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Super Vector Spaces

A super-vector space is a Z2-graded vector space V = V0̄ ⊕ V1̄.
Dim: (m|n) ≡ m+ ϵn (ϵ2 = 1), c-dim: m+ n, s-dim: m− n.
Changing parity yields a superspace ΠV of dimension (n|m).

Define the tensor product V ⊗W by

(V⊗W )0̄ = (V0̄⊗W0̄)⊕(V1̄⊗W1̄), (V⊗W )1̄ = (V0̄⊗W1̄)⊕(V0̄⊗W1̄)

and similarly define Hom(V,W ) = V ∗ ⊗W ≃W ⊗ V ∗.

A superalgebra structure on A = A0̄ ⊕A1̄ is defined via
Z2-homogeneous µ ∈ Hom(A⊗A,A)0̄. It is commutative if

ab = (−1)|a||b|ba (sign rule).

An example is the Grassmann algebra in n variables
Λ(n) = Λeven ⊕ Λodd of dimension (2n−1|2n−1).

Another example is the tensorial algebra T (V ). In particular,

dim(S2V ) =
((

m+1
2

)
+
(
n
2

)
|mn

)
, dim(Λ2V ) =

((
m
2

)
+
(
n+1
2

)
|mn

)
.
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Examples of 2-tensors

Even nondegenerate symmetric str on Rm|2n(x, ξ) has the form:

g =

n∑
i=1

ϵidx
2
i +

m∑
j=1

dξ2j−1dξ2j (ϵi = ±1).

Change of parity gives nondegenerate skew-symmetric structure
ω(v, w) = g(Πv,Πw) on R2n|m(x, ξ):

ω =

m∑
i=1

dx2i−1 ∧ dx2i +

n∑
j=1

ϵjdξj ∧ dξj .

Odd nondegenerate symmetric str on Rn|n(x, ξ) has the form:

q =

n∑
i=1

dxi ⊗ dξi.

There is a bijection: odd ndg symm↭ skew-symm str.

Odd complex structure on Rn|n(x, ξ) has normal form

J =

n∑
i=1

∂ξi ⊗ dxi − ∂xi ⊗ dξi.

Boris Kruglikov (UiT Tromsø Norway) Super-Symmetry & Super-Geometry ∗ Srni 2023



4/ 19

Lie superalgebras (LSA)

A Lie superalgebra structure on g = g0̄ ⊕ g1̄ is defined by
Z2-homogeneous bracket [, ] ∈ Hom(g⊗ g, g)0̄ that is skew-symm
and satisfies the Jacobi in super-sense (sign rule). Examples:

• gl(m|n) = End(Rm|n) with supercommutator

[A,B] = AB − (−1)|A| |B|BA

• sl(m|n) =
{
A =

(
α β
γ δ

)
: str(A) = tr(α)− tr(δ) = 0

}
.

• osp(m|2n) preserves even ndg symmetric structure on Rm|2n (≃)
◦ spo(2n|m) preserves even ndg skew-symm structure on R2n|m,

• pe(n) preserves odd ndg symmetric structure on Rn|n (≃)
◦ pesk(n) preserves odd ndg skew-symmetric structure on Rn|n,

• q(n) preserves odd complex structure on Rn|n ⇝ sq(n), psq(n)

• G(3) = (g(2)⊕ sl(2)|R7 ⊗ R2) exceptional ag(2),

• F (4) = (spin(7)⊕ sl(2)|R8 ⊗ R2) exceptional ab(3),

• D(2|1;α) = (sl(2)⊕ sl(2)⊕ sl(2)|R2 ⊗ R2 ⊗ R2).
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Digression: Lie algebra from representation

For a subalgebra h ⊂ g of a Lie algebra, one can (non-uniquely)
recover the structure of g by representation h→ End(m = g/h)
and some (cohomological) data. This is esp simple in the reductive
case, when ∃ h-invariant complement m ⊂ g.

Consider, for example, the case h = su(3), m = C3. Then the
brackets on g = m⊕ h are given by the subalgebra structure of h,
its representation and an h-equivariant map β : Λ2m→ g. We split

(Λ2m)C = Λ2,0(m)⊕ Λ1,1(m)⊕ Λ0,2(m).

Thus, Λ2,0(m)⊕Λ0,2(m) ≃ mC, Λ
1,1(m) = C⊕Λ1,1

0 (m) ≃ C⊕ hC,
and we decompose into h-irreps Λ2m = m⊕ R⊕ h. Now by
Schur’s lemma β is given by the matrix

β =

(
a 0 0
0 0 b

)
.

The Jacobi identity should be checked only for all 3 arguments
from m, and this gives 4b+ a2 = 0. Thus either the algebra is flat
g = h⋉m (a = b = 0) or rescaling leads to g = G(2).
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LSA example: G(3) and F (4) (over C)

For g = G(3): g0̄ = G(2)⊕A(1), g1̄ = C7 ⊠ C2. We split

S2g1̄ = (Λ2C7⊠Λ2C2)⊕(S2C7⊠S2C2) = G(2)⊠C⊕[10 0]⊕[20 2]⊕C⊠A(1)

into g0̄-irreps, whence by Schur the g0̄-equivariant map

β : S2g1̄ → g0̄ has matrix β =

(
a 0 0 0
0 0 0 b

)
and Jacobi

[x, [x, x]] = 0 ∀x ∈ g1̄ uniquely fixes non-flat [a : b] yielding G(3).

For g = F (4): g0̄ = B(2)⊕A(1), g1̄ = C8 ⊠ C2. We split

S2g1̄ = (Λ2C8⊠Λ2C2)⊕(S2C8⊠S2C2) = B(3)⊠C⊕[010 0]⊕[002 2]⊕C⊠A(1)

into g0̄-irreps, whence by Schur the g0̄-equivariant map

β : S2g1̄ → g0̄ has matrix β =

(
a 0 0 0
0 0 0 b

)
and Jacobi

[x, [x, x]] = 0 ∀x ∈ g1̄ uniquely fixes non-flat [a : b] yielding F (4).
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Another exception: D(2|1;α)
For g = D(2|1;α): g0̄ = A(1)⊕A(1)⊕A(1), g1̄ = C2 ⊠C2 ⊠C2.
We split into g0̄-irreps (where S2 = S2C2, Λ2 = Λ2C2)

S2g1̄ = (S2 ⊠ S2 ⊠ S2)⊕(S2 ⊠ Λ2 ⊠ Λ2)⊕(Λ2 ⊠ S2 ⊠ Λ2)⊕(Λ2 ⊠ Λ2 ⊠ S2)

=A(1)⊠A(1)⊠A(1)⊕A(1)⊠ C⊠ C⊕ C⊠A(1)⊠ C⊕ C⊠ C⊠A(1)

so by Schur the g0̄-equivariant map β : S2g1̄ → g0̄ has matrix

β =

0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

 and Jacobi yields λ1 + λ2 + λ3 = 0.

