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Aim: How to solve classification problems in geometry which are of finite type.

Some examples:

> Classification of (complete) Riemannian metrics of constant sectional curvature
[Killing—Hopf];

> Classification of (complete) Bochner-Kahler metrics [Bryant];

» Classification of (complete) Ricci type symplectic connections [Schwachhéfer et
al]

> ()

Main message: Lie groupoids and Lie algebroids (with extra structure) provide the
right language to solve equivalence problems.

Based on joint work with lvan Struchiner (USP):

— The Global Solutions to a Cartan’s Realization Problem, arxiv:1907.13614.
To appear in Memoirs of the AMS
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The main steps of the program:

Classification problem fora .,  G-structure algebroid
class of geometric structures (with connection)

Solutions to PN Integrate G-structure algebroid to
classification problem G-structure groupoid (with connection)
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Lecture 3:
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» Solving Cartan’s Realization Problem
» Moduli space of solutions
> The example of extremal K&hler metrics on surfaces
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G-principal bundles

A principal action of G on a manifold P is a proper, effective, locally free action
PxG— P.

The quotient M = P/G is a (effective) orbifold.

Notation: = : P — M is a G-principal bundle over the orbifold M.

Example
For an effective orbifold M with dim M = n, its frame bundle:

w:F(M)—> M

is a principal GL(n, R)-bundle.
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Connections on G-principal bundles

A principal connection on 7 : P — M is a subbundle H C TP satisfying:
(i) horizontal: TP = kerdrm & H;
(i) G-invariance: Hpg = g«Hp, forallg € G, p € P.

H is called the horizontal distribution.

.

Equivalently:

A principal connectionon 7 : P — Mis aformw € Q1(P,g) satisfying:
(i) vertical: w(ap) = «, for all & € g;
(i) G-invariance: g*w = Adg—1 w, forall g € G.

w is called the connection 1-form.

H = Kerw
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If G C GL(n,R) is a closed subgroup:

A G-structure over M is a G-principal subbundle of the frame bundle:

Fg(M) C E(M).

G-structures allow to encode many geometric structures, e.g.
- Coframes <> {e}-structures;
- Riemannian structures <= Op-structures;
- Almost complex structures <= GL;(C)-structures;
- Almost symplectic structures <= Sp,,-structures;
- Almost hermitian structures <= Up-structures.

Note: We will assume G compact and connected. Results extend to more general
cases with appropriate properness assumptions.
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Tautological form

The tautological form of a G-structure = : Fg(M) — M is
9 € Q' (Fg(M),R"), 6(¢) :=p~ " (dpm(€))

(think of frames as linear isomorphisms p : R" — T, M)

0 € Q' (Fg(M),R") satisfies:
(i) pointwise surjective: 0p : TpFg(M) — R"
(i) strong horizontal: 8(§) =0 < £ = apfora € g;
(iiiy G-equivariance: g*0 = g~ - 6.

Proposition
A G-principal 7 : P — M is a G-structure if and only if it carries a 1-form
6 € Q'(P,R") satistying (i)—(ii). Each such form gives a unique isomorphism

P ~ Fg(M) identifying 6 ~ 6.
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A (local) diffeomorphism ¢ : My — M, lifts to a (local) isomorphism of the frame
bundles:
¢* : F(M1) — F(Mg)

Two G-structures Fg(M; ) and Fg(M.) are (locally) equivalent if there is a (local)
diffeomorphism ¢ : My — M, such that:

¢«(Fa(M1)) = Fg(Mz).

> When are two G-structures (locally) equivalent?

Proposition

A principal bundle map ¢ : Fg(My) — Fg(M-) is an equivalence if and only if
D*0, = 65.




Structure equations of a G-structure with connection

Theorem
Letw : Fg(M) — M be G-structure with tautological form 6 € Q' (Fg(M),R")
and connection 1-form w € Q'(Fg(M), g). Then the following structure
equations hold:
dd=c(ON0)—wAb
{ dw=R(ONO) —wAw

where:
> ¢:Fg(M) — Hom(A2R"; R") is the torsion;
> R:Fg(M) — Hom(A2R"; g) is the curvature;




Structure equations of a G-structure with connection

Theorem

Letw : Fg(M) — M be G-structure with tautological form 6 € Q' (Fg(M),R")
and connection 1-form w € Q'(Fg(M), g). Then the following structure
equations hold:

A0 =c(ON0)—wAB
dw=R(ONO) —wAw
where:
> ¢:Fg(M) — Hom(A2R"; R") is the torsion;
> R:Fg(M) — Hom(A2R"; g) is the curvature;

Remark: The pair
(0,w): TFg(M) - R" @ g

gives a coframe at each p so Fg(M) is parallelizable.
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A Kéhler manifold (M, g, 2, J) with scalar curvature R is called extremal if the
hamiltonian vector field Xg is a Killing vector field (an infinitesimal isometry).

Remark: When M is compact, such metrics are critical points of the Calabi functional
9 [ R,
M

among Kahler metrics in a given Kahler class.

Problem
Classify the extremal Kahler metrics on a surface M?.
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Differential analysis

- (M?,g,Q,J) — extremal Kéhler surface

— P := Fy(@1y — M — unitary frame bundle with tautological form ¢ € Q'(P,C) and
Levi-Civita connection w € Q' (P, iR)

— Structure equations:
dfd = —-wAb
dw = g N

where K = R/2 : P — R is the Gaussian curvature.

— Differentiating K:

dK = —(T+T6)  where T=igt:P—>C,
dT = U6 — Tw U:I‘)“(;(UJZP—)R

dU = —K(To + 70)

The classification problem amounts to:

Find all U(1)-structures P — M with tautological form 6, connection form w
and function (K, T, U) : P — R @ C @ R, such that the pde’s above hold.
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-7 : P =Fgp(2)(M) — M orthogonal frame bundle with tautological form
0 € Q'(P,R?) and Levi-Civita connection form w € Q' (P, s0(2)),

do' = —w A 62,
do?2 = w A6,

dw = K0! A 62

— Structure equations:

where K = R/2 : P — R is the Gaussian curvature.
— Differentiating K:
dK = cos ¢ 0" + sin ¢ 62, where ¢: PR,
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Surface metrics with [VK| = 1

Problem
Classify the oriented Riemann surfaces (M?, g) with |VK| = 1.

-7 : P =Fgp(2)(M) — M orthogonal frame bundle with tautological form
0 € Q'(P,R?) and Levi-Civita connection form w € Q' (P, s0(2)),

do' = —w A 62,
do?2 = w A6,

dw = K0! A 62

— Structure equations:

where K = R/2 : P — R is the Gaussian curvature.

