THE PLAN FOR THESE TALKS

1. Explain how one can hape to define a knot invariant by counting neinimal surfaces m H^{4} which fill a given knot $k \subseteq S^{3}$

This is an example of "Freduolun differential topology" (Smale, Donaldson,...)
2. Explain why this is actually a "Gromor - Witter invariant" hor a special SINGULAR symplectic manifold.
3. Describe what new avenues this opens up:

- Define invariants at knots $K \subseteq Y^{3}$ by counting minimal surfaces M certain M^{4} with $\partial M=Y$??
- Define invariants of Knots $K \subseteq Y^{3}$ by counting J-hal. curves M certain symuplectic Z^{6} with $\partial z=Y \times S^{2} ? ?$
- Are these invariants related to classical knot invavieunts?

Eg: I conjecture that the Alexander polynomial (N, more generally, HOMFLYPT) actually. cocints minimal surfaces in H^{4}.
4. Introduce the technical tools needed m this whole story:

- Fredlidur theory af DEGENERATE elliptic operators.
- Special behaviour at minimal surfaces in H^{4} near infinity.

Knots, minimal surfaces and J-holomorphic curves
I. The main result in brief: Let $K \subseteq S^{3}$ be a Knot. $\dot{\text { ie image of }} \underset{S^{1}}{ } \rightarrow S^{3}$ smooth embedding

Regard S^{3} as boundary at infinity of hyperbolic 4-spaee H^{4}.
Eg. Poincare' ball model,

$$
\begin{aligned}
g_{\text {hyp }} & =\frac{4 d x^{2}}{\left(1-|x|^{2}\right)^{2}} \\
\text { on } B^{4} & =\{x| | x \mid<1\} \\
\partial B^{4} & =S^{3} .
\end{aligned}
$$

3D Example: "hyperbolic catenoid" Due to Mri

$$
S^{2}=\partial_{\infty} H^{3}
$$

Minimal
surbace of
revolution
circles of latitude

Theorem
The number of complete minimal discs in \mathbb{H}^{4} which have boundary at uhinity equal to K is a KNOT INVARIANT of K

1. The number $n(k)$ of minimal discs filling K B FINITE
2. If K_{0} and K_{1} can be joined by a path of knots K_{t}, then

$$
n\left(K_{0}\right)=n\left(K_{1}\right)
$$

CThere are caveats but I will come to them...)
Example
Consider $H=\left\{\left(x_{1}, x_{2}, 0,0\right) \in B^{4}\right\}$
H is totally geodesic copy of H^{2}
$\partial H=U \subseteq S^{3}$, a copy of the UNKNOT.

So we have one minimal filling of U.

Can use maximum principle to show there are no others, "I'll explain how later.)

$$
\text { so } \quad n(u)=1 \text {. }
$$

Now let \hat{U} be ANY unknot, no matter how wiggly:

Since $n(\hat{u})=n(u)=1$, there is a minimal disc liking \hat{u} !
(This was already known by other methods)

And for move complicated surfaces?
Let $L \subseteq S^{3}$ be an ORIENTED LINK with k components.
ie image of k smoothly embedded disjoint copies of S, plus direction

HOPE
LINK

WHITEHEAD LINK

Conjecture
It is possible to count connected oriented minimal surfaces of genus g in H^{4} which ill L (with correct orientation) and obtain a topological link muariant $u_{g}(L)$.
$1 \cos l l$ explain what is known m this direction and what remains to be done.
II. The Alexander polynomial

Suppose we can define $n_{g}(L)$

How could we actually compute it?
I strongly believe it is related to the Alexander polynomial.

Here is Conway's approach to the Alexander polynomial:

- To each link $L_{\text {, }}$ we have a polynomial $A_{L}(z)$ in a single variable z.
- Take a diagram of a link and focus on a crossing. We can "swap" the crossing or "resolve" the crossing and in this way we get two other links:

L_{+}

L_

Lo

The Alexander polynomial $A_{L}(z)$ is the unique polynomial which satisfies:

1. Conway's skein relation:

$$
A_{L_{+}}(z)-A_{L_{-}}(z)=z A_{L_{0}}(z)
$$

2. Normalisation:

$$
A_{u}(z)=1 . \quad(u=\text { unknot })
$$

Calculating A is quite easy!

00
Lo
Since $L_{+}=L_{-}$we see that

$$
A_{u \Perp u}=0
$$

More generally A vanishes bor ANY sPLIT LINK.
($L=L_{1} \| L_{2}$ is spLit if you can lind disjoint open balls containing L_{1} and L_{2} respectively.)

$L_{f}=H$
$L_{-}=6 \Perp u$
$L_{0}=U$

So Alexander poly at Hope link is

$$
A_{H}(z)=z .
$$

$L_{t}=T$
$L_{-}=U$

$$
L_{0}=H
$$

So Alexander polynomial of trefoil is

$$
A_{T}(z)=1+z^{2}
$$

Conjecture
The Alexander polynomial of an oriented link L with k eamponents is given by counting cormeded oriented minimal Billings in IM^{8} of $L \subseteq S^{3}$ by the formula:

$$
A(z)=\sum_{g} n_{g}(L) z^{2 g-k+1}
$$

Remarks:

1. $\quad A_{H}(z)=z, \quad H=$ Copt link

So the conjecture predicts that any tope link is filled by a minimal annulus.

For certain symmetric tops links the has been revilied by M.T. Nguyen.
2. $\quad A_{T}(z)=1+z^{2} \quad T=$ trefoil

So the conjecture predicts that any trefoil is filled by a minimal disc and a minimal surface of genus one.
3. In general, $A_{L}(z)$ is relatively easy to compute via the skein relation

But minimal surfaces are very hand to find. You need to solve a non-linear PDE!

So proving this conjectunp would give a fantastic existence Hheoven for minimal surfaces!

Two torts

1. In the expression $\sum_{g} n_{g}(L) z^{2 g-1+k}$ when k is even, only odd powers of z appear and when k is cold only even power appear.

The same happens bor $A_{L}(z)$. One can prove their from the skein relation. (Exercise!)
2. For a split link $L=L_{1} \| L_{2}$, $A_{L}(z)=0$.
M.T. Nguyen has proved that it L_{1} and L_{2} are very for apart, near opposite poles of S^{3} then there is no connected minimal surbace billing $L_{1} \perp L_{2}$.

Assuming $n_{g}(L)$ can be defined, this then implies that $n_{g}\left(c_{1} \Perp L_{2}\right)=0$ as we would hope.