Assuming not all λi zero, denote α = [λ1 : λ2] ∈ P1. Then the
natural S3 action on the λ-plane is given by

α 7→ 1/α, α 7→ −(1 + α).

Here α ̸∈ {0,−1,∞}. The orbit α ∈ {1,−1
2 ,−2} corresponds to

non-deformed D(2|1) = osp(4|2). The singular orbit α = e±2πi/3

corresponds to vertices of (any) fundamental domain in P1.
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Classical Lie superalgebras

Definition

A simple Lie superalgebra g is called classical if the representation
of g0̄ on g1̄ is completely reducible.

Theorem

A simple Lie superalgebra g is classical if and only if g0̄ is reductive.

Remark

The module S2g1̄ contains every irrep Γλ ⊂ g0̄ with multiplicity 1.

Ex: check this with the orthosymplectic algebra

osp(2m+ 1|2n)0̄ = Bm ⊕ Cn,

osp(2m|2n)0̄ = Dm ⊕ Cn
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Types

I: g0̄ → End(g1̄) reducible, then g1̄ = g−1 ⊕ g1 is the direct sum of
two irreps of g0 = g0̄, and g = g−1 ⊕ g0 ⊕ g1 is a Z grading.

II: g0̄ → End(g1̄) irreducible, hence g0̄ is semi-simple. (Otherwise
S2g1̄ → g0̄ is not z(g0̄) equivariant.) g = g−2⊕ g−1⊕ g0⊕ g1⊕ g2.

Killing form Kg(x, y) = str(adx ady) is even, supersymmetric and
g-invariant. It may however be zero. Any invariant bilinerar
supersymmetric even form K on a simple LSA is either
nondegenerate or zero, hence any two such forms are proportional.

LSA is called basic if it possesses a nondegenerate form K.
Examples when such is lacking:

P (n) =

{(
a b
c −at

)
∈ sl(n+ 1, n+ 1) : tr(a) = 0, b symm, c skeq

}
,

Q(n) =

{(
a b
b a

)
∈ sl(n+ 1, n+ 1) : tr(b) = 0

}
/⟨1⟩.
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Classification of classical LSA

Type I Type II

BASIC
(ndg Killing)

A(m,n), m > n ≥ 0
C(n+ 1), n > 0

B(m,n), m ≥ 0, n > 0

D(m,n),

{
m > 1, n > 0
m ̸= n+ 1

F (4), G(3)

BASIC
(zero Killing)

A(n, n), n > 0 D(n+ 1, n), n > 0
D(2|1, α)

STRANGE
(no ndg K)

P (n), n > 1
(periplectic)

Q(n), n > 1
(queer)

Here A(m,n) = sl(m+ 1, n+ 1), m ̸= n

A(n, n) = sl(n+ 1, n+ 1)/⟨1⟩
B(m,n) = osp(2m+ 1, 2n)

C(n) = osp(2, 2n− 2)

D(m,n) = osp(2m, 2n).
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Root space decomposition

A Cartan subalgebra (CSA) of LSA g is a maximal nilpotent
self-normalizing subalgebra. For a classical LSA its CSA h ⊂ g0̄
and it is diagonalizable, whence root space decomposition

g =
⊕
α∈h∗

gα ⊕ h, where gα = {v ∈ g : [h, v] = α(h) ∀h ∈ h}.

Root system ∆ = {α ∈ h∗ : gα ̸= 0} = ∆0̄ ∪∆1̄, sets of even and
odd roots may intersect and have multiplicities as for Q(n) (but
the latter case is special as CSA contains even and odd parts).

For all classical LSA we have g0 = h and dim gα = 1 ∀ α ̸= 0
if g ̸= A(1, 1), P (2), P (3), Q(n). For basic LSA

[gα, gβ] ̸= 0 if α, β, α+ β ∈ ∆, [eα, e−α] = ⟨eα, e−α⟩hα;
⟨gα, gβ⟩ = 0 if α ̸= −β, pairing ⟨, ⟩|gα⊗g−α is ndg .

In addition, if α ∈ ∆ and kα ∈ ∆ for k ∈ Z, k ̸= ±1, then
k = ±2, α ∈ ∆1̄, ⟨α, α⟩ ≠ 0.
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Cartan matrix

Contragradient LSA g(A, τ) ≡ (possessing Cartan matrix) are
constructed as follows: A = (aij)r×r, τ ⊂ {1, . . . , r}. Local LSA
g−1 ⊕ g0 ⊕ g1 has basis fi, hi, ei, i ∈ I with parity |ei| = |fi| = 0̄
iff i ∈ τ , |hi| = 0̄ ∀i. Relations:

[ei, fj ] = δijhj , [hi, hj ] = 0, [hi, ej ] = aijej , [hi, fj ] = −aijfj .

There exists “minimal” Z-graded LSA g = ⊕i∈Zgi with the above
local part. (Serre relations + supplementary conditions!)

The map (hi, fi) 7→ (chi, cfi), c ̸= 0, rescales the i-th row of A. If
aii ̸= 0 normalize it to aii = 2 for |i| = 0̄ and to aii = 1 if |i| = 1̄,
if aii = 0 normalize the row to contain integers without common
divisor.
Let h = ⟨h1, . . . , hr⟩. Define simple roots αj by αj(hi) = aij

(opposite to Bourbaki; classically
2⟨αi,αj⟩
⟨αj ,αj⟩ ). Each basic LSA has a

distinguished simple root system with only one odd root.
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Dynkin diagrams

Let g be a basic LSA with CSA h of rank r = dim h. Let
∆0 = (α1, . . . , αr) be a simple root system of g, A = (aij)r×r the
associated Cartan matrix. A Dynkin diagram is given as follows.

◦ white node for even simple root,

⊗ grey node for odd isotropic simple root,

• black node for odd non-isotropic simple root.