— Differentiating K:
dK = cos ¢ 0" + sin ¢ 62, where ¢: PR,
dp = w4 Jy(—sing @' + cos ¢ 6?), J:P>R
dJ; = —(K—&-J12)(cos¢91 +sing62) 4+ Jo(—sing @' +cosp6?), J:P =R

ddx = Fi(K, Ji, ..., Jk)(cos ¢ @' + sin ¢ 62)+
+Jk+1(—sin¢6’1 + COS¢92), Jkp1 : P—=R

The method does not apply (yet) to such infinite type problems.
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One is given Cartan Data:
(i) a connected, closed, Lie subgroup G C GL(n, R);
(if) a proper G-manifold X with infinitesimal action ¢ : X x g — TX;
(iii) G-equivariant maps:
¢: X — Hom(A%R",R"), R: X — Hom(A?R",g), F: X x R — TX

and asks for the existence of solutions:
» an n-dimensional orbifold M;

> a G-structure Fg(M) — M with tautological form 8 € Q' (Fg(M), R")
and connection 1-form w € Q'(Fg(M), g);

> an equivariant map h: Fg(M) — X;
satisfying the structure equations

dd=coh(@NO)—wAb
dv=Roh(0AN0)—wAw
dh = F(h,0) + y(h,w)




Cartan’s Realization Problem - Aims

> Characterize all solutions up to equivalence

> Determine group of symmetries/Lie algebra of symmetries of solutions

v

Find if moduli space of solutions has some differential or stacky structure

> Determine if "complete” solutions (e.g., metric complete solutions) exist
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Associated algebroid

Cartan Data (G, X, ¢, R, F) determines:
—vectorbundle A= X x (R"@g) — X

— vector bundle map (anchor) p: A — TX:

plu,0) = F(U) + ¥(a), (u,0) €R" @ g;

—aLie bracket [, ]: ['(A) x ['(A) — I'(A) on constant sections:
(U, ), (v, B)] = (e v = B u—c(u,v), [, Blg — R(u, v)),

and extended to any sections by imposing Leibniz.

The triple (A, [-, ], p) is an example of a Lie algebroid




Example: extremal Kahler surfaces

vVvyy

X =R x C x R, with coordinates (K, T, U)
A=Xx (CaiR)— X
Bracket of constant sections:

[(z,a), (W, B)ll(k,T,u) := (aw — Bz, —g(ZV_V — zw))

Anchor:

p(z, 04)|(K,T,U) = (—TZ —Tz,Uz—aT

,—ETZ— 57’2)
2 2




Example: extremal Kahler surfaces

v

X =R x C x R, with coordinates (K, T, U)
A=Xx(Ca®iR) > X
Bracket of constant sections:

vy

K, _  _
[(2, ), (W, DIk, 7.0) = (aw — Bz, =7 (2 — 2w))
»> Anchor:

p(z, )k, T,u) = (—TZ —Tz,Uz —aT, —gTZ = gTz)

\.

Remark. In this formulation, there are no more unknown objects!!



Next time: What does it mean to solve the problem, in this Lie
algebroid language?
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The main steps of the program:

Classification problem for a
finite type class
of geometric structures

s Cartan’s realization problem
(Cartan Data)

Cartan Data ¢,  G-structure algebroid
(with connection)

Solutions to s Integrate G-structure algebroid to
classification problem G-structure groupoid (with connection)
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and asks for the existence of solutions:
» an n-dimensional orbifold M,
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and connection 1-form w € Q' (Fg(M), g);
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Finite type classification problem «+» Cartan’s realization problem

Cartan’s realization problem

One is given Cartan Data:
(i) aclosed, Lie subgroup G C GL(n,R);
(if) a proper G-manifold X with infinitesimal action ¢ : X x g — TX;
(iii) G-equivariant maps:
c: X — Hom(AZR",R™), R: X — Hom(A?R”,g), F: X x R" — TX

and asks for the existence of solutions:
» an n-dimensional orbifold M,

> a G-structure Fg(M) — M with tautological form 6 € Q'(Fg(M), R")
and connection 1-form w € Q' (Fg(M), g);

> an equivariant map h : Fg(M) — X;
satisfying the structure equations

dd =coh(ONO)—wAb
dv=Roh(6NO)—wAw
dh = F(h,0) +w(h,)
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Algebroid of a Cartan’s realization problem

Cartan Data (G, X, ¢, R, F) determines:
- vectorbundle A= X x (R"@g) —» X
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Algebroid of a Cartan’s realization problem

Cartan Data (G, X, ¢, R, F) determines:
- vectorbundle A= X x (R"@g) —» X
- vector bundle map (anchor) p : A — TX:

p(u,a) = F(u) +¥(a), (u,a) ER" B g;




Last time

Cartan’s data <+ Lie algebroid

Algebroid of a Cartan’s realization problem

Cartan Data (G, X, ¢, R, F) determines:
- vectorbundle A= X x (R"@g) —» X
- vector bundle map (anchor) p : A — TX:

p(u,a) = F(u) +¥(a), (u,a) ER" B g;

- aliebracket [, ]:T(A) x [(A) — I'(A) on constant sections:
[(U1 a), (V7/8)] = (Oé V= B U— C(U’ V), [O‘MB]H - R(Ua V))7

and extended to any sections by imposing Leibniz.




Last time

Cartan’s data <+ Lie algebroid

Algebroid of a Cartan’s realization problem

Cartan Data (G, X, ¢, R, F) determines:
- vectorbundle A= X x (R"@g) —» X
- vector bundle map (anchor) p : A — TX:

p(u,a) = F(u) +¥(a), (u,a) ER" B g;

- aliebracket [, ]:T(A) x [(A) — I'(A) on constant sections:
[(U1 a), (Vv/B)] = (Oé V= ﬁ U— C(U’ V), [O‘MB]H - R(Ua V))7

and extended to any sections by imposing Leibniz.
The triple (A, [, ‘], p) is a G-structure Lie algebroid with connection.




Last time

s )

Extremal Kahler surfaces. To find such metrics amounts to find all U(1)-
structures P — M with tautological form 6, connection form w and function
(K, T,U): P—Ra®Ca®R, such that

dd=—-—wA_0
dw:%@/\e_
dK:—(?’G-i— T0)
dT =U0 — Tw

dU = —K(To + T0)




Last time

7~

Extremal Kahler surfaces. To find such metrics amounts to find all U(1)-
structures P — M with tautological form 6, connection form w and function
(K, T,U): P—Ra®Ca®R, such that

dd=—-—wA_0
dw:%@/\e_
dK:—(?’G-i— T0)
dT =U0 — Tw

dU = —K(To + T0)

Associated algebroid:

A=RXxCxR)Xx(ChIR) ——= X=RxCxR
(with global coordinates (K, T, U))
Lie bracket: [(z, ), (w, B)ll(k,T,u) = (aw — B2, fg(zv'v —zw))

Anchor: p(z,a)|k,T,u) = (— Tz—Tz,Uz—aT,-X72 - g'Tz)
It comes with a right U(1)-action:

(K. T,U,z,0)g = (K,g7'T,U,g""2,).