Time permitting, I will explain why I believe thur conjectane and how one night try and prove it.

There is apo a conjecture relating minimal surfaces to the HoMFLYPT
polynomial, which I might have time to explain...

III Strategy for delving $n_{g}(L)$
Recall the definition of the degree of a map.
Let $\beta: X \rightarrow Y$ be a smooth proper map between mavildds of the same dimension, with Y connected.

The degree of β is given by "counting solutions x to $\beta(x)=y$ hor generic $y \in Y^{n}$

In more detail:
Yэy is a regular value of β it her all $x \in \beta^{-1}(y), d \beta_{x}$ is Surjective
When y is regular, $\beta^{-1}(y) \subseteq X$ is a submanibold of dimension $\operatorname{dim} X-\operatorname{din} Y$.

Sard's Theorem: Almost all $y \in Y$ are regular values of β.

Since $\operatorname{dim} X=\operatorname{dim} Y, \quad \beta^{-1}(y)$ is a 0 -dim submanifold and so a set of points

Since β is proper this set is finite
Since X, Y are viented, each point $x \in \beta^{-1}(Y)$ caves with a sign:
$d \beta_{x}: T_{x} X \rightarrow T_{y} Y^{\prime}$ is an jomarplism
If $d \beta_{x}$ preserves orientation we say x is Positive.

It $d \beta_{x}$ reverses orientation we say x is NEGATIVE.

$$
\operatorname{deg} \beta:=\begin{aligned}
& \text { signed count of } \\
& \text { points in } \beta^{-1}(y) \\
& \text { hor a regular value } y
\end{aligned}
$$

Need to check that this doesn't depend on the choice of regular value $y \in Y$ that we use.

Let $y_{0}, y_{1} \in Y$ be two regular values of β.
A path $y_{t} \in Y$ hor $t \in[0,7]$ is transverse to β it hor any $x \in \beta^{-1}\left(y_{t}\right)$

$$
d \beta_{x}+\left\langle y_{t}^{\prime}\right\rangle=T_{y_{t}} Y^{\prime}
$$

When $\left\{y_{t}: t \in[0,7]\right\}$ i transverse to β $\bigcup_{\in \in\left[Q_{1},\right]} \beta^{-1}\left(y_{t}\right) \quad$ B a submanilold of X. with boundary $\beta^{-1}\left(y_{0}\right) \cup \beta^{-1}\left(y_{1}\right)$
Important fact: It y_{0} and y_{1} are regular values of β (and $Y_{\text {is }}$ connected) there is a path y_{t} joining them that is transverse to β.

Suppose $y_{t} B$ transverse to β, so that $Z=\bigcup_{t \in[0,1]} \beta^{-1}\left(y_{t}\right)$ is 1D submanibold with boundary.
Since β_{1} is proper, Z is compact, so a union of closed intervals.

Z also inherits an cientation

- ll $d \beta_{x}: T_{x} X \rightarrow T_{y} Y$ a tue somarprism then we pull back orientation how path y_{t} to $T_{x} z$.
- Le $d \beta_{x}: T_{x} X \rightarrow T_{y} Y$ i $-v e$ isomorphism then we pull back MINUS the orientation how the path y_{t} to $\bar{T}_{x} z$.
- Can check these match up across the critical points, $x \in Z$ where $\alpha \beta_{x}$ has 1D kernel.

So Z is oriented cobordism boom $\beta^{-1}\left(y_{0}\right)$ to $\beta^{-1}\left(y_{1}\right)$

Hence the signed count of points in each agrees!

In this example:

$$
\begin{aligned}
& \beta^{-1}\left(y_{0}\right)=++-, \quad \# \beta^{-1}\left(y_{0}\right)=1 \\
& \beta^{-1}\left(y_{1}\right)=-+-++, \quad \# \beta^{-1}\left(y_{1}\right)=1
\end{aligned}
$$

Both counts agree and give

$$
\operatorname{deg}(\beta)=1
$$

Small's Fredholu degree:
Let $\beta: X \rightarrow Y$ be a smooth map between Mhinite dimensional Banach mavibolds, with Y comected.

- Suppose that β is fredholen. 1.e. that for every $x \in X$

$$
d \beta_{x}: T_{x} \notin \rightarrow T_{\beta(x)} y
$$

is a fredholm map This means that:

1. Ger $d \beta_{x}$ and cokes $d \beta_{x}$ are both finite dimensional
2. In $d \beta_{x} \leq T_{\beta(x)} y$ is dosed. Suppose mareorel that index of $d \beta_{x}$ is 0 ind $d \beta_{x}=\operatorname{dim} \operatorname{ker} d \beta_{x}-\operatorname{dm}$ cokerd β_{x}

Finally suppose also that β is PROPER Then the whole story above goes through, apart from the discusion of signs

We define $\operatorname{deg} \beta \in \mathbb{Z}_{2}$ as * of solution to $\beta(x)=y$ for y a regular value of $\beta, \bmod 2$.

To get \mathbb{Z}-valued degree we need analogue of orientations.
Given $x \in \mathscr{A}$ delis

$$
(\text { Ind } \beta)_{x}=\left(\Lambda^{\text {top }} \operatorname{ker} d \beta_{x}\right) \otimes\left(\Lambda^{\text {top }} \text { Choker } d \beta_{x}\right)^{*}
$$

These copies of \mathbb{R} hit together to give a line bundle Ind $\beta \rightarrow X$

We assume we have a trivialisation of this bundle

If $y=\beta(x)$ is regular value, so cokes $=0$, then $\operatorname{kerd} \beta_{x}=T_{x}\left(\beta^{-1}(y)\right)$

So trivialisation of $(\ln d \beta)_{x} \cong \mathbb{R}$ orients $\beta^{-1}(y)$.

With this extra date we can now make sense of $\operatorname{deg} \beta \in \mathbb{Z}$ as a signed count, just an behove.

Using Fredholm degree to deline $u_{g}(c)$
Let $X_{g, k}$ be the set of complete minimal surfaces $m \mathbb{H}^{4}$ which are dibteomerphic to the interior at a compact surface of genus g and with with k beery components.

Let Y_{k} denote the set of k-component links $m s^{3}$

Each comected component of y_{k} cenvesponds to a topological dan of links

Sending a minimal surface to its bocundary delines a map

$$
\beta: \mathcal{X}_{g, k} \rightarrow \mathcal{Y}_{k}
$$

Suppose we could define the degree of β as $\# \beta^{-1}(L)$ for a regular value $L \in Y_{k}$ at β.