The i-th and j-th nodes are joined by ηij = max(|aij |, |aji|)
lines with an arrow from i-th to j-th node when |aij | > |aji|.
(For D(2|1;α) the recipe is different.)

The distinguished Dynkin diagram is the Dynkin diagram
associated to a distinguished simple root system.
It is constructed as follows. Consider the distinguished Z-gradation
g = ⊕gi. Then the even nodes are given by the Dynkin diagram of
g0̄ (may be not connected) and the odd node corresponds to the
lowest weight of the g0̄-representation g1̄.
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Weyl groupoid

For even root α one has ⟨α, α⟩ ≠ 0 and the reflection at α

Sα(β) = β − 2⟨β, α⟩
⟨α, α⟩

α, β ∈ h∗

preserves ∆0̄ and ∆1̄. The Weyl group W generated by Sα,
α ∈ ∆0̄, does not act transitively on the set of of all simple root
systems. Given simple root system ∆0 the odd reflection
(Serganova) at an odd isotropic root α ∈ ∆0

1̄
is

Sα(β) =


β + α, ⟨α, β⟩ ≠ 0

β, ⟨α, β⟩ = 0, β ̸= α

−α, β = α

, β ∈ ∆0.

Such odd reflection does not extend to the entire ∆, but acts only
on ∆0. Nevertheless, the obtained Weyl groupoid Ŵ , generated
by all Sα, acts transitively on the set of of all simple root systems.
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Example: sl(2|1) of dim = (4|4)
Here h = R2, h∗ = ⟨ϵ1 − ϵ2, ϵ2 − δ⟩ ⊂ R3(ϵ1, ϵ2, δ) and

∆0̄ = {±(ϵ1 − ϵ2)}
∆1̄ = {±(ϵi − δ)} g =

 × ϵ1 − ϵ2 ϵ1 − δ
ϵ2 − ϵ1 × ϵ2 − δ
δ − ϵ2 δ − ϵ2 ×


with ⟨ϵi, ϵj⟩ = δij , ⟨δ, δ⟩ = −1, ⟨ϵi, δ⟩ = 0.
Different system of positive roots and corresp Dynkin diagrams:

Even Odd Simple Dynkin Cartan

(1) ϵ1 − ϵ2 δ − ϵ1, δ − ϵ2 ϵ1 − ϵ2, δ − ϵ1 ◦ ⊗
[

2 −1
−1 0

]
(2) ϵ1 − ϵ2 ϵ1 − δ, δ − ϵ2 ϵ1 − δ, δ − ϵ2 ⊗ ⊗

[
0 1
1 0

]
(3) ϵ1 − ϵ2 ϵ1 − δ, ϵ2 − δ ϵ2 − δ, ϵ1 − ϵ2 ⊗ ◦ [

0 −1
−1 2

]

The odd reflections mapping DDs are Sϵ1−δ(ϵ1 − δ) = δ − ϵ1,
Sϵ1−δ(δ − ϵ2) = ϵ1 − ϵ2 and similar.
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Parabolics and Z-gradings
Let ∆+ be a choice of positive roots, ∆0 the corresponding simple
root system {α1, . . . , αr} and {Zi} ⊂ h be the dual basis to
{αi} ⊂ h∗. Let χ ⊂ {1, . . . , r} be a choice of crosses on nodes of
the corresponding DD. Then Z =

∑
i∈χ Zi is a grading element

defining a Z-grading of g with non-negative part being parabolic

g = g−k ⊕ · · · ⊕ g−1︸ ︷︷ ︸
m

⊕ g0 ⊕ g1 · · · ⊕ gk︸ ︷︷ ︸
p

, gi = {v ∈ g : [Z, v] = iv}.

There is a bijective correspondence between (equivalence classes
of) Z-gradings and parabolics. The latter p = pΞχ are given by a
choice of DD Ξ and a subset of simple roots χ.

Weyl reflection groupoid: Assume that two system of simple
roots are related by an odd reflection Sαi , corresponding to grey
node i of the Dynkin diagrams Ξ, Ξ′ with nodes N,N ′, and
remaining nodes permuted by the bijection z : N → N ′, z(i) = i′.
Then for a subset N \ {i} ⊃ χ z←→ χ′ = z(χ) ⊂ N \ {i′}

pΞχ ≃ pΞ
′

χ′ .
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BGG and BBW

If g is of type I or II, then typical simple modules have a finite BGG
resolution. For type II atypical Kac modules never have finite BGG.

Recently Koulembier advanced in solving BBW for basic LSA: for
distinguished Borel subgroup B ⊂ G denote λ-highest weight
representation by Lλ(b), and similarly for a parabolic P ⊃ B. For
a P -module V and denote Γk(G/P, V ) = Hk(G/P,G×P V ∗)∗.
Then

Γk(G/P,Lλ(p)) = Γk(G/B,Lλ(b)).

If the weight λ is regular, there exists a unique w ∈W such that
Λ = w · λ ∈ P+ and

Γk(G/B,Lλ(b)) =

{
KΛ if ℓ(w) = k,
0 if ℓ(w) ̸= k.

Here KΛ is the maximal finite-dimensional quotient of the integral
dominant Verma module MΛ = U(g)⊗U(b) LΛ(b).

However this almost never applicable to adjoint representations,
and Kostant’s cohomology remains not computed for general LSA.
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Supermanifolds

A supermanifold in the sense of Berezin–Kostant–Leites is a ringed
space M = (Mo,AM ) such that AM |Uo

∼= C∞
Mo
|Uo ⊗ Λ•S∗ as

sheaves of superalgebras for any sufficiently small open subset
Uo ⊂Mo. Here S is a vector space of fixed dimension. We set
dim(M) = (m|n) = (dimMo| dimS), call Mo the reduced
manifold and AM = (AM )0̄ ⊕ (AM )1̄ the structure sheaf.

Let J = ⟨A1̄⟩ = J0̄ ⊕ J1̄ be the subsheaf generated by nilpotents:
J1̄ = A1̄ and J0̄ = A2

1̄
. For any sheaf E of AM -modules on Mo

the evaluation is ev : E → E/(J · E). Thus ev : AM → C∞
Mo

,
f 7→ ev(f), yields the canonical morphism ı : Mo ↪→M , with
evaluation ev(f) at x ∈Mo being evx(f). We stress, however,
that there is no canonical morphism from M to Mo.

