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Lecture 1

“Techniques of differential topology in relativity”

50 + ¢ years after Roger Penrose



Lorentz manifolds

X connected smooth manifold (henceforth usually of dim > 3)

A Lorentz metric ( , ) on X is a bilinear symmetric form of
signature (+,—,...,—) on TX.
A non-zero tangent vector is

timelike if (v,v) >0

null or lightlike if (v,v) =0

spacelike if (v,v) <0
Null and timelike vectors together are called non-spacelike.
The zero vector is traditionally in a category by itself.

A Lorentz metric on X" exists
< X admits a line field (canonical up to homotopy)
< X is either open or has Euler characteristic zero
& X admits a non-vanishing vector field



Spacetimes

A time-orientation is a continuous choice of a future hemicone
C! = connected component of {v € T,X | (v,v) > 0,v # 0}

in the cone of non-spacelike vectors at each point x € X.

Time orientation < orientation on the line field associated
to the Lorentz metric. d up to passing to a double cover of X.

Definition
A spacetime is a connected time-oriented Lorentz manifold.
The vectors in C! are called future-pointing.

A piecewise smooth curve is future-directed (abbreviated f.-d.)
if all its tangent vectors are future-pointing.



Causality and chronology

X,y € X two points (a.k.a. events) in a spacetime X
Causality relation:

x < y if either x = y or there is a f.-d. curve connecting x to y
Chronology relation:

x < y if there is a f.-d. timelike curve connecting x to y

X is causal if there are no closed f.-d. curves

X is chronological if there are no closed f.-d. timelike curves

(Non)example. A compact spacetime contains closed f.-d.
timelike curves and so is never causal (or even chronological).

X is causal & < is a partial order. (< is always reflexive and
transitive. Causality means that it is also anti-symmetric, i.e.
x <yandy < ximplies x = y.)



Strong causality and Alexandrov topology

X is a strongly causal spacetime if every point in X has an
arbitrarily small neighbourhood such that every f.-d. curve
enters it at most once.

The Alexandrov topology on X is the interval topology
associated to <, i.e. generated by the temporal intervals

Ly ={zeX|x<z<Ky}

This topology is named after Alexander D. Alexandrov and
must not be confused with the Alexandrov topology on posets
named after Pavel S. Alexandrov.

Theorem (Kronheimer & Penrose 1967)
X is strongly causal < Alexandrov topology is Hausdorff
&> Alexandrov topology is the manifold topology on X.



Global hyperbolicity

X is called globally hyperbolic if
(i) X is strongly causal
(ii) the causal intervals

Jey={zeX | x<z<y}

are compact for all x,y € X.
Name «~ 3 global solutions for the hyperbolic wave equation
Bernal & Sanchez 2005:
(i) can be replaced by X' being causal.
Hounnonkpe & Minguzzi 2019:
If dim X > 3, (i) can be replaced by X’ being non-compact.

The classical definition can be formulated purely in terms of
< and <: The Alexandrov topology is Hausdorff and causal
intervals are compact with respect to it.



Strong cosmic censorship hypothesis

Penrose 1996:

“Physically reasonable” spacetimes are globally hyperbolic.
Examples:

e Minkowski spacetime

e Lorentz products
X =(RxY,dt?—g)

where (Y, g) is a complete Riemann manifold

e Fridman—Lemaitre—Robertson—Walker spacetimes
(cosmological models)

e Outer parts of black hole models (Schwarzschild, Kerr, ...

e Maximally extended Schwarzschild is globally hyperbolic.
Extended Kerr is not even chronological.



Cauchy surfaces

A f.-d. curve 7y : (a,b) — X is inextensible if it does not have
limits as t — a+ and t — b—.

A Cauchy surface in X is a subset such that every inextensible
f.-d. curve intersects it exactly once.

A Cauchy function f : X — R is a (continuous) function
increasing from —oo to +00 on every inextensible f.-d. curve.
Level sets of f are Cauchy surfaces in X.

Example

X = (R x Y,dt? — g) with (Y, g) complete.

Each {t} x Y is a Cauchy surface.

Theorem (Geroch 1970)

X is globally hyperbolic < 3 Cauchy function on X
Corollary

X is homeomorphic to R x {Cauchy surface}.



Constructing Cauchy functions (after Geroch)

X globally hyperbolic spacetime
1t smooth probability measure on X
IT(x) :={z € X | x < z} open in X (always)
JT(x) :={z€e X | x <z} closed in X (<= g.h.)
FH(0) = (I ()) 2 (1 ()
If v:(a,b) = X is a f.-d. curve, then

(i) f o~ is continuous and decreasing

(ii) tirp_ fT(y(t)) =0o0r 3 tirp_ v(t) (main use of g.h.)

f:=—logf"™ +logf~ is a continuous Cauchy function,
where f~ is defined by reversing the time orientation on X.