Then we would have our list invariant

$$
n_{g}(L):=\quad \begin{aligned}
& \operatorname{deg}(\beta) \text { over connected } \\
& \text { component containing } L
\end{aligned}
$$

Example: Mori's catenoid s in 3D.

- Purple circles are critical value at β.
- Below we have two solution, opposite signs
- Above we have no solutions.

To make tut happen we need to do the hollowing things:
0. Prove \mathcal{Y}_{k} is a Banach manibold.

This is standard (providing we use eg Holder regularity, not C^{∞} links).

1. Prove $X_{g, h}$ is a Banach mavibold
(Again we need to use appropriate function spaces here.)
2. Prove β a Fredholus
3. Prove index at β is zero.
4. Trinalise ind $(d \beta)$
5. Show β is proper.

Points $1,2,3,4$ are now the evens,
BUT β IS NOT PROPER!
CTrspined by Alexakis ~ Mazzed who counted minimal surfaces $M H^{3}$ this way. There β really is proper!)

Recall from yesterday:

$$
\begin{aligned}
& \mathscr{H}_{g, k}=\left\{\begin{array}{l}
\text { oriented minimal surfaces } \\
m H^{4} \text {, complete, genus } \\
\text { meet } \partial_{\infty} H^{4} \text { in embedded } \\
k-\text { component link. }
\end{array}\right\} \\
& y_{k}=h \text {-component links. }
\end{aligned}
$$

$\beta: X_{j, k} \rightarrow Y_{k} \quad$ send surface to boundary
Claim β is Fredholm map, index zero, between Banach manifolds.

BUT β IS NOT PROPER?

Example of what can go wrong (M.T .Nguyen)
Use the ball model of \mathbb{H}^{4}
Consider $D=\left\{\left(x_{1}, x_{2}, 0,0\right) \in \dot{B}^{4}\right\}$
and $\quad \hat{D}=\left\{\left(0,0, x_{3}, x_{4}\right) \in B^{4}\right\}$
a pair of minimal discs.
"stande rd"
$\partial(D \cup \hat{D})=H_{0}, \quad$ Copt link in S^{3}.
Theorem (Nguyen)

1. $D \cup \hat{D}$ is the ONLY minimal filling of H_{0}
2. There is a path H_{t} of Hope links $t \in[0,1]$ such that bor each $t>0$ H_{t} is billed by a minimal ammilus A_{t}.

H_{t}

$t \rightarrow 0$

Ho

As $t \rightarrow 0$ the waist of A_{t} pincher and the annulus degenerates into the pair of discs $D \cup \widehat{D}$.
(Compare holomorphic curves $z w=t$ in \mathbb{C}^{2}.)
Conjecture
For each g, k there is a codimantion 2 subset $\mathcal{B}_{\text {si }} \subseteq Y_{k}$ of "bad" links such that

1. $\beta: \mathscr{X}_{g, k} \rightarrow Y_{k}$ is proper over $y_{k} \backslash B_{a, k}$.
2. $y_{k} \backslash \mathcal{B}_{g, k}$ has the same camected components as Y_{k}. ($B_{g, k}$ has codim 2.)

When $k=1$ and $g=0$, so we are counting minimal discs billing knots this of a theorem.

To understand why the conjecture might be true we reed a completely new perspective on minimal surfaces.

IV The Eells-Lalamin correspondence

Short interlude:
An almost complex structure on a manibold X is an endomorphisms $J: T X \rightarrow T X$ with $J^{2}=-1$.

T makes TX into a complex vector bundle.
One important source of examples are complex manifolds. Charts take values in \mathbb{C}^{u} Transition functions are holomaphic.

Recall: $\varphi: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ \& holomerplicic if $d \varphi \circ i=i \circ d \varphi$. So $J=x i$ makes sense on $T X$.
Not all almost complex structures cane their way ! Alg. top gives simple condition for
existence of T.
If $\left(X, J_{x}\right)$ and $\left(Y, J_{y}\right)$ are almost complex mamibolds, a map $f: X \rightarrow Y$ is called $\left(J_{x}, J_{y}\right)$-holomorphic it:

$$
d f \circ J_{x}=J_{y} \circ d \rho
$$

Now, her minimal surfaces in \mathbb{R}^{3} :

- $\Sigma \subseteq \mathbb{R}^{3}$ an oriented surface
- Rotation by 90° on each TE defines almost complex structure on Σ.

Actually a 1D complex manibold, ie a Riemann surface.

- $n: \Sigma \rightarrow s^{2}$ the Gauss map.

Weierstrass's Theorem
$\sum B$ minimal if and only it n is auti-holomenplic, ie $d n o i=-i o d u$

4D analogue is due to Jim Ells and Simon Salamen. Uses twistor spaces (themselves invented by Roger Peurose).

Let $\left(M^{4}, g\right)$ be oriented Riemannian 4 -mhd.
Given $x \in M$, write

$$
\begin{aligned}
Z_{x} & =\left\{\begin{array}{l}
J: T_{\lambda} M \rightarrow T_{\lambda} M \text { linear st } \\
0 J^{2}=-1 \\
\cdot J \text { is orthogonal: } g\left(\sigma_{u}, J v\right)=g(u, v) \\
\cdot J \text {-onentation is positive }
\end{array}\right\} \\
& \simeq \frac{S O(4)}{U(2)} \cong S^{2}
\end{aligned}
$$

Get S^{2}-bundle $Z \xrightarrow{\pi} M$, called the furistor space of M

7 has a "tautological almost complex stricture," actually 2 of them:

Write $V=k e r d T \subset T Z$
V is vertical tangent bundle is those tangent vectors m Z which are tangent to fibres of π.

Metric gog defines Levi-Civita camection and so a connection in all associated bundles, including Z.
So can define "haizontal vectors" $H \leq T Z$, a complement to V.
At $z \in Z, d \pi: H_{z} \rightarrow T_{T(z)} M$ is an isomarplison.

$$
\begin{aligned}
& T_{z} z=V_{z} \oplus H_{z} \cong V_{z} \oplus T_{T(z)} M \\
& J_{ \pm}= \pm J_{V} \oplus j_{z}
\end{aligned}
$$

$J_{+} B$ the "Atiyah-Hitohin-Singer" structure, sometimes integrable. $\left(z, J_{+}\right)$is a whole story in itself, but not for us today...