A Lie supergroup is a supermanifold G = (Go,AG) that is also a
group object in the category of supermanifolds. (The reduced
manifold Go is a Lie group.) It can be represented by a
Harish-Chandra pair (Go, g), Lie(Go) = g0̄.
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Actions of Lie supergroups

A Lie supergroup is a supermanifold G = (Go,AG) that is also a
group object in the category of supermanifolds. This means there
exist morphisms (where e = (pt,k) is a superpoint, k = R ∨ C)

µ : G×G → G, ι : G → G, ϵ : e → G, υ : G → e

satisfying (below diag : G → G×G)

µ ◦ (µ× id) = µ ◦ (id×µ), µ ◦ (ϵ× id) = id = µ ◦ (id×ϵ),

µ ◦ (ι× id) ◦ diag = ϵ ◦ υ = µ ◦ (id×ι) ◦ diag, υ ◦ ϵ = id

An action of G on M is a morphism φ : G×M → M such that

φ ◦ (µ× id) = φ ◦ (id×φ), φ ◦ (ϵ× id) = id .

This induces a homomorphism of LSAs φ̄ : g → Vect(M). Note
the evaluation map evx : Vect(M) → TxM .

Definition

The action φ is transitive if its reduction φo : Go ×Mo → Mo is
such and the map evx ◦φ̄ : g → TxM is surjective ∀x ∈ Mo.
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Homogeneous supergeometry

Definition

A supermanifold M is homogeneous if a Lie supergroup G
transitively acts on it.

In this case one can define the stabilizer of a point a ∈ M : it is a
sub(super)group H ⊂ G, given by the pair (Ho,AH), where Ho is
the stabilizer of a ∈ Mo and AH = AG/(φ ◦ (id×a))∗(ma), where
ma ⊂ AM is the maximal ideal of a.

Equivalently if G is given as a Harish-Chandra pair (Go, g), then H
is the Harish-Chandra pair (Ho, h) with h = Ker(evx ◦φ̄).
In this case the algebraic data encoding the homogeneous manifold
M = G/H is (Go/Ho, g/h).

Definition

A generalized flag supermanifold is the homogeneous space G/P
with G a (semi)simple Lie supergroup and P a parabolic subgroup.

Boris Kruglikov (UiT Tromsø Norway) Super-Symmetry & Super-Geometry ∗ Srni 2023



4/ 18

Global vs Local Geometry

It is a classical result that all holomorphic vector fields on a flag
manifold in Cn are fundamental for the natural action of SL(n,C),
i.e. their Lie algebra of holomorphic vector fields is sl(n,C). This
was extended to generalized flag manifold G/P by Onishchik:

Vecthol(G/P ) = g.

Recently, Vishnyakova extended this results further to generalized
flag supermanifold in several cases (for some homogeneous
superspaces introduced by Manin). It is remarkable that one of her
main tools is the classical BBW theorem, as is also our case below.

We want to get a local result, namely to specify geometries for
which g = Lie(G) is the symmetry Lie superalgebra. The geometric
structures responsible for reduction from the sheaf of all vector
fields T M on M are non-holonomic and we introduce them next.
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Super distributions

A distribution on a supermanifold M is a graded AM -subsheaf
D = D0̄ ⊕D1̄ ⊂ T M that is locally a direct factor. Any such sheaf
is locally free, associating the VB D = ev(D) ⊂ TM . This induces
a reduced subbundle D|Mo ⊂ TM |Mo that does not determine D.

The weak derived flag of (bracket-generating) D is defined so:

D1 = D ⊂ D2 ⊂ · · · ⊂ Di ⊂ · · · , Di = [D,Di−1] ,

where each Di ⊂ T M is a graded AM -subsheaf, also assumed
locally direct factor (regularity).

Example (non-regular superextension of Hilbert–Cartan equation)

Let M = R5|2(x, u, p, q, z | θ, ν) be endowed with superdistribution

D = ⟨Dx = ∂x+p∂u+q∂p+q2∂z, ∂q |Dθ = ∂θ+q∂ν+θ∂p+2ν∂z⟩
of rank (2|1). We directly compute

D2 = ⟨Dx, ∂q, ∂p + 2q∂z |Dθ, ∂ν , θ∂u⟩.
This is not a superdistribution, due to the presence of a nilpotent.
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Tanaka-Weisfeiler prolongation

For regular D we get filtration Di of T M , compatible with
brackets of supervector fields: [Di(U),Dj(U)] ⊂ Di+j(U).
Setting gr(T M)−i = Di/Di−1 for i > 0, we get a locally free
sheaf of AM -modules and Lie superalgebras over Mo:

gr(T M) =
⊕
i<0

gr(T M)i.

It is strongly regular if there exists Lie superalgebra
m =

⊕
−µ≤i<0 gi such that gr(TxM) ∼= (AM )x ⊗m ∀ x ∈ Mo.

Assuming strong regularity, non-degeneracy (no center in g−1) and
fundamental property (g−1 generates m) define Tanaka–Weisfeiler
prolongation of m as the maximal Z-graded LSA g =

⊕
i∈Z gi s.t:

extension: g− = m,

transitivity: [X, g−1] ̸= 0 for 0 ̸= X ∈ g≥0.

It exists and unique, and is denoted g = pr(m). There is
prolongation version pr(m, g0) and also other reductions.
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G(3) supergeometries: regular extension of HC equation

There are 19 parabolic supergeometries associated to the simple
exceptional LSA G(3). Consider Hilbert-Cartan type
supergeometry G(3)/P IV

2 , which is equivalent to a gerneric (2|4)
superdistribution on a (5|6)-dimensional supermanifold. (Similarly
a generic rank 2 distribution in 5D gives a G(2)/P1 geometry.)

Tanaka-Weisfeiler prolongation of the symbol of this distribution
has the following dimensions of the components:

(2|0, 1|2, 2|4, 7|2, 2|4, 1|2, 2|0).

Therefore dim s ≤ (17|14) and the maximal symmetry is G(3).
The corresponding distribution super-extends the Hilbert-Cartan
distribution; on M = R5|6(x, u, ux, uxx, z|ν, τ, uν , uτ , uxν , uxτ ) it is

D0̄ = ⟨Dx = ∂x+ux∂u+uxx∂ux+
(u2

xx
2 +uxνuxτ

)
∂z+uxτ∂uτ +uxν∂uν , ∂uxx⟩,

D1̄ = ⟨Dτ = ∂τ + uτ∂u + uxτ∂ux + uxxuxτ∂z + uxx∂uν , ∂uxτ ,

Dν = ∂ν + uν∂u + uxν∂ux + uxxuxν∂z − uxx∂uτ , ∂uxν ⟩.