Another example
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Metrics of constant sectional curvature. To find such metrics amounts to find
all SO(n)-structures P — M with tautological form 6, connection form w and
function K : P — R, such that

dfd=—-wAnb
dw=ROAN0)—wAw
dK =0

where
R(u,v)w = K ({(w, v)u — (w,uyv).




Another example

7~

Metrics of constant sectional curvature. To find such metrics amounts to find
all SO(n)-structures P — M with tautological form 6, connection form w and
function K : P — R, such that

dfd=—-wAnb
dw=ROAN0)—wAw
dK =0

where
R(u,v)w = K ({(w, v)u — (w,uyv).

Associated algebroid:
A=R"x (R"®s0(n,R)) ——— X =R

(with global coordinate K)

Lie bracket: [(u, a), (v, B8)]|k := (av — Bu, [a, 8] — R(u, v))
Anchor: p(u,a)|x :=0

It comes with a right SO(n)-action:

(K,u,a)g = (K,g"'u,g~"ag).




Plan

Lecture 1:
> Recollection of G-structures
> Finite type vs infinite type through examples
» Cartan’s Realization Problem and algebroids

Lecture 2:
» Algebroids and groupoids
» G-structure groupoids
» G-structure algebroids
» Construction of solutions



Plan

Lecture 1:
> Recollection of G-structures
> Finite type vs infinite type through examples
» Cartan’s Realization Problem and algebroids

Lecture 2:
» Algebroids and groupoids
» G-structure groupoids
» G-structure algebroids
» Construction of solutions

Lecture 3:
> G-integrability
» Solving Cartan’s Realization Problem
» Moduli space of solutions
> The example of extremal K&hler metrics on surfaces



1) Crash course on Lie algebroids and groupoids

A Lie algebroid is a vector bundle A — X with:
1. A Lie bracket [-, -]a; [(A) x [(A) — [(A);
2. Aanchormap pp: A— TX;
satisfying:
[s1,fs2]a = f[s1, S2]a + p(s1)(f) S2.

Main idea: Think of (A, [-, -], pa) as a generalized tangent bundle.



1) Crash course on Lie algebroids and groupoids

A Lie algebroid is a vector bundle A — X with:
1. ALie bracket [-, -]a; [ (A) x [(A) — T'(A);
2. Aanchormap pp: A— TX;
satisfying:
[s1,1 s2]a = f[s1, S2]a + p(s1)(F) S2.

Main idea: Think of (A, [-, ‘], pa) as a generalized tangent bundle.

Alternative definition:

A Lie algebroid is a vector bundle A — X with a linear operator:
dy : Q°(A) = Q*F1(A),

satisfying:
1. d3=0;
2. da(anB) =daa A B+ (=1)aAdys.




1) Crash course on Lie algebroids and groupoids

A Lie algebroid is a vector bundle A — X with a linear operator
da: Q°(A) = Q*F1(A),

satisfying:
1. d3=0;
2. da(anB) =daa A B+ (=1)la Adys.

A Lie algebroid morphism is a vector bundle map
A1 L A2

Xi —¢>X2

that intertwines the differentials: ®*d, = da, ®*.




Geometry on Lie algebroids

Basic properties of (A, p, [, -]):
> characteristic foliation of X: integrates the (singular) distribution Im p C TX;

> isotropy Lie algebras: for each x € X, gx := Ker px is a finite dim Lie algebra.



Geometry on Lie algebroids

Basic properties of (A, p, [+, -]):
> characteristic foliation of X: integrates the (singular) distribution Im p C TX;

> isotropy Lie algebras: for each x € X, gx := Ker px is a finite dim Lie algebra.

One works with A as if it was the tangent bundle. For example:

o A-symplectic form: w € Q2?(A) such that dqw = 0 and A — A*, a — lqw, is
isomorphism;

e A-complex structure: J : A — Asuch that J2 = —/ and

NJ(a7 B) = [JO&, Jﬁ] - J([Jav 6] + [a’ JB]) - [Oé, 6] =0.

e A-connection: V : ['(A) x ['(E) — '(A) a R-bilinear map such that:

Va8 =1Vas, Vafs=1Vas+ p(a)(f)s.



Some classes of examples

» Tangent bundles TX;

> Lie algebras g;

»> Bundle of Lie algebras;

> Lie algebra actions ¢ : g — X(X);
»> Prequantization (X, w);

> Poisson structures (X, )

> ()



Groupoids

A groupoid is a small category where every morphism is an isomorphism.
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Groupoids

A groupoid is a small category where every morphism is an isomorphism.

I = set of arrows
> source and target maps:

g
P
L L]
t(9) s(9)
> product:
hg
m
— <~

X = set of objects.

r@® = {(h,g) e xT:s(h)=t(g)}

m:T@ > r



Groupoids

A groupoid is a small category where every morphism is an isomorphism.

I = set of arrows X = set of objects.
> identity:

1x
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u: X—=r



Groupoids

A groupoid is a small category where every morphism is an isomorphism.

I = set of arrows X = set of objects.

> identity:
1x
u:X—r X
9
P
> inverse: t:F——T t(g)® *s(g)
—
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A groupoid is a small category where every morphism is an isomorphism.

A morphism of groupoids is a functor 7 : [y — I».



Groupoids

A groupoid is a small category where every morphism is an isomorphism.
A morphism of groupoids is a functor 7 : [y — Io.

This means we have a map F : 'y — ['» between the sets of arrows, and a map
f: Xy — Xo between the sets of objects, such that:

> ifg:x — yisinTy,then F(g): f(x) — f(y)inTa.
> if g, h € ' are composable, then F(gh) = F(g)F(h).
> if x € Xq, then F(1x) = Tf(x)-

> ifg:x — y, then F(g~") = F(g9)~".



Groupoids: basic concepts

> right multiplication by g : y <— x is a bijection between s-fibers:

Ry:s7'(y) — s '(x), h— hg.



Groupoids: basic concepts

> right multiplication by g : y <— x is a bijection between s-fibers:
Ry:s7'(y) — s '(x), h— hg.
> left multiplication by g : y «<— x is a bijection between t-fibers:

Lg:t7'(x) — t7'(y), hw gh



Groupoids: basic concepts

> right multiplication by g : y <— x is a bijection between s-fibers:
Ry:s7'(y) — s '(x), h— hg.
> left multiplication by g : y «<— x is a bijection between t-fibers:

Lg:t7'(x) — t7'(y), hw gh

> the isotropy group at x:

Mx=s""(x) Nt~ "(x).



Groupoids: basic concepts

v

right multiplication by g : y <— x is a bijection between s-fibers:

Ry:s7'(y) — s '(x), h— hg.

v

left multiplication by g : y «— x is a bijection between t-fibers:

Lg:t7'(x) — t7'(y), hw gh

> the isotropy group at x:

Mx=s""(x) Nt~ "(x).

v

the orbit through x:

Ox:=ts'(X)={yeM:3g: x —y}



Lie groupoids

Definition

A Lie groupoid is a groupoid ' = X whose spaces of arrows and objects are
both manifolds, the structure maps s, t, u, m, i are all smooth maps and such
that s and t are submersions.




