{\Gamma}_{\chi}^{0} \simeq \mathbb{R}$ and $\pi_{0}(\widetilde{\Gamma}_{\chi}) = \mathbb{Z}$.

The restricted U(1)-monodromy is also trivial, so $A|_L$ is U(1)-integrable.

$\Delta=0,\,\textit{C}_2<0$

p(K) has 1 single real root $-4\sqrt{c_1}$ and 1 double real root $2\sqrt{c_1}$. Level set consists of isolated point $(2\sqrt{c_1}, 0, 0, 0)$ and 2-d leaf obtained by rotation of:

$$\begin{cases} U = \frac{1}{4}K^2 - c_1 \\ |T|^2 = -\frac{1}{12}(K - 2\sqrt{c_1})^2(K + 4\sqrt{c_1}) \end{cases} \quad K \in]-\infty, -4\sqrt{c_1}] \end{cases}$$

$\Delta=0,\,\textit{C}_2<0$

p(K) has 1 single real root $-4\sqrt{c_1}$ and 1 double real root $2\sqrt{c_1}$. Level set consists of isolated point $(2\sqrt{c_1}, 0, 0, 0)$ and 2-d leaf obtained by rotation of:

$$\begin{cases} U = \frac{1}{4}K^2 - c_1 \\ |T|^2 = -\frac{1}{12}(K - 2\sqrt{c_1})^2(K + 4\sqrt{c_1}) \end{cases} \quad K \in]-\infty, -4\sqrt{c_1}].$$

Leaf is topologically a plane:

$$\pi_1(L) = \pi_2(L) = 1.$$

 $A|_L$ is U(1)-integrable.

$\Delta=0,\,\textit{C}_2>0$

p(K) has 1 single real root $4\sqrt{c_1}$ and 1 double real root $-2\sqrt{c_1}$. Level set consists of a fixed point $(-2\sqrt{c_1}, 0, 0, 0)$ and two 2-dimensional leaves obtained by rotating the curve

$$\begin{cases} U = \frac{1}{4}K^2 - c_1 \\ |T|^2 = -\frac{1}{12}(K + 2\sqrt{c_1})^2(K - 4\sqrt{c_1}) \end{cases} \quad K \in]-\infty, -2\sqrt{c_1}[\cup] - 2\sqrt{c_1}, 4\sqrt{c_1}].$$

$\Delta=0,\,\textit{C}_2>0$

p(K) has 1 single real root $4\sqrt{c_1}$ and 1 double real root $-2\sqrt{c_1}$. Level set consists of a fixed point $(-2\sqrt{c_1}, 0, 0, 0)$ and two 2-dimensional leaves obtained by rotating the curve

$$\begin{cases} U = \frac{1}{4}K^2 - c_1 \\ |T|^2 = -\frac{1}{12}(K + 2\sqrt{c_1})^2(K - 4\sqrt{c_1}) \end{cases} \quad K \in]-\infty, -2\sqrt{c_1}[\cup] - 2\sqrt{c_1}, 4\sqrt{c_1}].$$

One leaf is a cylinder and the other is a plane:

$$\pi_1(L) = 1 \text{ or } \mathbb{Z}, \quad \pi_2(L) = 1.$$

 $A|_L$ is U(1)-integrable.

$\Delta < \mathbf{0}$

p(K) has 1 real root *r* and two complex conjugate roots. The level set consists of a 2-dimensional leaf obtained by rotating the curve

$$\begin{cases} U = \frac{1}{4}K^2 - c_1 \\ |T|^2 = -\frac{1}{12}(K - r)(K^2 + rK + r^2 - 12c_1) \end{cases} \quad K \in] -\infty, r].$$

Leaf is a plane, so A|L is U(1)-integrable.

$\Delta > \mathbf{0}$

p(K) has 3 real roots $r_1 < r_2 < r_3$. The level set consists of two 2-dimensional leaves obtained by rotating the curve

$$\begin{cases} U = \frac{1}{4}K^2 - c_1 \\ |T|^2 = -\frac{1}{12}(K - r_1)(K - r_2)(K - r_3) \end{cases} \quad K \in] -\infty, r_1] \cup [r_2, r_3].$$

One leaf is a plane L_1 and the other leaf $L_2 \simeq \mathbb{S}^2$.

 L_1 is U(1)-integrable.

 L_2 could fail to be U(1)-integrable.