Boris Kruglikov (UiT Tromsø Norway) Super-Symmetry & Super-Geometry ∗ Srni 2023



8/ 18

Encoding as differential equations

The SHC (super-Hilbert–Cartan) differential equation is

zx = 1
2u

2
xx + uxνuxτ , zτ = uxxuxτ , zν = uxxuxν , uτν = uxx

Another way to encode this is via super PDE{
uxx = 1

2u
3
yy + 2uyyuyνuyτuyy, uxy = 1

2u
2
yy + uyνuyτ ,

uxν = uyyuyν , uxτ = uyyuyτ , uντ = −uyy,

Here x, y, u even, ν, τ odd; e.g. uντ = −uτν , uνν = uττ = 0.

Theorem (BK, A. Santi, D. The ⋄ 2019)

The internal (EDS) symmetry of the SHC and external (contact)
symmetry of the super-PDE is G(3).
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On the proof: jets and Spencer complex

If mx is the maximal ideal of AM at x ∈ M (this contains the
subideal generated by odds: J = ⟨(AM )0̄⟩ ⊂ AM ) then
Jk
x (M) = AM/mk+1

x is the space of k-jets at x, k = 0, 1, . . . ,∞.

Similarly if VM is sheaf of sections of a bundle E over M with
typical fiber V , then Jk

x (E) = VM/(mk+1
x · VM ).

One further makes those jet-spaces Jk into a supermanifold and
bundle over M (not union over points!) with equations Ek ⊂ Jk.

The symbols gk(x) ⊂ SkT ∗
xM ⊗ V are defined as typical (tangent)

fibers of projections Ek → Ek−1 yielding the Spencer complex:

· · · → Λi−1T ∗M⊗gj+1 → ΛiT ∗M⊗gj → Λi+1T ∗M⊗gj−1 → . . .

In nonholonomic situation (weighted jets) the tangent bundle TM
is filtered with the associated graded m represented on V , whence
the generalized Spencer complex = Chevalley–Eilenberg complex:

· · · → Λi−1m∗ ⊗ gj+1 → Λim∗ ⊗ gj → Λi+1m∗ ⊗ gj−1 → . . .
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On the proof: Hochschild–Serre spectral sequence

If the parabolic and nilradical of the opposite parabolic are given by

g = g−k ⊕ · · · ⊕ g−1︸ ︷︷ ︸
m

⊕ g0 ⊕ g1 · · · ⊕ gk︸ ︷︷ ︸
p

then the claims about symmetry algebra are equivalent to:
g = pr(m) ⇔ H1(m, g)≥0 = 0, g = pr(m, g0) ⇔ H1(m, g)+ = 0.

To prove this we use filtation 0 ⊂ m0̄ ⊂ m and the Hochschild–
Serre spectral sequence Ep,q

r ⇒ Hn(m, g). We have:

Ep,q
0 = g⊗ Λpm∗

1̄ ⊗ Λqm∗
0̄, Ep,q

1 = Hq(m0̄, g⊗ Λpm∗
1̄).

For cohomology Hn the sequence degenerates on (n+ 2)nd page:

H0(m, g) = E0,0
2 , H1(m, g) = E1,0

2 ⊕E0,1
3 , H2(m, g) = E2,0

2 ⊕E1,1
3 ⊕E0,2

4 .

Strategy: describe Hd,n(m, V ) using Kostant’s version of BBW
theorem, use (g0)0̄ equivariance to restrict and compute the
differentials, apply long exact sequence in cohomology to proceed.
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G(3) supergeometries: odd contact structure

Consider M = R1|7(u|ξ1, . . . , ξ7) with odd contact structure
D = Ker(α), α = du−

∑7
1 ϵiξi dξi. Then dα|D is a super

conformal symplectic form, or in classical term a conformal metric
structure [g], which we assume of signature (7, 0) or (3, 4). In the
latter case it is convenient to change coordinates to have

g = dξ1 ∧ dξ4 + dξ2 ∧ dξ5 + dξ3 ∧ dξ6 + dξ7 ∧ dξ7.

The symmetry algebra of this nonholonomic distribution is
infinite-dimensional: K(1|7) or K(1|3, 4) resp. It is isomorphic to
AM equipped with the Lagrange bracket, [Xf , Xg] = X{f,g}.

Let us fix a supersymmetric cubic, or classically a 3-form on D

q = dξ1dξ4dξ7 + dξ2dξ5dξ7 + dξ3dξ6dξ7 − dξ1dξ2dξ3 + dξ4dξ5dξ6.

Define g0 to be a subalgebra of gl(g−1) conformally preserving q.
Then pr(g−, g0) = sym(D, [q]) = G(3) with odd contact gradation

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2, g0 = R⊕G(2).
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Other G(3) supergeometries

The Lie superalgebra G(3) has 4 different root systems up
W -action (one oribit of Weyl groupoid: odd reflections indicated).

For each Dynkin diagram label Ξ ∈ {I, II, III, IV}, the corresponding
simple root system ΠΞ = {α1, α2, α3} is defined in the following
table:

I II III IV

α1 δ − ε1 − ε2 ε1 + ε2 − δ ε2 − δ ε2 − ε1
α2 ε1 δ − ε2 δ − ε1 ε1 − δ
α3 ε2 − ε1 ε2 − ε1 ε1 δ
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A choice of root system type Ξ together with a choice of a
parabolic subgroup PΞ

χ , with χ ∈ P({1, 2, 3}) \ {∅}, gives one of
19 possible supergeometries G(3)/PΞ

χ with the following twistor
correspondences:

Theorem (BK, A. Llabres ⋄ 2022)

For every 17 non-special geometries pr(m) = G(3), so local (and
hence global) symmetries of the vector superdistributions induced
on G/P are equal to G(3). For 2 special contact geometries
pr(m, g0) = G(3) and this is the symmetry of reduced structures.
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Realizing F (4) as symmetry of super-PDE

Consider the following scalar super-PDE on an even function
u = u(x), with uij = ∂i

x∂xju, etc (sign rule!)
• 2nd order system, with x0, x1, x2 even, and x3, x4 odd:

u00 = u212u22 + 2u12u23u24, u01 =
1
2u

2
12,

u02 = u12u22 + u23u24, u03 = u12u23, u04 = u12u24,

u11 = 0, u12 = −u34, u13 = 0, u14 = 0.