Lie groupoids

Definition

A Lie groupoid is a groupoid ' = X whose spaces of arrows and objects are
both manifolds, the structure maps s, t, u, m, i are all smooth maps and such
that s and t are submersions.

Basic Properties For a Lie groupoid ' = X and x € X, one has that:
1. the isotropy groups Iy are Lie groups;
2. the orbits Oy are (regular immersed) submanifolds in X;
3. theunitmap u: X — I is an embedding;
4. t:s~1(x) — Oxis a principal I'r-bundle.



Some classes of examples

> Pair groupoid X x X =2 X;

> Fundamental groupoid M(X) = X;

> Lie group G = {x*};

» Bundle of Lie groups;

> Lie group actions G x X — X;

» Gauge groupoid of principal bundle G ~ P — X;
»> Symplectic groupoids (¥, Q) = X.

> ()



From Lie groupoids to Lie algebroids

t-fibers

s-fibers
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From Lie groupoids to Lie algebroids

t-fibers

s-fibers



From Lie groupoids to Lie algebroids

t-fibers

s-fibers

A=TyT P =dt |A [ouBl= X% X
X

PS: Can also use t-fibers and left-invariant vector fields! That is our convention here.



2) G-structure groupoids

Definition
e A G-principal groupoid is a Lie groupoid I' = X with a principal action of G
satisfying:

(m-712)g=7"(129), Y(m,2)er® gea

e A morphism of G-principal groupoids is a groupoid morphism
® : 1 — > which is G-equivariant.




2) G-structure groupoids

Definition
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satisfying:

(m-712)g=7"(129), Y(m,2)er® gea

o A morphism of G-principal groupoids is a groupoid morphism
® : 1 — > which is G-equivariant.

— each fiber t—'(x) is a G-principal bundle. Sot: I — X is a family of G-principal
bundles parameterized by X



2) G-structure groupoids

Definition
e A G-principal groupoid is a Lie groupoid I' = X with a principal action of G
satisfying:

(m-712)g=7"(129), Y(m,2)er® gea

e A morphism of G-principal groupoids is a groupoid morphism
® : 1 — > which is G-equivariant.

— each fiber t—'(x) is a G-principal bundle. Sot: I — X is a family of G-principal
bundles parameterized by X

Alternative point of view: action morphism

{G—principal groupoid} = {groupoid morphism ¢ : X x G — r}
r=X locally injective and effective



Connections and G-structures on groupoids

A connection 1-form on a G-principal groupoid ' = X is a g-valued, left-
invariant 1-form, Q € Q‘L(F; g) satisfying:

(i) vertical: Q(ar) = a, foralla € g
(i) G-equivariance: g*Q = Adg_1 Q.
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— each fiber t—1(x) is a principal G-bundle with connection form wy = Q100



Connections and G-structures on groupoids

A connection 1-form on a G-principal groupoid ' = X is a g-valued, left-
invariant 1-form, Q € Q‘L(F; g) satisfying:

(i) vertical: Q(ar) = a, foralla € g
(i) G-equivariance: g*Q = Adg—1 Q.

— each fiber t—1(x) is a principal G-bundle with connection form wy = Q100

Let G C GL(n,R) be a closed subgroup:

A G-structure groupoid is a G-principal groupoid ' = X with a pointwise
surjective left-invariant form © € Q] (I; R”) such:

(i) horizontal: ©(v) = 0if and only v = «r for some « € g
(i) G-equivariance: g*Q =g~ ' Q.




Connections and G-structures on groupoids

A connection 1-form on a G-principal groupoid ' = X is a g-valued, left-
invariant 1-form, Q € Q‘L(F; g) satisfying:

(i) vertical: Q(ar) = a, foralla € g
(i) G-equivariance: g*Q = Adg_1 Q.

— each fiber t—1(x) is a principal G-bundle with connection form wy = Q100

Let G C GL(n,R) be a closed subgroup:

A G-structure groupoid is a G-principal groupoid ' = X with a pointwise
surjective left-invariant form © € Q] (I; R”) such:

(i) horizontal: ©(v) = 0if and only v = «r for some « € g
(i) G-equivariance: g*Q =g~ ' Q.

— each fiber t—'(x) is a G-structure with tautological form 6y = @\,,W).



G-structure groupoids with connection

Proposition
LetT = X be a G-structure groupoid with connection. The tautological form
© € Q](I'; R") and the connection form Q € Q}(T'; g) satisfy:

d© = —Q A © + Tors(Q2)
dQ = —Q A Q + Curv(Q)

In this proposition:
e ddenotes the t-foliated de Rham differential;
o Tors(Q) € Q3(I; R™) is given by Tors(Q)(v, w) = dO(h(v), h(w));
o Curv(Q) € Q3(T; g) is given by Curv(Q)(v, w) = dQ(h(v), h(w)).



3) G-structure algebroids

e A G-principal algebroid is a Lie algebroid A — X with a G-action by auto-
morphisms and an injective morphism i : X x g — A such that:

d(a) = [i(a), ]-

e A morphism of G-principal algebroids is a morphism ¢ : A; — A, which
is G-equivariant and intertwines the action morphisms:

¢O/1 :i20(¢Xl).




3) G-structure algebroids

e A G-principal algebroid is a Lie algebroid A — X with a G-action by auto-
morphisms and an injective morphism i : X x g — A such that:

d(a) = [i(a), ]-

e A morphism of G-principal algebroids is a morphism ¢ : A; — A, which
is G-equivariant and intertwines the action morphisms:

¢O/1 :i20(¢Xl).

Proposition
o IfT = X is a G-principal groupoid then its Lie algebroid A — X is a
G-principal algebroid.

e If® : [y — o is a morphism of G-principal groupoids then (®). : Ay — Az
is a morphism of G-principal algebroids.




Connections and G-structures on algebroids

A connection 1-form on a G-principal algebroid A — X is a g-valued A-form
w € QV(A; g) satisfying:

(i) vertical: w(i(xa) = a, forallx € X,a € g
(i) G-equivariance: g*w = Adg—1 w.




Connections and G-structures on algebroids

A connection 1-form on a G-principal algebroid A — X is a g-valued A-form
w € Q'(A; g) satisfying:

(i) vertical: w(i(xa) = a, forallx € X,a € g

(i) G-equivariance: g*w = Adg—1 w.

Let G C GL(n,R) be closed:

A G-structure algebroid is a G-principal algebroid A — X equipped with a
fiberwise surjective A-form 6 € Q'(A; R") satisfying:

(i) horizontal: 6x(&§) =0 iff & =i(x,a), forsome a € g.
(i) G-equivariance: g*0 =g~'-6, Vge G.
0 is called the tautological form of the G-structure algebroid.