J_ is the "Eells-Salamon" otructuro Never integrable, but very important for minimal surfaces...

Let $f: \Sigma \rightarrow M$ be an immersion from an oriented surface
$f^{x} g$ makes \sum a Riemann surface.
Let $x=f(p), \quad d f\left(T_{p} \Sigma\right) \leqslant T_{x} M$ is 2 -dim subspace.

Lemma there is a cenique $z \in Z_{x}$ st $d f\left(T_{p} \Sigma\right)$ is j_{z}-complex line with correct orientation:

It preserves $d f\left(T_{p} \Sigma\right)$ and so also the orthogonal complement

Now j_{z} is completely determined by requirement that it respects orientation of $T_{x} M$ and $T_{p} \Sigma$.

Given $f: \Sigma \rightarrow M$ the turistar lift of f is the map $u: \Sigma \rightarrow Z$ defined by

$$
u(p)=z \quad \text { st } \quad j_{z} \text { preserves } d f\left(T_{p} \Sigma\right)
$$

Theorem (Eells-Lalamen)

1. Let $f: \Sigma \rightarrow M$ be conhermal map hour a Riemann surface.

The fristor lift $u: \sum \rightarrow z$ is J_{-}- holomorphic it and only if $f(\Sigma)$ is minimal.
2. If $u: \Sigma \rightarrow Z$ is J_{-}- hot map from a Rieuram surface, and $f=\pi \cdot u: \sum \rightarrow M$ is not constant, then f is conformal, $f(2)$ is minimal and u is the trisitor lift of f.

So we have 1-1 carespondence:

$$
\left\{\begin{array}{c}
\text { conterwally } \\
\text { parametrised } \\
\text { winimalial } \\
\text { surfaces }
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
J_{-} \text {sol. maps } \\
\text { into } z
\end{array}\right\}
$$

Very important point!
$u: \Sigma \rightarrow Z$ holomorphic, can have critical points, where du $=0$

Can a bo have self intersection.
$f:=\pi \cdot u: \sum \rightarrow M^{4}$ can have even mere critical points, where $u(\Sigma)$ is tangent to a fibre of π

Can also have self-intersections, where $u(\Sigma)$ meets a fibre of π in mare than ane point.

When we study \bar{v}-hot. curves in Z we must accept singularities and self intersections m the minimal surfaces.

Twister space of \mathbb{H}^{4}.
Look at definition ot $Z \rightarrow \mathbb{H}^{4}$.
It only sees the metric $g_{\text {hyp }}$ on H^{4} up to scale.

$$
g_{h_{y p}}=\frac{4 g_{\text {Eudidean }}}{\left(1-|x|^{2}\right)^{2}}
$$

So geuclidean and Skyp delve the same twister space.

Write $\bar{Z} \rightarrow \overline{B^{4}}$ for tuistor space of closed 4-ball
\bar{Z} is compact manifold with boundary

$$
\partial Z \cong s^{3} \times s^{2}
$$

Interior Z is twister space of H^{4}.

Now $T_{z} z=V_{z} \oplus H_{z}$ is defined by Levi-Civita connection of \mathbb{H}^{*}.

This is DIffERENT for ghyp and geudidean and so havirontal bundle DOESN'T extend up to ∂z

And nor does Eells - Salaman J_ !

As we will soon see it has a particular type of singularity at ∂Z.

Aside Atiyah-Hlitdin-finger shucture J_{+} is actually conbermally invariant and so $\left(Z, J_{+}\right)$is the same hor ghyp and Euclidean. This is not obvious from the way I've described things...

From now on (Z, J) is twister space ot \mathbb{H}^{4} with $J=J_{-}$(Eells-Salamen)
V. The Moduli space of J-loo curves

Now let $\bar{\sum}$ be compact surface of genus g, with K bdry components, and interior Σ.

We want to study pairs (u, j) where

$$
*\left\{\begin{array}{l}
0 j \text { is a complex structure on } \bar{\Sigma} \\
0 u^{-1}(\partial Z)=\partial \Sigma \\
0 \text { THu : } \partial \Sigma \rightarrow S^{3}=\partial H^{4} \text { is an embedding } \\
\cdot u:(\Sigma, j) \rightarrow(Z, J) \text { is holomorphic }
\end{array}\right.
$$

ci $d u \cdot j=J \cdot d u$
We abs divide out by dibteomarphions of $\bar{\sum}$ (pulling back j and reparametrising the map u).

$$
\mathscr{E}_{g, k}=\{(u, j) \mid * \text { holds }\} / \operatorname{Dib}(\bar{\Sigma})
$$

is the moduli space of J-hot curves

Or, equivalently, genus g minimal surfaces.

Want to apply theory of J-hod. curves (Fredholur, caupactuen) to try and define the degree of the boundary map

$$
\begin{aligned}
& \beta: \mathcal{X}_{g, k} \rightarrow \mathcal{Y}_{k} . \\
& \beta[u, j]=\pi(u(\partial \Sigma))
\end{aligned}
$$

Intersections and propernen of β
First, lets see why this shows a possible solution to non-propernen of β.

Recall Nguyen's example how Hopf links:

$t \rightarrow 0$

If we look at the twister lilts we see that the ennit is a pair of J-hold. discs in Z which meet at the point z which corresponds to j_{z} on $T_{(0,0,0,0)} \mathbb{H}^{4}$ which waken Bott
$T_{(0,0,0,0)} D$ and $T_{(0,0,0,0)} \hat{D}$ complex lives.

Now in general, asking hor a pair of discs to meet in a 6-manibold is to impose a 2-dimensional constraint

So from view-point of Z we should expect that the set of Hoot links in Y_{2} which are billed by a pair of hol. discs in Z which have non-trivial intersection should be codim 2.

This is a theorem that I U^{\prime} explain in a bit, but here's evidence.

Que way to make a Hops link is to take a pair of 2D linear subspaces $V, W \leq \mathbb{R}^{U}$ which meet transversely at the origin.