Smooth splitting of globally hyperbolic spacetimes

Theorem (Bernal & Sénchez 2005)
A globally hyperbolic spacetime admits a smooth Cauchy
function with everywhere timelike gradient.

Corollary

There exists a diffeomorphism ¢ : R x M — X such that
(i) o(R x {x}) is a timelike f.-d. curve Vx € M

(ii) ¢({t} x M) is a smooth spacelike Cauchy surface Vt € R

The set of smooth Cauchy time functions is convex, so all
such splittings are isotopic. The smooth manifold M depends
only on the causal structure of X.

Other proofs and generalisations (to cone fields):
Fathi & Siconolfi 2012, Chrusciel & Grant & Minguzzi 2016,
Bernard & Suhr 2018



Smooth structures |

For every n > 3, there exist uncountably many contractible
smooth n-manifolds not homeomorphic to R"” (McMillan 1962,
Curtis & Kwun 1965, Glaser 1966)

For n = 4, there exist uncountably many smooth 4-manifolds
homeomorphic but not diffeomorphic to R” (Taubes 1987)
Theorem (Stallings 1962; McMillan 1962 + Perelman 2003)
Let X be a contractible n-manifold diffeomorphic to R x M.
Then X is diffeomorphic to R".

Corollary (Newman & Clarke 1987; Chernov & N. 2013)

A contractible globally hyperbolic spacetime is diffeomorphic
to R” but can have any contractible manifold as its Cauchy
surface.

Global hyperbolicity ‘censors out’ a single smooth structure.



Smooth structures |l

What if X is not contractible?

Theorem (Chernov & N. 2013)

Suppose that a 4-dimensional globally hyperbolic spacetime X
is homeomorphic to R x M with M closed and orientable.
Then X is diffeomorphic to R x M.

(Proof uses Pereleman's geometrisation theorem and Turaev's
topological h-cobordism theorem for geometric 3-manifolds.)

Question
Is it true that at most one smooth structure on a 4-manifold
can underlie a globally hyperbolic spacetime structure?

Example

Not true in (some) higher dimensions. Let ¥ be an exotic
7-sphere. Then R x S” and R x ¥ are homeomorphic but not
diffeomorphic (< h-cobordism theorem) and both are globally
hyperbolic products.
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Lecture 2

“Spaces of null geodesics”

35 years after Robert Low



Levi-Civita connection and geodesics

X spacetime with Lorentz metric ( , )
V:TX - TX ® T*X Levi-Civita connection:

(i) d{v,w) = (Vv,w) + (v, Vw) < V preserves ( , )
(i) Vyw — Vv = [v, w] < V has zero torsion

v (a,b) — X is a geodesic if Voy=0
(9,4) = const by (i) = timelike, null, and spacelike geodesics

Gauss Lemma
Let v : (a,b) = X, 0 < s < ¢, be a family of curves such

that 7o is a geodesic and (%s,7s) is independent of s. Then

(Ao(t), J(t)) = const

where J(t) := £ o s(t) is the vector field along o tangent
to this family.



Space of light rays |

Nr := {inextensible f.-d. null geodesics}/ ~

v(t) ~ y(At +7),A > 0,7 € R, affine reparametrisation
M~ can be a rather wild topological space in general.

X globally hyperbolic, M C X spacelike Cauchy surface

PM - ’ﬁX — ST*M

pm(Y) = [(¥(t), - )rm] € ST )M, (o) €M

ODE theory & linear algebra:

e pp is well-defined and bijective
diffeo

e pvr o (pm)™t: ST*M = ST*M'’ for any other M’
Ny is a smooth manifold — but more is true



Contact structure on contact elements

M smooth manifold

ST*M = {non-zero 1-forms on M mod positive scalars}
= {co-oriented hyperplanes in TM}
= {contact elements on M}

v 2 ST*M — M projection to M (sphere bundle)

ST*M > £ —— co-oriented hyperplane H: C T.ST*M

He = kermy,&  viewing £ as a 1-form up to positive scalar

H C T(ST*M) distribution of co-oriented hyperplanes

This distribution is ‘maximally nonintegrable’, i.e. a contact
structure on ST*M.