G-structure algebroids with connection

Proposition
Let A — X be a G-structure algebroid with connection. The tautological form
6 € Q'(A;R™) and the connection form w € Q' (A; g) satisfy:

daf = —w A 0 + Tors(w)
dpgw = —w A w + Curv(w)

where Tors(w) € Q2(A;R") and Curv(w) € Q2(A; g).




G-structure algebroids with connection

7~

Proposition

Let A — X be a G-structure algebroid with connection. The tautological form
6 € Q'(A;R™) and the connection form w € Q' (A; g) satisfy:

daf = —w A 0 + Tors(w)
dpgw = —w A w + Curv(w)

where Tors(w) € Q2(A;R") and Curv(w) € Q2(A; g).

Proposition

Fix any G-principal groupoid ' = X with Lie algebroid A — X. Then there are
1:1 correspondences:

connection 1-formson " { 1= {connection 1-forms on A}
Qe Ql(r;g) weQ'(Ag)

tautological forms on I 11 tautological forms on A
© € Q(I;R") 6 € Q' (AR")




4) Construction of solutions

Theorem

Any G-structure algebroid with connection A — X is naturally isomorphic to
one in canonical form.




4) Construction of solutions

Theorem

Any G-structure algebroid with connection A — X is naturally isomorphic to
one in canonical form. Under the isomorphism

(B,w): A X X (R"@g), & (X,0(6),w(€)).

one has that:




4) Construction of solutions

Theorem
Any G-structure algebroid with connection A — X is naturally isomorphic to
one in canonical form. Under the isomorphism
(0,w): A XX (RT@g), & (X,0(),w()).

one has that:

o the action morphism becomes /i : X x g — A, (x,a)) — (x,0, a);

o the tautological form becomes 6 : X x (R" & g) — R";

e the connection form becomes w : X x (R" @ g) — g;

e the G-action on A becomes (x,u,a)g = (xg,9~ " u, Adg—1 -a);
Moreover, the anchor and bracket on constant sections become:

p(u, a) = F(u) +¢(a),
(U, @), (v,B)] = (- v = B-u—c(u,v),[a,Bls — R(u,v)),

where ¢ : X — Hom(A?R™,R"), R : X — Hom(AR", g)and F : XxR” — TX
are G-equivariant maps.




Construction of solutions

Conclusion:

{ Cartan Data } = {G—structure algebroids}
(G.X,c,R,F) with connection A — X



Construction of solutions

Conclusion:

{ Cartan Data } = {G—structure algebroids}
(G.X,c,R,F) with connection A — X

Theorem
Given Cartan Data with associated G-structure algebroid with connection
(A 0,w) = X, let (I',©,Q) = X be a G-structure groupoid integrating it. Then
foreach x € X

(t71 (X)7 e|1*1(x)= Q't*1(x))

is a G-structure with connection over M = t='(x)/G which solves Cartan’s
realization problem with h:= s : t=1(x) — X.




Construction of solutions

Conclusion:

{ Cartan Data } = {G—structure algebroids}
(G.X,c,R,F) with connection A — X

Theorem
Given Cartan Data with associated G-structure algebroid with connection
(A 0,w) = X, let (I',©,Q) = X be a G-structure groupoid integrating it. Then
foreach x € X

(t71 (X)7 e|1*1(x)= Q't*1(x))

is a G-structure with connection over M = t='(x)/G which solves Cartan’s
realization problem with h:= s : t=1(x) — X.

— integrations gives rise to family of solutions



Easy example: Metrics of constant sectional curvature

Associated SO(n)-structure algebroid with connection:

A=R"x (R"@so(n,R)) —— X =R
(with global coordinate K)
Lie bracket: [(U, Oé), (V7 B)]‘K = (OCV - BU, [Ot, ﬁ] - K(<7 V)U - ('7 U)V))
Anchor: p(u,a)|x :=0
SO(n)-action: (K,u,a)g = (K,g~'u,g~'ag)



Easy example: Metrics of constant sectional curvature
Associated SO(n)-structure algebroid with connection:

A=R"x (R"@so(n,R)) —— X =R
(with global coordinate K)

Lie bracket: [(u, ), (v, B)llk := (av — Bu,[a, B] — K ({-, V)u — {-, u)v))
Anchor: p(u,a)|x :=0
SO(n)-action: (K,u,a)g = (K,g 'u,g'ag)

Associated SO(n)-structure groupoid with connection:

Bundle of Lie groups p = s =t: I — R with fibers

SO(n+1), ifK>0
t'(K)~{ SO(nxR", ifK=0
so+(n, 1), ifK <0

These SO(n)-structures are the oriented orthogonal frame bundles of the 1-connected

space forms:
sn, if K >0
t'(x)/S0(n) ~{ R", ifK=0
H", if K <0



Construction of solutions: dictionary

Several important questions left:
»> Do we get all solutions in this way?
» Do integrations/solutions all exist?
» What can we say about symmetries of solutions and their moduli spaces?

» Can this be used in “real” problems?

... to be discussed in the next lecture.



Solving Cartan’s Realization Problem

Lecture 3



Overview

Starting from the classical correspondence:
Geometric structures <—>  G-structures (with connection)

The main steps of the program:

Classification problem for a
finite type class
of geometric structures

s Cartan’s realization problem
(Cartan Data)

Cartan Data ¢,  G-structure algebroid
(with connection)

Solutions to s Integrate G-structure algebroid to
classification problem G-structure groupoid (with connection)




Easy example: Metrics of constant sectional curvature

Associated SO(n)-structure algebroid with connection:

A=R"x (R"@so(n,R)) —— X =R
(with global coordinate K)
Lie bracket: [(U, Oé), (V7 B)]‘K = (OCV - BU, [Ot, ﬁ] - K(<7 V)U - ('7 U)V))
Anchor: p(u,a)|x :=0
SO(n)-action: (K,u,a)g = (K,g~'u,g~'ag)



Easy example: Metrics of constant sectional curvature
Associated SO(n)-structure algebroid with connection:

A=R"x (R"@so(n,R)) —— X =R
(with global coordinate K)

Lie bracket: [(u, ), (v, B)llk := (av — Bu,[a, B] — K ({-, V)u — {-, u)v))
Anchor: p(u,a)|x :=0
SO(n)-action: (K,u,a)g = (K,g 'u,g'ag)

Associated SO(n)-structure groupoid with connection:

Bundle of Lie groups p = s =t: I — R with fibers

SO(n+1), ifK>0
t'(K)~{ SO(nxR", ifK=0
so+(n, 1), ifK <0

These SO(n)-structures are the oriented orthogonal frame bundles of the 1-connected

space forms:
sn, if K >0
t'(x)/S0(n) ~{ R", ifK=0
H", if K <0



Plan

Lecture 1:
> Recollection of G-structures
> Finite type vs infinite type through examples
» Cartan’s Realization Problem and algebroids

Lecture 2:
» Algebroids and groupoids
» G-structure groupoids
» G-structure algebroids
» Construction of solutions
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> G-integrability
» Solving Cartan’s Realization Problem
> The example of extremal K&hler metrics on surfaces
>
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Theorem (Lie I)
Let I' be a Lie groupoid with Lie algebroid A. ~There exists a unique (up to
isomorphism) source 1-connected Lie groupoid I' with Lie algebroid A.

o T is called the canonical integration
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o T is called the canonical integration

Theorem (Lie II)
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source 1-connected. Given a Lie algebroid homomorphism ¢ : A; — Ao, there
exists a unique Lie groupoid homomorphism & : 'y — o with (). = ¢.