Then $(V \cup W) \cap S^{2}=H(v, w)$ is a Hopf link.
$H(V, W)$ is filled by a unique pair of minimal discs:

$$
\begin{aligned}
& D(V)=V \cap B^{4} \\
& D(W)=W \cap B^{4}
\end{aligned}
$$

Obviously they meet at 0 .
These lift to a pair at J-hol. discs $\hat{D}(v)$ and $\hat{D}(w)$ in Z

But these discs meet in Z if and only if V and W are complex lines $F O R$ the same j.
V alone already determines j, so we're asking hor the real 2D subspace W to actually be j-complex

This is asking bor $W \in \operatorname{Gr}(2,4) \quad(\operatorname{dim} 4)$ to lie in a copy of $\mathbb{C P}^{1}$ (dun)

So $\hat{D}(v) \cap \hat{D}(w) \neq \varnothing$ defines a Codimension 2 subset un the space el all pairs (V, W)

The corresponding Hope links $H(V, w)$ are among the "bad" links in Y_{2} that we should exclude.
VI. The J-hol. equation is degenerate

We want to prove that $\mathscr{X}_{g, k}$ is a Banach manifold.

Proof is technical, but idea is quite easy,
hook at ambient space of maps so and almost complex structures of on $\bar{\sum}$

Ask maps $u: \bar{\Sigma} \rightarrow \bar{Z}$ to have

- $u(\bar{\Sigma}) \cap \partial z=\partial \Sigma$ transversely
- $\left.u\right|_{\partial \Sigma}$ an embedding

Diff $(\bar{\Sigma})$ acts on $A_{g, k} \times$ of and quotient is smooth Banach manifold $Z_{g, k}$
$X_{g, k} \subseteq \mathcal{T}_{s, k}$ is zero locus of an equation, that $d u+J \cdot d u \cdot j=0$
$X_{\text {shh }}$ is smooth submanifold provided linearised equations are surjective.

I won't give details, but I will try and motivate this, and explain why the map, $\beta: x_{z, k} \rightarrow y_{k}$ is Fredholm

The Eells-Salamen J at infinity
Use hall space coordinates $\left(x, y_{1}, y_{2}, y_{3}\right)$ on HH^{4}

$$
g_{\text {hyp }}=\frac{d x^{2}+d y^{2}}{x^{2}}
$$

There are coordinates on twister space too

Dehine j_{1}, j_{2}, j_{3} by $j_{i}\left(\partial_{x}\right)=\partial_{y_{i}}$

$$
\text { So } \begin{aligned}
j_{1}\left(\partial_{x}\right) & =\partial y_{1} \\
j_{1}\left(\partial_{y_{1}}\right) & =-\partial_{x} \\
j_{1}\left(\partial_{y_{2}}\right) & =\partial_{y_{3}} \\
j_{1}\left(\partial y_{3}\right) & =-\partial_{y_{2}}
\end{aligned}
$$

Similarly lev j_{2}, j_{3}
Given $z=\left(z_{1}, z_{2}, z_{3}\right)$ with $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=1$. write $j_{z}=z_{1} j_{1}+z_{2} j_{2}+z_{3} j_{3}$

$$
j_{z}^{2}=-|z|^{2}=-1
$$

Now in these coordinates we can unite down the Eells-Salamen J :

$$
J\left(\begin{array}{l}
\partial x^{\prime} \\
\partial y_{i} \\
\partial z_{i}
\end{array}\right)=\left(\begin{array}{ccc}
0 & -z^{\top} & 0 \\
z & R(z) & 0 \\
0 & 2 x^{-1} P(z) & -R(z)
\end{array}\right)\left(\begin{array}{l}
\partial x \\
\partial y_{i} \\
\partial z_{i}
\end{array}\right)
$$

Where

$$
\begin{gathered}
z=\left(\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right) \\
R(z)=\left(\begin{array}{ccc}
0 & -z_{3} & z_{2} \\
z_{3} & 0 & -z_{1} \\
-z_{2} & z_{1} & 0
\end{array}\right) \quad \text { cross product } \\
P(z)=1-z z^{\top} \quad \begin{array}{l}
\text { projection onto } \\
\text { plane } b \text { to } z .
\end{array} \\
\end{gathered}
$$

KEY POINT is the $2 x^{-1} P(z)$ which blows up as $x \rightarrow 0$!

Matrix for J is 7×7, because we've used 7D cooveliuates $\left(x, y_{i}, z_{i}\right)$. But actually we're interested in $|z|=1$.

The tangent space to Z cewesponcs to vectors, $a \partial_{x}+b^{i} \partial_{y^{i}}+c^{i} \partial_{z^{i}}$ for which $z_{i} c^{i}=0$

You can deck the above matrix acts on these vectors and there, $J^{2}=-1$.
hook at J-hol. map $u: S^{1} \times[0, \delta) \rightarrow \bar{Z}$ cords (s, t) on $\delta^{1} \times[0, \delta), \quad f^{\prime}\left(\partial_{s}\right)=\partial_{t}$

Assume that $u^{-1}(\partial Z)=\delta^{1} \times\{0\}$
Write $x, y_{i}, z_{i}: \bar{\Sigma} \rightarrow \mathbb{R}$ hor $x \circ u$ etc.
Assume $x(\rho, t), y_{i}(s, t), z_{i}(s, t)$ have Taylor series expansion in t and try to solve $d u+J \cdot d u \cdot j=0$ term-by-term:

Que checks that...

$$
\begin{aligned}
& x(s, t)=|\dot{\gamma}(s)| t+\mu(s) t^{3}+O\left(t^{4}\right) \\
& y(s, t)=\gamma(s)+\eta(s) t^{2}+v(s) t^{3}+O\left(t^{4}\right) \\
& z(s, t)=-\frac{\dot{\gamma}(s)}{|\dot{\gamma}(s)|}+\mathcal{J}(s) t+\mathcal{Z}(s) t^{2}+O\left(t^{3}\right)
\end{aligned}
$$

and η and ξ abs determined by γ (but formulas aren't so pretty).
μ, v, ξ are undetermined but once you pick them, everything abe M a bermal power series a determined.

Compare this with ordinary holomorphic functions $\varphi: S^{1} \times[\sigma, \delta) \longrightarrow \mathbb{C}$

$$
\begin{aligned}
& \varphi=\varphi_{0}(s)+\varphi_{1}(s) t+\varphi_{2}(s) t^{2}+\cdots \\
& \left(\partial_{s}+i \partial_{t}\right) \varphi=0 \text { means } \\
& \dot{\varphi}_{n}+(n+1) i \varphi_{n+1}=0
\end{aligned}
$$

So φ_{0} determines all the other coefficients.

Formally at least we can pick φ_{0} and get a holomorphic function on $S^{1} \times[0, \delta)$.