Contact forms on contact elements

A =Y pidg; canonical 1-form on T*M: A\ = m},§
w=d\ = > dp; A dg; canonical symplectic form on T*M
t:ST*M — T*M any fibrewise starshaped embedding. Then
(i) ker .*A = H (respecting co-orientation)
(i) CANAA) A Ad(FN) = 5 (esw™) #0
L <> L")\ gives us all contact forms defining H
(T*M — O,w = d)\) is the symplectisation of (ST*M, H)
Example
g Riemann metric on M

Lg : ST*M =, SgM C T*M unit length 1-forms w.r.t. g
Qg = 1z A contact form on ST*M associated to g
Qg :=ag ANdag A --- ANdag Liouville measure of g



Space of light rays Il

X globally hyperbolic, M C X spacelike Cauchy surface
im = tgopm Ny — ST*M — S;M where g = —(,)m
am = pyg = Ly contact form on 9y associated to M
v € Ny, x =7(to) € M, ny(x) f.-p. unit normal to M at x
) = {(t0), ) |m

{(1(t0), nm(x))
v=2 <o Ys tangent vector to Ny at v =,
Jit)=4< o Vs(t) Jacobi field on v for a family 7,
(1(t0), J(t0))
(¥(to), nm(x))

Gauss Lemma = ap(v) = fumr () - am(v), fumr >0

Theorem (Low 1988)
M~ is a contact manifold and each py, is a contactomorphism

Lemma ay(v) =



Redshift

M, M" C X spacelike Cauchy surfaces
v €Ny, x =7(ty) € M, X' =~(t)) e M

(§(t0), nm(x))
av = 7~ aMpm

(¥(t0), nmr (X))
(%, n) = energy of the photon ~(t) measured by n

~ frequency of the photon ~(t) measured by n

<;Y7 nE>
<;ya nR>
Corollary (Chernov & N. 2018)
The ratio of the contact forms on 91y associated to Cauchy
surfaces M and M’ is the redshift between them.

Remark
(M, contact structure) is a conformal invariant of X
Contact forms on 91y reflect the metric properties of X.

= redshift from ng to ng along the light ray v € My



Space of light rays IlI

What if X is not globally hyperbolic?
Observation (Penrose 1980s, Khesin & Tabachnikov 2009)
If Dty is a smooth manifold, then it is contact.
Examples
e X is strongly causal
= Ny is smooth but not necessarily Hausdorff (Low 1988)

e X is causally simple (strongly causal and < is closed)
= Ny is Hausdorff if X is conformally equivalent
to an open subset of a globally hyperbolic spacetime;
not true in general (Hedicke & Suhr 2020)

e d compact X such that 1y is a manifold
(Guillemin 1989, Suhr 2013, Marin-Salvador 2021)

Question
Which contact manifolds may occur?



Skies (a.k.a. celestial spheres)

Sy :={y €Ny |x€~}thesky of x € X

If M is a Cauchy surface with x € M (3 by Bernal-Sanchez),
pm(6x) = ST;M = fibre of ST*M at x € M

A submanifold in a (2n 4 1)-dimensional contact manifold
is Legendrian if it is tangent to the contact distribution and
has dimension n (maximal possible).

Example

Fibres of ST*M are Legendrian <= H D ker dmy

Corollary

S, is a Legendrian sphere in My

Properties

(i) 6x N &, # & < 3 null geodesic through x and y

(i) 6« and &, tangent at v < x and y conjugate along -y



Wavefronts
N C ST*M Legendrian, W(A) := mp(A) wavefront of A
Generically, W(A) is a singular co-oriented hypersurface in M.
W, v = 7m0 pm(Sx) C M wavefront of x on M

A

Figure: Expanding wavefronts for a f.-d. timelike curve near N M



Legendrian isotopies

A Legendrian isotopy in a contact manifold (Y, H) is an

equivalence class of parametrised Legendrian isotopies:
J:Lx[0,1] —Y

where ji = j| x{ey 1 L = Y is Legendrian Vt € [0, 1].

Parametrised isotopies are equivalent if they differ by a

fibrewise diffeomorphism of L x [0, 1].

Definition (Eliashberg & Polterovich 2000, Bhupal 2001)
A Legendrian isotopy j : L X [0,1] = Y in (Y, H = ker )
”O’;:jiji’ve (i) =g ixt) e Lx[0.1]
Independent of parametrisation and contact form defining H.

Example
Legendrian isotopy in ST*M is non-negative <>
wavefronts in M move in the direction of their co-orientation.