1) G-Integrability

Theorem (Lie I)
Let I' be a Lie groupoid with Lie algebroid A. NThere exists a unique (up to
isomorphism) source 1-connected Lie groupoid I' with Lie algebroid A.

o T is called the canonical integration

Theorem (Lie II)

Let 'y and ', be Lie groupoids with Lie algebroids A; and A,, where I'q is
source 1-connected. Given a Lie algebroid homomorphism ¢ : A; — Ao, there
exists a unique Lie groupoid homomorphism & : 'y — o with (). = ¢.

. Lie Ill does not hold!
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Theorem [Crainic & RLF, 2003]
For a Lie algebroid A, there exist monodromy groups Nx C Ax such that A is
integrable iff the groups Ny are uniformly discrete for x € X.
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Each Ny is the image of a monodromy map:
9: 7r2(L7 X) - Z(gX)

This map (hence the monodromy groups) is computable.



Obstructions to integrability

Theorem [Crainic & RLF, 2003]
For a Lie algebroid A, there exist monodromy groups Nx C Ax such that A is
integrable iff the groups Ny are uniformly discrete for x € X.

Each Ny is the image of a monodromy map:
9: 7r2(L7 X) - Z(gX)

This map (hence the monodromy groups) is computable.

Example. For prequantization algebroid A defined by w € Q2 (M):

NXZ{LNZ[U]EWZ(M)}CR:gx.

So Alis integrable if and only if w has discrete spherical periods.




Lie Functor for G-principal groupoids/algebroids

Theorem (Lie I)

Let I be a G-principal groupoid with Lie algebroid A. There exists a unique (up
to isomorphism) G-principal groupoid FG with Lie algebroid A and s='(x)/G
all 1-connected.

o ['g is called the canonical G-integration



Lie Functor for G-principal groupoids/algebroids

Theorem (Lie I)

Let I' be a G-principal groupoid with Lie algebroid A. There exists a unique (up
to isomorphism) G-principal groupoid ' with Lie algebroid A and s='1(x)/G
all 1-connected.

o ['g is called the canonical G-integration

Theorem (Lie II)

Let Iy, > be G-principal groupoids with algebroids A+, Ao, and sf (x)/G all
1-connnected. Given morphism of G-principal algebroids ¢ : A — Ao, there
exists a unique morphism of G-principal groupoids ® : 'y — > with (®). = ¢.




Lie Functor for G-principal groupoids/algebroids

Theorem (Lie I)

Let I' be a G-principal groupoid with Lie algebroid A. There exists a unique (up
to isomorphism) G-principal groupoid ' with Lie algebroid A and s='1(x)/G
all 1-connected.

o ['g is called the canonical G-integration

Theorem (Lie II)

Let Iy, > be G-principal groupoids with algebroids A+, Ao, and sf (x)/G all
1-connnected. Given morphism of G-principal algebroids ¢ : A — Ao, there
exists a unique morphism of G-principal groupoids ® : 'y — > with (®). = ¢.

Note: Lie lll fails even when A is integrable. In general,

Aisintegrable # Ais G-integrable



G-Integrability

Problem. When is a G-principal algebroid A — X G-integrable?

We are looking for:
» aLie groupoid ' = X which integrates A;
» amorphism¢: X x G — I which integrates j : X x g — A.



G-Integrability

Problem. When is a G-principal algebroid A — X G-integrable?

We are looking for:
» aLie groupoid ' = X which integrates A;
» amorphism¢: X x G — I which integrates j : X x g — A.

Remark. We only care about G-principal groupoids: if A has a tautological form or a
connection form they “integrate for free”.
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NG =N
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Let A be a G-principal algebroid which is integrable. Then A is G-integrable if
and only if NG T is uniformly discrete.




Extended G-Monodromy

Assume A is an integrable G-principal groupoid and let T be its canonical integration.

Definition. B
The extended G-monodromy at x € X is the image A€ of the map

9% m(G) > Tx, g i(x,9).

These groups assemble to a normal sub-bundle of groups contained in the center of
the isotropy groups:
NG =N

xeX

Theorem.
Let A be a G-principal algebroid which is integrable. Then A is G-integrable if
and only if NG T is uniformly discrete.

In this case the canonical G-integration of Ais:

Fg=T/NE.
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The G-monodromy at x € X is the subgroup N.¢ C Z(ker px) such that

exp(NY) = NF N Z(T)°.
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Computing G-Monodromy

The G-monodromy at x € X is the subgroup N'.¢ C Z(ker px) such that

exp(NY) = NF N Z(T)°.

> Ais G-integrable if and only if G C A s uniformly discrete.

A G-splitting along a leaf L is a splitting of the short exact sequence:

0 Kerp|, Al Y\i/ L 0.

compatible with the action morphism i : X x g — A and with center-valued curvature
2-form:
Qs (X, Y) = o(IX, Y] — [0(X), (V)] € Z(ker pl1).



Computing G-Monodromy

The G-monodromy at x € X is the subgroup N'.¢ C Z(ker px) such that

exp(NY) = NF N Z(T)°.

> Ais G-integrable if and only if G C A s uniformly discrete.

A G-splitting along a leaf L is a splitting of the short exact sequence:

0 Kerp|, Al Y\i/ L 0.

compatible with the action morphism i : X x g — A and with center-valued curvature
2-form:
Qs (X, Y) = o(IX, Y] — [0(X), (V)] € Z(ker pl1).

Proposition. If the action is locally free at x and the leaf L c X admits a
G-splitting o : TL — A, then

NXG:{/QU|C:D2—>L, c\achx-G}.
c




2) Solving Cartan’s Realization Problem

Theorem (local solutions).

Let (G, X, c, R, F) be Cartan Data defining a G-structure Lie algebroid with
connection A — X. For each x € X there exists a G-invariant, open neighbor-
hood x € U C L such that A|y is G-integrable.
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connection A — X. For each x € X there exists a G-invariant, open neighbor-
hood x € U C L such that A|y is G-integrable.
In particular, there exists a solution (Fg(M), (6, w), h) with x € Im h and:

e the germ of solutions at x is unique up to equivalence;

e if x and x’ belong to same leaf of A, the germs of solutions at x and x’
are isomorphic;

o the Lie algebra of symmetries of the solution is the isotropy Lie algebra
of Aat x;
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Sketch of proof.