For J-hal curves in \bar{Z}, formally at least we can pick $\gamma: S^{1} \rightarrow \mathbb{R}^{3}$ and the other coefficients μ, v, ξ, and get a J-holomorphic map

$$
u: S^{1} \times[0, \delta) \rightarrow Z
$$

Il we want this to be "boundary data" of a hor. free. $\varphi: \bar{\sum} \rightarrow \mathbb{C}$ or a J-col map $u: \bar{\Sigma} \rightarrow \bar{Z}$ with dosed domain, we can only specify "hall" the boundary data.

For $\varphi: \bar{\sum} \rightarrow \mathbb{C}$ the real part of φ_{0} is the "right" amount of freedom.

For $u: \bar{\Sigma} \rightarrow \bar{Z}, \gamma$ is the "right" amount of freedom.

When we abs divide out by dilleomaphisus of $\bar{\sum}$ we see that prescribing "mage of γ ii $\pi(u(\partial \Sigma)) \subseteq S^{3}$ is the "right" amount of freedom.

This leads to the hope that solving $u: \bar{\Sigma} \rightarrow \bar{Z}$ with $\pi(u(\partial \Sigma))=L$ FIXED should be a Fredholun problem.

Fredholus means linearised equations have finite dimensional cokernel, WHEN we perturb u but don't move L !

In $X_{g, k}$ we are abs allowed to move L
This is an infinite dimensional degree of freedom which fils out the finite dimensional cokernel.

So we expect $X_{\text {gil }}$ to be transversely cut out, hence smooth

And we expect $\beta: X_{g, k} \rightarrow{Y_{h}}$ to be Fredholun.

Can prove this vigorously. Need to use O-calculus of Mazzeo-Melrose, because equation ISN'T ELUPTIC. It degenerates as $t \rightarrow 0$, symbol tends to zero there.

As for the fact that index $(\beta)=0 \ldots$
There is no index theorem known for tho O-calculus, so one has to prove ind $(\beta)=0$ "by hand." That is a story for another day...

Aside
Recall J is singular at $x=0$:

$$
J\left(\begin{array}{l}
\partial x \\
\partial y_{i} \\
\partial z_{i}
\end{array}\right)=\left(\begin{array}{ccc}
0 & -z^{\top} & 0 \\
z & R(z) & 0 \\
0 & 2 x^{-1} P(z) & -R(z)
\end{array}\right)\left(\begin{array}{l}
\partial x \\
\partial y_{i} \\
\partial z_{i}
\end{array}\right)
$$

However, it we use the hollowing tangent vectors:

$$
x \partial_{x}, \quad x \partial_{y_{i}}, \quad \partial_{z_{i}}
$$

Then the matrix for J becomes...

$$
J\left(\begin{array}{l}
x \partial_{x} \\
x \partial_{y_{i}} \\
\partial z_{i}
\end{array}\right)=\left(\begin{array}{ccc}
0 & -z^{\top} & 0 \\
z & R(z) & 0 \\
0 & -2 P(z) & -R(z)
\end{array}\right)\left(\begin{array}{l}
x \partial_{x} \\
x \partial_{y_{i}} \\
x \partial_{z_{i}}
\end{array}\right)
$$

THIS EXTENDS SMoOTHLY up to $x=0$!

Moral : like with be easier it we use $x \partial_{x}, x \partial_{y_{i}}$ and $\partial_{z_{i}}$

These vector bields generate a bundle called the edge tangent bundle ${ }^{e} T z$
${ }^{{ }_{T}} T Z \subseteq \mathbb{R}^{7} \times \bar{Z}$, is the sub-bundle of $\left(a, b^{i}, c^{i}\right)$ st $c^{i} z_{i}=0$

There is a map ${ }^{e} T z \rightarrow \tau \bar{Z}$ given by

$$
(a, b, c) \longmapsto a x \partial_{x}+b^{i} x \partial_{y i}+c^{i} \partial_{z^{i}}
$$

called the anchor map

Away from ∂Z this 0 an isomorphism Along ∂z the mage is exactly $V \leqslant T Z$ the vertical tangent vectors.

$$
\left\{\text { Sections of }{ }^{e} T Z\right\}=\left\{\begin{array}{l}
\text { vector fields on } \bar{Z} \\
\text { which at } \partial Z \text { are } \\
\text { tangent to fibres of } \pi
\end{array}\right\}
$$

 complex structure
${ }^{e} T Z \rightarrow T \bar{Z}$ is an example of a hie algebroid. Interesting t ask:

Which hie algebroids $E \rightarrow T X$ with "E" - almost complex structure give rise to interesting fredholur theory hear J-holomorphic curves?

Recall:
$Z \rightarrow \mathbb{H}^{4}$ is turtor space of H^{4} I Eells - Salamon almost complex structure
$X_{g, k}=$ moduli space of genus $g_{1} J$-hot curves $u:(\bar{\Sigma}, j) \rightarrow(\bar{E}, J)$ filing k-component links in $S^{3}=\partial_{\infty} H^{4}$
$y_{k}=k$-component links
$\beta: \mathscr{K}_{g, k} \rightarrow Y_{k} \quad$ boundary map

$$
\beta[u, j]=\pi(u(\partial \Sigma)) \subseteq S^{3}
$$

β is Fredholm map at index 0 between Banach manifelds.

Want to understand properness. of β

Let $u_{n}:\left(\overline{\bar{\Sigma}}, j_{n}\right) \rightarrow \bar{Z}$ be a sequence al J-holomorphic curves hor which $L_{n}:=\pi\left(u_{n}(\partial \Sigma)\right) \subseteq S^{3}$ converges to a link L_{∞}

Want to understand when $\left(u_{n}, j_{n}\right)$ has convergent subsequence.

Write $f_{n}=\pi \cdot u_{n}: \bar{\Sigma} \rightarrow \bar{H}^{4}$
Conformal parametrisation of minimal surface

COMACTNESS THEOREM A
Suppose that $j_{u} \rightarrow j_{\infty}$, a complex structure on $\overline{\bar{z}}$. Then, up to a subreq.,
$f_{n} \rightarrow f_{\infty}:\left(\bar{\sum}, j_{\infty}\right) \rightarrow \overline{H M}^{4}$ conformal param. of a aniniual surface filing L_{∞}.

If, moreover, f_{∞} has no critical points then $u_{n} \rightarrow u_{\infty}$, the twister lift of f_{∞}

Why wary about critical points of to?
Let $u:\left(\Sigma_{, j}\right) \rightarrow Z$ be J-hol., twister lift of $\quad f=\pi \circ u$.