• 3rd order system, with all x0, x1, x2, x3 odd:

u0ab = uabu123, 1 ≤ a < b ≤ 3.

Theorem (A. Santi, D. The ⋄ 2022)

The contact symmetry superalgebra of these super-PDEs is F (4).
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Other F (4)-supergeometries

Very similar is the situation with F (4)-supergeometries that has 6
different root systems up W -action (we indicate Weyl groupoid):

Theorem (BK, A. Llabres ⋄ 2022)

For every 52 non-special geometries pr(m) = F (4), so local (and
hence global) symmetries of the vector superdistributions induced
on G/P are equal to F (4). For 2 special contact geometries and
for 1 irreducible supergeometry pr(m, g0) = F (4) and this is the
symmetry of the 3 reduced structures.
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Twistor diagram
of F (4) parSG
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Realization as symmetries of differential equations

From the above theorem we deduce for g being either G(3) or F (4)

Corollary

Let D be a distribution with the same symbol as any of 17
distributions on exp(m) ⊂ G/P in the case of G(3) or 52
distributions in the case of F (4). Then dimension of the symmetry
algebra dim s is bounded by (17|14) or (24|16) respectively.

Contrary to the classical case, in the supersetting the integral (1|0)
or (0|1) curves are insufficient to recover the distribution. For most
canonical distributions g−1 (mod p) on G/P , the span of the
tangent vectors of (1|1) integral curves (for odd part these are
null vectors, which square to zero) gives the distribution.

Yet also these curves are sufficient to recover D = ev(D) but not
D. This happens for distributions of depth> 2. Thus higher
dimensional integral submanifolds are required to realize g as
symmetry of differential equation.
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Superbundles: FB

A fiber bundle (FB) is a submersion π : E →M with typical fiber
F . This means a collection of compatible trivializations

φU : π−1(U)→ U × F, prU ◦φU = π|U

over superdomains U = (U,AM |U ) for domains U ⊂Mo.

For an open cover {Ui : i ∈ I} of M the family of fibered
isomorphisms φij : Uij × F → Uij × F (over identity) is called
a cocycle if φii = 1Uij and φijφjk = φik on Uijk.

Proposition

A fiber bundle (E,M, π) with trivializations (Ui, φi) defines the
cocycle {φij = φi ◦ φ−1

j }i,j∈I , and any cocycle determines a FB.

By abuse of notations we write a cocycle as φij : Uij → Aut(F ),
i, j ∈ I. (The rhs is an infinite-dimensional supermanifold.)
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Superbundles: VB

A geometric vector bundle (gVB) is a FB with vector fiber F ,
given via a cocycle φij : Uij → GL(F ), where Uij = Ui ∩ Uj for an
open cover Ui of M .

A section of π : E →M is defined as a morphism σ :M → E such
that π ◦ σ = 1M . The set of all even sections ΓE(U)0̄ over U ⊂M
yields a sheaf of right OM -modules, but it is not locally free. We
extend it to a locally free sheaf ΓE(U) = ΓE(U)0̄ ⊕ ΓE(U)1̄.

An algebraic vector bundle (aVB) over M is a locally free sheaf E
on Mo of OM -modules of finite rank. The above association
π ⇝ ΓE gives a functor from gVB to aVB.

Theorem

The category of the geometric VBs with morphisms of VBs is
equivalent to the category of algebraic VBs with morphisms of
locally free coherent sheaves, provided the bases are connected.
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Superbundles: PB

A geometric principal bundle (gPB) with structure group G is a FB
π : P →M with typical fiber G with the transition cocycle:
φij : Uij → G ⊂ Aut(G).

Let π1 : P1 →M1, π2 : P2 →M2 be gPB with structure groups
G1, G2. Let γ : G1 → G2 be a homomorphism of Lie supergroups.
A γ-morphism of principal bundles is a γ-equivariant fiber bundle
morphism (ψP , ψM ) : (P1,M1)→ (P2,M2): if αi : Pi ×Gi → Pi

are actions then

α2 ◦ (ψP × γ) = ψM ◦ α1.

This, in particular, gives reduction of the structure group.

An algebraic principal bundle (aPB) over M is a sheaf P of right
GM -sets that is locally simply transitive; GM (U) = G[U ].

Theorem

The categories of geometric PBs and algebraic PBs with
γ-morphisms are equivalent, for homomorphisms of supergroups γ.
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Frame bundles

Let dim(M) = (m|n), V = Rm|n. Consider the trivial VB over M

VM =M × V →M.

Let VM be the associated locally free sheaf on Mo. Frame bundle
π : FrM →M is defined via the geometric-algebraic correspondence
as the sheaf of AM -linear isomorphisms from VM to TM :

FrM (Uo) =
{
A|Uo-linear isomorphism F : VM |Uo → TM |Uo

}
.

We embed AM -sheaves FrM ↪→ (T m|n
M ) = TM⊕m

⊕
ΠTM⊕n.

Vector fields Xi ∈ X(U)0̄ (1 ≤ i ≤ m), Yj ∈ X(U)1̄ (1 ≤ j ≤ n)
with reduction defining a basis of TxM = (TxM)0̄ ⊕ (TxM)1̄ at
each x ∈Mo, give the frame F ∈ FrM (Uo) so

F : VM |U0 → TM |U0 , (ai|bj) 7→
m∑
i=1

aiXi +

n∑
j=1

bjYj .

The sheaf of groups GLM : Uo 7→ GL(V )[U ] acts naturally on the
set of frame fields and this locally simply transitive action makes
FrM into aPB over M with structure group GL(V ).
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G-structures

For G ⊂ GL(V ), a G-structure is a reduction of the frame bundle
FrM ⊃ FG

π→M . It is a subsheaf FG ⊂ FrM on which the sub-
sheaf GM ⊂ GLM acts locally simply transitively. Soldering form

ϑ ∈ Ω1(FG, V ) is given by ϑF (ξ) = F−1(π∗ξ), ξ ∈ Vect(FG).

Definition

• A horizontal distribution is a subsheaf H ⊂ T FG on (FG)o of
AFG

-modules that is complementary to Ker(π∗) ⊂ T FG.
• A normalization is a supervector space N ⊂ V ⊗ Λ2V ∗ that is
complementary to Im(δ) in the Spencer complex

0→ g(1) −→ g⊗ V ∗ δ−→ V ⊗ Λ2V ∗ → 0.