(i) For first part, use G-splitting to show G-monodromy is discrete.
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2) Solving Cartan’s Realization Problem

Theorem (local solutions).

Let (G, X, c, R, F) be Cartan Data defining a G-structure Lie algebroid with
connection A — X. For each x € X there exists a G-invariant, open neighbor-
hood x € U C L such that A|y is G-integrable.
In particular, there exists a solution (Fg(M), (6,w), h) with x € Im h and:

e the germ of solutions at x is unique up to equivalence;

e if x and x’ belong to same leaf of A, the germs of solutions at x and x’
are isomorphic;

o the Lie algebra of symmetries of the solution is the isotropy Lie algebra
of Aat x;

\.

Sketch of proof.

(i) For first part, use G-splitting to show G-monodromy is discrete.
(if) For second part, use any G-integration.

Remark. According to Bryant, local existence was known to E. Cartan. | am not so

sure...



Complete solutions

Restrict to the metric type (but there is a general theory!):

A G-structure algebroid with connection (=Cartan data (G, X, c, R, F)) is said
to be of metric type if G C O(n,R) and ¢ = 0.
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A G-structure algebroid with connection (=Cartan data (G, X, c, R, F)) is said
to be of metric type if G C O(n,R) and ¢ = 0.

In the metric case, A ~ X x (R"” & g) carries the canonical fiberwise metric:
Ka((u, @), (v, 8)) == (U, V)gn + (o, B)g (U, @), (V,B) € A,

— solutions are Riemannian manifolds and w is the Levi-Civita connection
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Lemma. The metric K, induces a Riemannian metric on the leaves of A so
that anchor induces for each x € X an isometry

p: (kerplx)t — TxL.




Complete solutions

Restrict to the metric type (but there is a general theory!):

A G-structure algebroid with connection (=Cartan data (G, X, c, R, F)) is said
to be of metric type if G C O(n,R) and ¢ = 0.

In the metric case, A ~ X x (R"” & g) carries the canonical fiberwise metric:
Ka((u, @), (v, 8)) == (U, V)gn + (o, B)g (U, @), (V,B) € A,

— solutions are Riemannian manifolds and w is the Levi-Civita connection

Lemma. The metric K, induces a Riemannian metric on the leaves of A so
that anchor induces for each x € X an isometry

p: (kerplx)t — TxL.

— leaves of A have a natural Riemannian structure.



Complete solutions

Theorem (complete solutions).

Let A — X be a G-structure algebroid with connection of metric type and let
(P, (6, w), h) be a solution of Cartan’s realization problem. Then:




Complete solutions

Theorem (complete solutions).

Let A — X be a G-structure algebroid with connection of metric type and let
(P, (6,w), h) be a solution of Cartan’s realization problem. Then:

(i) If M = P/G is metric complete and 1-connected, then P is isomorphic
to a fiber t—'(x) of the canonical G-integration of A|, for some leaf
L C X. Moreover, this leaf is metric complete.




Complete solutions

Theorem (complete solutions).

Let A — X be a G-structure algebroid with connection of metric type and let
(P, (6,w), h) be a solution of Cartan’s realization problem. Then:

(i) If M = P/G is metric complete and 1-connected, then P is isomorphic
to a fiber t—'(x) of the canonical G-integration of A|, for some leaf
L C X. Moreover, this leaf is metric complete.

(i) Conversely, if a leaf L is metric complete and A|; is G-integrable, then
any t-fiber of the canonical G-integration of A, yields a metric complete
solution.







3) Example: Extremal Kahler Metrics

X =R x C x R - Coordinates: (K, T, U);
U(1)-Action: (K, T,U)-g = (K,g~'T, U);
A= Xx (CaIiR);

Bracket of constant sections:

[(z, @), (w, Bk, T,u) := (aw — Bz, —§ (2% — Zw));

vVvyVvyy

» Anchor:
p(z,@)| K. 7.0y == (—Tz T ar, LT giz) .




3) Example: Extremal Kahler Metrics

X =R x C x R - Coordinates: (K, T, U);
U(1)-Action: (K, T,U) -g = (K,g—1 T, U);
A= X x (CaIiR);
Bracket of constant sections:
[(z, @), (W, Bk, T,y = (aw — Bz, — K (2 — 2w));
» Anchor:
p(z,0)|K.T.0) = (—T2 T ar, LT giz) 4

vVvyyvyy

This Lie algebroid is not U(1)-integrable!

Need to investigate U(1)-integrability of A|,, for each leaf L.



3) Example: Extremal Kahler Metrics

> X =R x C x R - Coordinates: (K, T, U);
» U(1)-Action: (K, T,U)-g = (K,g~'T,U);
> A=Xx (CaiR);
> Bracket of constant sections:
[(z, @), (W, B)|k,T,u) = (aw — Bz, — & (2 — Zw));
Anchor:
p(z,0)| K. 7.0y == (_Tz T ar, LT gTz) 4

v

In real coordinates: a« = i\, z=a+ib, T =X +iY:

oz, 0, r vy = a(—2X G + Uy — KXy +
+b(-2Y % +UF — kv ) +x (Y& - X&)
For constant sections ey = (1,0), e2 = (/,0), e3 = (0, /):
[e1,e2] = Kes, [e1,63] = —62, [e2,€3]=¢1.

Action morphism ¢ : X x ju(1) — A:
u(x,i\) = Xes.



Leaves and Isotropy of A

Functions constant on the leaves of A:

h=K U =X+ Y4 KU- LK,

These two functions are independent everywhere except at X = Y = U = 0 when the
anchor vanishes.



Leaves and Isotropy of A

Functions constant on the leaves of A:

h=%_U = b=X4Y24+KU-1K®,

These two functions are independent everywhere except at X = Y = U = 0 when the
anchor vanishes.

Leaves and Isotropy Lie algebras:
> the points (K, 0, 0, 0) with isotropy Lie algebra so(3,R) (if K > 0),
sl(2,R) (if K < 0) and so(2,R) x R? (if K = 0);
» the 2-dimensional submanifolds of R* given by the connected

components of the common level sets of /; and k, with isotropy Lie
algebra R.




Fixed Points

Restriction of A to the family of 0-dimensional leaves {(K,0,0,0) : K € R} is
automatically G-integrable;
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Restriction of A to the family of 0-dimensional leaves {(K,0,0,0) : K € R} is
automatically G-integrable;

It is a bundle of U(1)-structure Lie algebras with connection: it Lie algebroid
is the U(1)-structure algebroid with connection classifying constant curvature
Kahler surfaces.

—> already seen the canonical U(1)-integration.