Fix metric h on I compatible with j $u(p)=J$ on $T_{f(p)} H^{4}$ which equals j on $d f\left(T_{p} \Sigma\right)^{f(p)}$
identify skew endomorphism J with element of $\Lambda^{2} T H^{4}$ via metric $g_{\text {hyp }}$.
h-orthonermal bane e_{1}, e_{2} at $p \in \Sigma$.

$$
u(p)=\frac{d f\left(e_{1}\right) \wedge d f\left(e_{2}\right)+*\left(d f\left(e_{1}\right) \wedge d f\left(e_{2}\right)\right)}{\left|d f\left(e_{1}\right) \wedge d f\left(e_{2}\right)\right|_{g_{\text {hyp }}}}
$$

Denominates vanishes at critical point of f !

For a single f its us problem: critical points are isolated and u extench smoothly over them, defined on all of \sum

But loo a sequence of f_{n} which develop a critical point in the limit, un wight develop a bubble.

This really can happen! We've already seen a SD example:

In the limit as boundary converges to $2 \times$ equator, the surfaces converge to $2 \times$ totally geodesic disc.

But Gauss map prognerively covers more and move of S^{2}

In the limit, we get Gauss mas of totally geodesic disc (castant) AND a "bubble" of the whole of S^{2} at the origin.
(This is not quite an example fitting hypotheses of theorem above: j_{n} on annuli don't converge, boundary links don't converge.)

Let $Z \subseteq \mathcal{X}_{g, k}$ be those $[u, j]$ for which $f=\pi \cdot u$ has a critical point.

Theorem Z has codimension 2.
Justification: Consider J-hal curves with a marked point $p \in \Sigma$

Moduli space $X_{j, k}^{1}=\frac{\{(u, j, p) \mid p \in \Sigma\}}{\operatorname{Diff}(\Sigma)}$
It's a Banach mavibold, fibres over $X_{g, k}$ by bergetting the pout P :

$$
\begin{array}{r}
\Sigma c X_{j, k}^{1} \rightarrow X_{g, k} \\
d f_{p} \in \operatorname{Hom}_{\mathbb{d}}\left(T_{p}^{*} \Sigma, H_{u(p)}\right)
\end{array}
$$

rank 2 complex vector space.

These vector spaces lit together to give rank 2 complex vector bundle

$$
v \rightarrow x_{g, k}^{1}
$$

and $d f_{p}$ gives a sections $s V$

$$
s[u, j, p]=0 \text { if } d f_{p}=0
$$

Fact: s vanishes transversely and so $s^{-1}(0) \subseteq X_{g, k}^{1}$ is (neal) codimension 4.
Fibres of $X_{g, k}^{1} \rightarrow X_{g, k}$ are 2-dimenoional

$$
s^{-1}(0) \rightarrow 7
$$

So Z is codimension 2 .

Consequence: we can ignore links which are killed by f with critical points.

Main Theorem:

We can count minimal discs! lie. Degree of $\beta: X_{0,1} \rightarrow Y_{1}$ is well-delined.

Proof U_{p} to difteomerphisms, there is a UNIQUE j on \bar{D}, so we just fix it.

Let $B \subseteq Y_{1}$ be those knots such that if $\beta(4) \in \beta$ then f has branch points.

B has codimension 2, and by Compaction Theorem A above, β is proper over $y_{1} \backslash B$.

When j_{n} don't converge.
Deligne-Mumbard: after acting by diffeomerphisms we can make a subsequence of j_{n} converge to a NODAL limit.
ie a Riemann surface with dour points "glued together" to make nodes

"boundary node"

COMPACTNESS THEOREM B

If $j_{n} \rightarrow j_{\infty}$, a complex structure on a NODAL Riemann surface \bar{S} with boundary, then
1). \bar{S} has NO boundary nodes.
2) A subsequence of the f_{n} converges to a conformal parametrisation of a nodal minimal surface

$$
f_{\infty}: \bar{S} \rightarrow \overline{\mathbb{M}}^{4}
$$

le f_{∞} is ordinary conformal map on each component at J and it agrees on points which are glued to wake nodes.

Moreover, $f_{\infty}(\partial \bar{S})=L_{\infty}$.

We've already seen an explicit example of this (due to M.T. Nguyen):

At first sight it looks like were nearly done with the definition of $u_{g}(L)$

Suppose that the u_{n} converge to the twister lift $u_{\infty}: \bar{s} \rightarrow \bar{z}$ of f_{∞}. Then we have intersecting J-hot. curves is 6D Z, which is a codim 2 phenomenon. We just ignore these "bad" links.

This is what happens hor Nguyen's example.

But sancthing else can go wrong.
Even it f_{∞} has no critical points, u_{u} can still bubble exactly where the node berms.

This is what happens for Mari's catenoids.

Up in tuistor space the picture is

$$
0
$$

$$
\begin{aligned}
\subseteq & \bar{z} \\
& \downarrow^{7} \\
\subseteq & \mathbb{H}^{4}
\end{aligned}
$$

This is not avoidable!

But it still "stamiN' T " happen.
Twister fibre s J-hotomerphic curve. It has index 0 , so should be isolated

If that were true then the above picture would be codimension 4 in the space of links.

But the twistor fibre moves in 4D family (the points of H^{4} !)

Linearised J-h on. equation hor twistor fibre has 4D cokernel.

This is what I hope should save the definition of $n_{g}(L)$.

Conjecture
You can't arid singular cartigurations like in the above picture, but they should only arise on limits of smooth things m codinension 4 .

Justification (but NOT a proof!)

Take a singular configuration of J-hol. curves as above and smooth it out, gluing in annuli to replace nodes.

Result is APPROXIMATELY J-holomarphic. at least when aunuliare very small

Try to perturb to genuine solution.
If linearised equations are furjective then there is a solution near by

But they won't be, they'll have 4D cokernel coming from fact that twister fibre has cokervel.

So can only use implicit function theorem if error lies m codim 4 space.

To arrange this, you'll have to move boundary knot ar link, giving 4D conswaint $m Y_{k}$.

Main new ideas in proofs of campactuen theorems: Convergence rear infinity.