Any horizontal distribution gives an isomorphism H ∼= π∗TM ,
whence a morphism ϕH : π∗TM → T FG. The torsion of H is

TH(X1, X2) = dϑ(ϕHX1, ϕHX2).
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Prolongations

Let Fr0 = FG, Fr0 = FG. Define Fr1 : (FG)o ⊃ Vo 7→ Fr1(Vo)
to be the sheaf on (Fr0)o given by

Fr1(Vo) =
{
H(Vo) | H ⊂ T Fr0|Vo such that TH ∈ N|Vo

}
,

for any superdomain Vo ⊂ (Fr0)o. The sheaf of Abelian groups

G(1)FG
: Vo 7→ g(1)[V] on (Fr0)o acts simply-transitively on Fr1

whence an affine bundle Fr1 → Fr0 by the geometric-algebraic
correspondence.

Further prolongations follow the same scheme and yield the tower

M ← Fr0 ← Fr1 ← Fr2 ← . . . .

The structure group of Frk → Frk−1 is Abelian gk = g(k−1):

0→ gk → gk−1 ⊗ V ∗ → gk−2 ⊗ Λ2V ∗ → . . .

A G-structure FG is called of finite type if this tower stabilizes.
This happens at the level k when gk = 0.
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Automorphisms of G-structures and generalizations

We introduce the automorphism supergroup of G-structures as a
Harish-Chandra pair Aut(FG) =

(
Aut(FG)0̄, aut(FG)

)
.

Definition

• An automorphism of FG is such a φ = (φo, φ
∗) ∈ Aut(M)0̄ that

φ∗(FG) ⊂ (φo)
−1
∗ FG.

• An infinitesimal automorphism of FG on a superdomain U ⊂M
is a supervector field X ∈ Vect(U) such that

LX
(
FG(Uo)

)
⊂ FG(Uo) ·

(
g⊗AM (Uo)

)
⊂ T m|n

M (Uo).

For nonholonomic geometric structures (M,D, q) given via
distributuion D and possible auxillary structure q we generalize the
above to graded frames, introduce normalization via generalized
Spencer complex and then construct prolongation bundles.

The automorphism supergroup is defined correspondingly.
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Geometric super structures

Filtered geometric super structures, in particular G-structures are
defined through succesive frame bundles reductions. In particular,
super tensors, connections and differential equations are such.

Example (nondegenerate even super-symmetric form)

The supermanifold M = Rm|2n(x, ξ) with the metic
g = (1 + k∥x∥2)−2 ·

∑m
i=1 dx

2
i +

∑n
i=1 dξidξi+n has symmetry:

g =


osp(m+ 1|2n) k > 0

osp(m|2n)⋉Rm|2n k = 0
osp(m, 1|2n) k < 0.

Example (nondegenerate even super-skew-symmetric form)

The supermanifold M = R2n|m(x, ξ) with the symplectic form
ω =

∑n
i=1 dxi ∧ dxi+n +

∑m
i=1 dξi ∧ dξi has infinite-dim symmetry

symp(ω) ≃ OM/R – prolongation of spo(2n|m) (see below).
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Symmetry dimension bound

Theorem (BK, A.Santi, D.The ⋄ 2021)
Let s be the symmetry superalgebra of a bracket-generating,
strongly regular filtered geom.structure (M,D, q), with the
Tanaka–Weisfeiler prolongation g = pr(m, g0). If the reduced
manifold Mo is connected, then dim s ≤ dim g in the strong sense:
the inequality applies to both even and odd dimensions.

The LSA s can be considered as a superalgebra of vector fields
localized in a fixed neighborhood Uo ⊂Mo or as germs of those.

Assuming dim g is finite, the above bound is sharp: there exists a
standard model G/P with the required symmetry dimension.

Theorem (—)

With the above assumptions Aut(M,D, q) is a Lie supergroup. If
Mo is connected, then dimAut(M,D, q) ≤ dim g in strong sense.
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Sketch of the proof

As in Cartan method we construct a tower of PB with successive
structure groups G0 for k = 0 and gk for k > 0:

M ← P0 ← P1 ← . . .

consisting of partial frames. (No functor of points.)

We adapt the Tanaka construction revised by I.Zelenko to the
super-context, using a uniform normalization via the generalized
Spencer complex

0→ g
δ→ m∗ ⊗ g

δ→ Λ2m∗ ⊗ g→ . . .

The structure functions, used in normalizations, are as follows:

c−Hℓ
∈ AFℓ

⊗ (Λ2m∗ ⊗ g<ℓ), c
+
Hℓ
∈ AFℓ

⊗ (g+≤ℓ−1)
∗ ⊗ (m∗ ⊗ g)ℓ.

The final bundle P →M has a canonical connection
ω ∈ Ω1(P, g), whence the claim.
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Absolute parallelism: infinitesimal automorphisms

By fixing a basis of g, the absolute parallelism is a coframe {ωβ} on
P. Let {eα} be the dual frame: ⟨eα, ωβ⟩ = (−1)|α||β|ωβ(eα) = δβα.

Lemma

Let {eα} be a frame on a supermanifold P = (Po,AP ) with
connected reduced manifold. Fix x ∈ Po. Then any symmetry
υ ∈ Vect(P ) of the frame is determined by its value at x.

Indeed, for the ideal J = (AP )
2
1̄
⊕ (AP )1̄ ⊂ AP generated by

nilpotents and the map J k/J k+1 → T ∗P ⊗ J k−1/J k is injective
for any k > 0. Hence evaluation is injective on symmetries:

ev : [Vect(P ) ⊃ s] ↪→ Γ(TP |Po)

The condition that υ = aγeγ ∈ Vect(P ) preserves the coframe is:

0 = Lυω
γ = dıυω

γ+ıυdω
γ = daγ− 1

2
aδ(−1)|α||β|ıeδ

(
ωα∧ωβ

)
cγαβ ,

equivalent to complete PDE system daγ = (−1)|β||υ|(ωβ)aαcγαβ.
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Holonomic examples

• Super-Riemann structures (M, g) are G0-structures with
G0 = OSp(m|2n). For g0 = Lie(G0) = osp(m|2n) we have

g1 = g
(1)
0 = 0. Hence the Lie superalgebra of Killing supervector

fields satisfies

dim s ≤ dim g−1 + dim g0 =
((

m+1
2

)
+
(
2n+1

2

)
| 2n+ 2mn

)
.