Fixed Points

Restriction of A to the family of 0-dimensional leaves {(K,0,0,0) : K € R} is
automatically G-integrable;

It is a bundle of U(1)-structure Lie algebras with connection: it Lie algebroid
is the U(1)-structure algebroid with connection classifying constant curvature
Kahler surfaces.

—> already seen the canonical U(1)-integration.

It remains to analyze the 2-dimensional leaves...



2-d Leaves of A

» Iy and , only depend on the radius |T|2 = X2 + Y?;
> Leaves are U(1)-rotations of level sets of /; and / (curves in R3).



2-d Leaves of A

» |, and k, only depend on the radius | T|? = X2 + Y?2;
> Leaves are U(1)-rotations of level sets of /; and / (curves in R3).

{

2
h = ¢ - U=~% —¢
h=c TR = —5K° + 61K + ¢




2-d Leaves of A

vy

Iy and I only depend on the radius |T|2 = X2 + Y?;
Leaves are U(1)-rotations of level sets of /; and & (curves in R3).

{ h =c N U=K72701
h=c TR = —5K° + 61K + ¢

vy

Use K as a parameter;

Depending on the values of ¢y and c,, the shape of the curve will determined if
leaves have topology and hence also monodromy and/or G-monodromy;

Note that the cubic
P(K) = —5K° + 1K + ¢

has discriminant:
A = £(16¢ —965).

A 0-dimensional leaf (K, 0, 0, 0) belongs to a common level set |y = ¢y, b = ¢»,
if and only if

{ K2 :401

0= — LK+ oK+ = 168 -9c5=0 < A=0.




A=0,c1=0c=0

p(K)

NI




A=0,c1=0c=0

p(K)

p(K) has triple root: Level set consists of one single leaf obtained by rotating the curve

U=K?
{ T2 = — L K3 K €] — o0, 0[.
=12

The value K = 0 is excluded since the origin (0, 0,0, 0) is a 0-dim leaf.



A=0,c1=0c=0

p(K)

p(K) has triple root: Level set consists of one single leaf obtained by rotating the curve

U=K?
{ |T\2*—lK3 K €] — 00,0].
=712

The value K = 0 is excluded since the origin (0, 0,0, 0) is a 0-dim leaf.

Leaf is topological a cylinder:

m(L) =2, mo(L)=1.




A=0,c1=0c=0

p(K)

p(K) has triple root: Level set consists of one single leaf obtained by rotating the curve

U=K?
{ |T\2*—lK3 K €] — 00,0].
=712

The value K = 0 is excluded since the origin (0, 0,0, 0) is a 0-dim leaf.

Leaf is topological a cylinder:

m(L) =2, mo(L)=1.

The extended monodromy is trivial, F9 ~ R and 7o(Tx) = Z.

The restricted U(1)-monodromy is also trivial, so A|; is U(1)-integrable.




A=0,c<0

p(K)

p(K) has 1 single real root —4,/c¢y and 1 double real root 2,/c;.
Level set consists of isolated point (2,/¢1, 0,0, 0) and 2-d leaf obtained by rotation of:

.
{U_4K ¢ K €] — 0o, —4/G].

T2 = —35(K — 2JG02(K + 4y27)



A=0,c<0

p(K)

p(K) has 1 single real root —4,/c¢y and 1 double real root 2,/c;.
Level set consists of isolated point (2,/¢1, 0,0, 0) and 2-d leaf obtained by rotation of:

_ 1y
{U_4K Ct K €] — 0o, —4y/G1].

TP = =35 (K - 2/G)2(K + 4/@1)

Leaf is topologically a plane:

A|L is U(1)-integrable.




A:0702>O

p(K)

-2/e; amy K

p(K) has 1 single real root 4/¢1 and 1 double real root —2,/Cy.
Level set consists of a fixed point (—2,/¢, 0,0, 0) and two 2-dimensional leaves
obtained by rotating the curve

4

U= 1K2 ¢
{ 12 = — (K + 2@k —ayey) oo m2vell - 2ve,averl



A=0,¢c>0

p(K)

26 sy K

p(K) has 1 single real root 4/¢1 and 1 double real root —2,/Cy.
Level set consists of a fixed point (—2,/¢, 0,0, 0) and two 2-dimensional leaves
obtained by rotating the curve

— 4

U= 1K2 ¢
{ 12 = — (K + 2@k —ayey) oo m2vell - 2ve,averl

One leaf is a cylinder and the other is a plane:
7T1(L)=10FZ, 7T2(L)=1.

A|L is U(1)-integrable.




A <O

p(K)

p(K) has 1 real root r and two complex conjugate roots. The level set consists of a
2-dimensional leaf obtained by rotating the curve

IN

{ U=1K2 _¢

ITI? = —35(K = r)(K? + rK + r2 — 12¢7)

K €] — oo, r1].

Leaf is a plane, so A|L is U(1)-integrable.




A>0

p(K)

p(K) has 3 real roots ry < r» < r3. The level set consists of two 2-dimensional leaves
obtained by rotating the curve

— 4

U=1K2 ¢
{17 LS ey Kot

One leaf is a plane L and the other leaf L, ~ S2.
Ly is U(1)-integrable.
Lo could fail to be U(1)-integrable.




G-integrability over L,
Parameterization of Lo:

+(K, 0) = (K, p(K)2 &% K2/4 — 1), (K, 6) € [12, 73] x [0, 27],

G-Splitting:
_1
o (g%) = (=4pk) 26 0)
1 .
97 _ 1 5 (2 _ a0 .
“(69) T p(K)+(K2 /4—c; )2 (p(K)z(K /4 =i, p(K)')
Curvature:
oy oY _ 5 v\ _ ® K2 /4—c
2 (64 BJ) = {U (T%) i (%)} L <p(K)+(K2/4—101)2> %
Monodromy:

G-Monodromy:

AU ,/\/'u27rZ<2/4 01)50:{8”<,2i71401+451n73,>50 n1,n2€Z}.
3

AlLis U(1)-integrable if and only if % 2 ’2 €Q.




Table: 1-connected extremal Kahler surfaces

Conditions U(1)-frame bundle: s~ '(x) | Solutions: s~ (x)/U(1)
K=0 SO(2) x R? R?
K=c>0 s? s?
K=c<0 S0(2, 1) H2
A=0,¢ci=0c =0 (R? x R)/Z R?
A=0c <0 R2 x ! R2
A=0c>0 (B2 x B)/Z R2
(R? x s")

A <O R? x ' R2
A>0 R? x 8! R2
(tiaE 2) s CPhq

r32 —4cq




Complete extremal Kahler surfaces

> One could find explicit formulas for the metrics;

»> No need! One can compute the induced metric on each leaf L explicitly and
determine when it is complete.



Complete extremal Kahler surfaces

> One could find explicit formulas for the metrics;

»> No need! One can compute the induced metric on each leaf L explicitly and
determine when it is complete.
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Much more can be said about finite type.....

BIG OPEN QUESTION: What about infinite type?
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