G-integrability over L_2

Parameterization of L2:

$$\gamma(K,\theta) = (K, p(K)^{\frac{1}{2}} e^{i\theta}, K^2/4 - c_1), \quad (K,\theta) \in [r_2, r_3] \times [0, 2\pi],$$

G-Splitting:

$$\begin{split} \sigma\left(\frac{\partial\gamma}{\partial K}\right) &= \left(-\frac{1}{2}p(K)^{-\frac{1}{2}}e^{i\theta},0\right)\\ \sigma\left(\frac{\partial\gamma}{\partial \theta}\right) &= \frac{1}{p(K) + (K^2/4 - c_1)^2}\left(p(K)^{\frac{1}{2}}(K^2/4 - c_1)ie^{i\theta},-p(K)i\right) \end{split}$$

Curvature:

$$\Omega_{\sigma}\left(\frac{\partial\gamma}{\partial K},\frac{\partial\gamma}{\partial\theta}\right) = \left[\sigma\left(\frac{\partial\gamma}{\partial K}\right),\sigma\left(\frac{\partial\gamma}{\partial\theta}\right)\right] = \frac{\partial}{\partial K}\left(\frac{K^{2}/4-c_{1}}{p(K)+(K^{2}/4-c_{1})^{2}}\right)s_{0}$$

Monodromy:

$$\mathcal{N} = 8\pi\mathbb{Z}\left(\frac{1}{r_3^2 - 4c_1} + \frac{1}{4c_1 - r_2^2}\right)s_0.$$

G-Monodromy:

$$\mathcal{N}^{U(1)} = \mathcal{N} \cup 2\pi\mathbb{Z}\left(\frac{1}{r_3^2/4 - c_1}\right) s_0 = \left\{8\pi\left(\frac{n_1}{r_3^2 - 4c_1} + \frac{n_2}{4c_1 - r_2^2}\right) s_0 : n_1, n_2 \in \mathbb{Z}\right\}.$$

A|_L is
$$U(1)$$
-integrable if and only if $rac{4c_1-r_2^2}{r_3^2-4c_1}\in\mathbb{Q}$

Table: 1-connected extremal Kähler surfaces

Conditions	$U(1)$ -frame bundle: $s^{-1}(x)$	Solutions: $s^{-1}(x)/U(1)$
<i>K</i> = 0	$SO(2) \ltimes \mathbb{R}^2$	\mathbb{R}^2
K = c > 0	S ³	S ²
<i>K</i> = <i>c</i> < 0	SO(2, 1)	
$\Delta=0, c_1=c_2=0$	$(\mathbb{R}^2 imes \mathbb{R})/\mathbb{Z}$	\mathbb{R}^2
$\Delta=0, c_2<0$	$\mathbb{R}^2\times\mathbb{S}^1$	\mathbb{R}^2
$\Delta=0,c_2>0$	$(\mathbb{R}^2 imes\mathbb{R})/\mathbb{Z}$ $(\mathbb{R}^2 imes\mathbb{S}^1)$	\mathbb{R}^2
$\Delta < 0$	$\mathbb{R}^2\times\mathbb{S}^1$	\mathbb{R}^2
$\Delta > 0$	$\mathbb{R}^2\times \mathbb{S}^1$	\mathbb{R}^2
$(\text{if } \frac{4c_1 - r_2^2}{r_3^2 - 4c_1} = \frac{p}{q})$	S ³	$\mathbb{CP}^1_{ ho,q}$

- One could find explicit formulas for the metrics;
- No need! One can compute the induced metric on each leaf L explicitly and determine when it is complete.

- One could find explicit formulas for the metrics;
- No need! One can compute the induced metric on each leaf L explicitly and determine when it is complete.

The 1-connected complete extremal Kähler metrics on a surface are the constant scalar curvature metrics \mathbb{R}^2 , \mathbb{S}^2 , \mathbb{H}^2 , and two special families of metrics: one on a disk \mathbb{D}^2 and the other on the weight projective space $\mathbb{CP}^1_{0,g}$.

Note: \mathbb{D}^2 corresponds to the branch $] - 2\sqrt{c_1}, 4\sqrt{c_1}]$ in the case $\Delta = 0, c_2 > 0$.

- One could find explicit formulas for the metrics;
- No need! One can compute the induced metric on each leaf L explicitly and determine when it is complete.

The 1-connected complete extremal Kähler metrics on a surface are the constant scalar curvature metrics \mathbb{R}^2 , \mathbb{S}^2 , \mathbb{H}^2 , and two special families of metrics: one on a disk \mathbb{D}^2 and the other on the weight projective space $\mathbb{CP}^1_{o,g}$.

Note: \mathbb{D}^2 corresponds to the branch $] - 2\sqrt{c_1}, 4\sqrt{c_1}]$ in the case $\Delta = 0, c_2 > 0$.

Much more can be said about finite type.....

- One could find explicit formulas for the metrics;
- No need! One can compute the induced metric on each leaf L explicitly and determine when it is complete.

The 1-connected complete extremal Kähler metrics on a surface are the constant scalar curvature metrics \mathbb{R}^2 , \mathbb{S}^2 , \mathbb{H}^2 , and two special families of metrics: one on a disk \mathbb{D}^2 and the other on the weight projective space $\mathbb{CP}^1_{0,g}$.

Note: \mathbb{D}^2 corresponds to the branch $] - 2\sqrt{c_1}, 4\sqrt{c_1}]$ in the case $\Delta = 0, c_2 > 0$.

Much more can be said about finite type.....

BIG OPEN QUESTION: What about infinite type?