• Almost super-symplectic structures (M,ω) are G0-structures
with G0 = SpO(2n|m). For g0 = Lie(G0) = spo(2n|m) we have:

gi = g
(i)
0 = Si+2V ∗, V = TM (in the super-sense), so g0 ⊂ gl(V )

is of infinite type unless M is purely odd:

g = pr(g0) ≃ ⊕∞
i=1S

iV ∗.

In the case M is purely odd (n = 0), the Lie superalgebra of
symplectic supervector fields satisfies:

dim s ≤
m−2∑
i=−1

dim gi = (2m−1 − 1|2m−1).
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Holonomic examples

• Periplectic structures (M, q) with q odd ndg bilinear form on
TM are irreducible G0-structures with G0 = Pe(n). For
g = Lie(G0) = pe(n) we have g(1) = 0. Hence the Lie
superalgebra of symmetries satisfies:

dim s ≤ (n2 + n|n2 + n).

(There are some other periplectic-related structures for which the
prolongations are different/longer.)

• Projective structures on supermanifolds of dimM = (m|n) are
equivalence classes of torsion-free connections: ∇ ∼ ∇′ iff
∇−∇′ = Id ◦ω ∈ Γ(S2T ∗M ⊗ TM) for an even ω ∈ Ω1(M).
We have g0 = gl(m|n) and its prolongation if (m|n) ̸= (1|0) is
g1 = S2V ∗ ⊗ V = V ∗ ⊕ (S2V ∗ ⊗ V )0 = g′1 ⊕ g′′1. Projective
connection reduces this to the first component, further
prolongations are trivial. Whence the bound for symmetries:

dim s ≤ dimV +dim gl(V )+dim g′1 =
(
2m+n2+m2 | 2n+2mn

)
.
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Nonholonomic examples: distributions with structures

• Let m = heis(1|7) = g−2 ⊕ g−1 = R1|0 ⊕ R0|7 and q a generic
field of cubics on D = exp(g−1) in M = exp(m). Then
dim s ≤ (17|14). For a left-invariant cubic q we have:

s = sym(M,D, [q]) = G(3) ⇔ H1(mI
1, G(3))+ = 0.

• Let m = heis(1|8) = g−2 ⊕ g−1 = R1|0 ⊕ R0|8 and Q a generic
field of quartics on D = exp(g−1) in M = exp(m). Then
dim s ≤ (24|16). For a left-invariant quartic Q we have:

s = sym(M,D, [Q]) = F (4) ⇔ H1(mI
1, F (4))+ = 0.

• Let m = g−2 ⊕ g−1 = Rm|n ⊕ Rm+1|n, D = exp(g−1) split as
R1|0 ⊕ Rm|n in M = exp(m), and p is the projector corresponding
to splitting. Then dim s ≤ (m2 + 2m+ n2|2n+ 2mn). The most
symmetric case corresponds to the trivial ODE system Yxx = 0:

s = sym(M,D, p) = sl(m+ 1|n).
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Odd second & third order ODEs

Recall at first the classical story (y = y(x) even):

2nd ord ODEs y′′ = f(x, y, y′) mod point transformations
have at most 8-dim symmetry algebra and max symmetry
sl(3) corresponds to y′′ = 0;

3rd ord ODEs y′′′ = f(x, y, y′, y′′) mod contact
transformations have at most 10-dim symmetry algebra and
max symmetry sp(4,R) corresponds to y′′′ = 0.

Now let us look to super analogs (ξ = ξ(x) odd, x even):

2nd ord ODEs ξ′′ = f(x, ξ, ξ′) mod point transformations
have (4|4)-dim symmetry algebra and always trivialize to
ξ′′ = 0 with symmetry sl(2|1);
3rd ord ODEs ξ′′′ = f(x, ξ, ξ′, ξ′′) mod contact
transformations have at most (4|4)-dim symmetry algebra and
max symmetry corresponds to ξ′′′ = 0.
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Details on third order ODEs

Even part Odd part

+2 · −ξ∂x + ξ′ξ′′∂ξ′′ + 2ξ′ξ′′′∂ξ′′′

+1
x2

2
∂x + xξ∂ξ + ξ∂ξ′

+(ξ′ − xξ′′)∂ξ′′ − 2xξ′′′∂ξ′′′
·

0
x∂x + ξ∂ξ − ξ′′∂ξ′′ − 2ξ′′′∂ξ′′′

ξ∂ξ + ξ′∂ξ′ + ξ′′∂ξ′′ + ξ′′′∂ξ′′′
·

−1 −∂x
x2

2
∂ξ + x∂ξ′ + ∂ξ′′

−2 · x∂ξ + ∂ξ′

−3 · ∂ξ

These are all point symmetries. The derived superalgebras of g:

g(1) = R0|1 ⋉ g(2), g(2) ∼= sl(2,R)0̄ ⋉ (S2R2)1̄.

We also have for non-flat cases:

dim sym(ξ′′′ = ξ′′) = (2|3), dim sym(ξ′′′ = ξξ′ξ′′) = (2|2).
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N -extended Poincaré superstructures

Let (V, g) be a metric vector space and S be a spin module. Let
g−2 = V, g−1 = S⊕ · · · ⊕ S︸ ︷︷ ︸

N

and m = g−2 ⊕ g−1 be a LSA with

consistent gradation: m0̄ = g−2, m1̄ = g−1. Then m⊕ so(V) is the
N -extended Poincaré superalgebra. Brackets Λ2g−1 → g−2 were
classified by D.Alekseevsky-V.Cortes (Λ2 in super sense).

The prolongation g = pr(m) was computed by A.Altomani-A.Santi.

It equals m⊕ g0, g0 = so(V)⊕ R⊕ g†0, except for the cases
A(m|3)/P2,m+2, B(m|2)/P2, D(m|2)/P2, F (3|1)/P2, where the
prolongation is the corresponding semisimple Lie superalgebra
g = g−2 ⊕ · · · ⊕ g2. This gives the symmetry bound

dim s ≤
((

d+1
2

)
+ 1 + dim g†0 |N · 2

[d/2]
)
,

where d = dimV (achieved for the homogeneous model).
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Thanks for your attention!
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