Put $\bar{M}_{u}=f_{n}(\bar{\Sigma})$, minimal surface.
Theorem. There exists $\varepsilon>0$ such that, after passing to a subsequence,

$$
\bar{M}_{n, \varepsilon}=\bar{M}_{n} \cap\{x \leq \varepsilon\}
$$

converges to a minimal surface $\bar{M}_{\infty, \varepsilon}$ billing L_{1} and dibteomerphic to $L x[0, \varepsilon]$

Ideas in the proof

Near $x=0$, each \bar{M}_{n} is a graph over a cylinder:

$$
S_{n}: L_{n} \times\left[0, \varepsilon_{n}\right] \rightarrow \mathbb{R}^{3}
$$

$S_{n}(p, \xi)$ normal to $T_{p} L_{n}$.
Proposition There is $\varepsilon>0$ INDEPENDENT of n so that we can write $\bar{M}_{u, \varepsilon}$ as a graph over $L_{n} \times[0, \varepsilon]$, of map S_{n}

Meveaver, $\left|\nabla s_{u}\right| \leq 1$ on all of $L_{n} \times[0, \varepsilon]$.

Sketch at proof

We can do this on $\left[0, \varepsilon_{n}\right]$, hor \bar{M}_{n}.

Suppose her a contradiction that $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Suppose ε_{n} is the first time $\left|\nabla s_{n}\right|=1$
Cother things could go wrong eg \bar{M}_{u} has double pout or branch point at $x=\varepsilon_{n,}$ but Let's worry just about $\left|\nabla_{\delta_{n}}\right|=1$ for now. Same tedmiquen work in other coven)

Idea is to RESCALE BY ε_{n}^{-1}

To take limit we use baviers:
Let $S \subseteq \mathbb{R}^{3}$ be a round 2-ophere
$S=\partial H$ lo r some totally geodesic copy $H \subseteq H^{4}$ of H^{3}.

Suppose $M \subseteq H^{4}$ is a minimal surface with boundary outside of S

Then M must be outside of H by maximum prinsiple: if $d: M \rightarrow \mathbb{R}$ B distance to H then $\Delta d \leq 0$.

So M is constrained to lie in a region determined by C^{2} geanetry of ∂M :

Now, we have points $P_{n} \in L_{n}$ st

$$
\left|\nabla s_{n}\left(p_{n}, \varepsilon_{n}\right)\right|=1
$$

Assume $\mathrm{pu}_{n} \rightarrow \mathrm{p}$.
"Rescale" centred at Pu by factor ε_{u}^{-1} in half space coordinates:

$$
(x, y) \mapsto\left(\varepsilon_{n}^{-1} x, \quad \varepsilon_{n}^{-1}\left(y-p_{n}\right)\right)
$$

THIS IS AN ISOMETRY OF AH
\bar{M}_{n} gets mapped to a new minimal surface \bar{X}_{n}
$\partial \bar{X}_{n}$ passes through $(0,0)$
Assume $L_{n} \rightarrow L_{\infty}$ in C^{2}, then $\partial \bar{x}_{n} \rightarrow \Lambda$ a line $n \mathbb{R}^{3}$
Λ is $T_{p} L_{\infty}$ translated to go through O
We can hit bigger and bigger barriers so \bar{x}_{n} converges to the copy $H \subseteq H^{4}$ aet \mathbb{H}^{2} with boundary 1

Barriers give C^{0} convergence $\bar{X}_{n} \rightarrow H$
Deep results for minimal surfaces (dore to White and Allard) imply
$\bar{X}_{n} \rightarrow H$ r C^{∞} on compact sets in \mathbb{H}^{4}

Meanwhile \bar{X}_{n} is still a graph, now over $[0,1]$, of section \tilde{S}_{n}

And $\nabla \tilde{S}_{n}=\nabla s_{n}$ since we rescaled both domain and range equally.

So $\quad\left|\nabla \hat{s}_{n}\left(p_{n}, 1\right)\right|=1$
Since $\bar{X}_{n} \rightarrow H, \quad \tilde{s}_{n} \rightarrow 0$ in C^{∞} on compact sets. But $\left|\nabla \tilde{s}_{n}\left(p_{n}, 1\right)\right|=1$ fer all n and teats our contradiction!

We now have uniform C^{1} control of S_{n} near infinity so, by Areela-Ascoli we hare a subsequence that carresges $m C^{0}$. But we need derivatives to converge too.
2. The s_{n} solve a PDE of the form $F\left(s_{n}, \nabla s_{n}, \nabla^{2} s_{n}\right)=0$, because the graphs are minimal.

Use analysis of PDE to show that the s_{n} converge in $C^{k, \alpha}$

Actually, we assume $L_{n} \rightarrow L_{\infty}$ is $C^{2, \alpha}$ then we need to show $S_{n} \rightarrow S_{\infty}$ in $C^{2, \alpha}$

2 so we can use banners, α so we can use elliptic estimates.

Control of higher derivatives

Graph of S_{n} is minimal surface, so

$$
F\left(s_{n}, \nabla s_{n}, \Delta s_{n}\right)=0
$$

for some particular F

Would like to reawange to get

$$
\Delta s_{n}=G\left(s_{n}, \nabla s_{n}\right)
$$

Then bounds on $S_{n}, \nabla s_{n}$ imply bounds on ΔS_{n} and so on $2^{n d}$ derivatives of S_{n}.

If F were "quasilinear elliptic" this would work.

But F degenerates

$$
\text { As } x \rightarrow 0
$$

This is because $g_{\text {hyp }}$ blows up as $x \rightarrow 0$.

We can only play this game for $x \geq x_{j}>0$
Any bounds we get this way will blow up as $x_{0} \rightarrow 0$.

Willmare canes to the rescue!

Minimal surface equ is Euler-Lagrange equ hov the area functional.

For the Willmere equ. we use a different functional: for $\Sigma^{2} \subseteq\left(M^{n}, g\right)$ with mean curvature μ, we consider

$$
W(\Sigma):=\int_{\Sigma}\left(|\mu|^{2}+\sec (T \Sigma)\right) d v o l
$$

(where dol is induced volume herm on 2.)

Euler - Lagrange equation hor W is called the Willmare equation, elliptic, nou-linear.

Two key facts:

1. If Σ is minimal it is automatically a solution of Willmore equation
2. W is conformably invariant and so is the Willmore equation.

Que surfaces $\bar{M}_{n} \subseteq \bar{B}^{4}$ are $g_{\text {hyp }}$ - minimal
So they are $g_{h_{y p}}$ - Willuore
So they are $g_{\text {Eudidean }}$ - Willurere
But the Euclidean metric extends smoothly across ∂B^{4}.

The Eudidean Willure equation ISN'T DEGENERATE at $x=0$!

From here one can use more "traditional" methods of geanetric analysis to show s_{n} converge $m \quad C^{2, \alpha} \ldots$