F.-d. curves and Legendrian isotopies

S :(a,b) = X smooth curve (not necessarily f.-d.)
Gp(r) Legendrian isotopy in My

v € Sp(g) and v = %Lf Gp(r) for some parametrisation

<;77 5(1-0))
<’3/7 nM(X)>
A vector in a time-oriented Lorentz vector space is f.-p.
(resp., f.-p. timelike) <= its scalar product with every
f.-p. null vector is non-negative (resp., positive).

Bis f-d. (timelike) <= an(ZS4) >0 (> 0)
Proposition (Chernov & N. 2010, 2020)

. f.-d. . non-negative
Bis ¢ 4 timelike < S0 L oditive

am(v) = for a Cauchy surface M 3 x = ((to)
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Lecture 3

Causality and contact topology



Causality and orderability |

A, N closed Legendrian submanifolds
AN £ non-negative
A< N positive
Proposition A (Chernov & N. 2010, 2020)
x<y=6,<x6,andx<y=6,<6,

Definition (Eliashberg & Polterovich 2000)

A Legendrian isotopy class L is orderable if < is a partial order
on it (< 7 non-constant non-negative loops in ).
Proposition B (Chernov & N. 2010, 2020)

If X is globally hyperbolic and the Legendrian isotopy class

of skies in Ny is orderable, the converse implications hold:
x<y<=6,x6,andx<Ky<+=6,<6,

Recall that pp; maps the class of skies to the class of the fibre
of ST*M for any Cauchy surface M C X.

Legendrian isotopy from A to A



Causality and orderability Il

Legendrian link = ordered pair of disjoint Legendrians

Observation (Low 1988, Chernov & Rudyak 2008)

{(x,y) € X x X | x and y causally unrelated} is connected
for any globally hyperbolic X, dim X > 3. Hence &, L&, is
in the same isotopy class of Legendrian links for any such x, y.

- X 2 R x M smooth splitting, t : X — R Cauchy function
-{(x,y) | x # y, t(x) = t(y)} connected, x and y unrelated

- If t(y) # t(x), move y into {t(x)} x M along R x {y}.
Legendrian isotopy extension theorem =-

A< N and A < N are preserved under Legendrian link isotopy

Proof of Proposition B (for < and <)

Assume that the sky class is orderable and 6, < G,.

- x and y must be causally related, as otherwise &, < & b

- y < x is impossible, as this also implies §, < &, by Prop. A



Do orderable Legendrian isotopy classes exist?

Example (Colin & Ferrand & Pushkar’ 2007-2017)
Positive Legendrian loop in ST*R?:

Not in the Legendrian isotopy class of the fibre of ST*R?2.
Theorem (Liu 2020, Pancholi & Pérez & Presas 2018)
There is a positive Legendrian loop based at any loose
Legendrian (‘containing’ a zigzag x closed submanifold).
Theorem (Laudenbach 2008)

There is a positive loop of Legendrian immersions based at
any Legendrian submanifold.



Refocussing spacetimes

Definition (Besse 1978)

A Riemannian manifold (Y, g) is called a Y;-manifold if all
unit speed geodesics from x € Y return to x at time ¢ > 0.
Examples: CROSSes (S”, RP", CP", HP", CaP?) and their
isometric quotients; certain exotic spheres

The fibre class in ST*Y is not orderable:

(Co-)geodesic flow is contact = positive loop based at ST}Y

Proposition B is false for (R x Y, dt? — g):

- null geodesics: (s,7(s)) with v a unit speed geodesic in Y

- S(0x) = G(1.x) light rays through (0, x) refocus at (¢, x)

- (0,x") < (£, x) if x"is close to x = S(gx) < S

- S(0x) < S(ox) but (0,x’) is causally unrelated to (0, x)

Y is compact, m1(Y) is finite, and its rational cohomology ring
is generated by one element (Bérard-Bergery 1977)



Positive vs non-negative Legendrian loops
Proposition (Chernov & N. 2016)
3 non-constant non-negative loop <= 1 positive loop

Different from the Lorentz case: causality # chronology

Caveat Method of proof (Eliashberg & Polterovich 2000)
~» positive loop homotopic to an iterate of non-negative one

Question |s the following non-negative loop in ST*S?
homotopic to a positive one? (Its double iterate is.)

S
N

Lorentz origin: Skies of points on a null geodesic in R x S2.



Contact rigidity |

Theorem (Chernov & N. 2010)

The fibre class in ST*M is orderable if the universal cover M
of M is non-compact.

Method of proof: Spectral invariants of generating functions
for Lagrangians in T*M («~ Sikorav 1980s, Viterbo 1992)

Another proof (Guillermou & Kashiwara & Schapira 2012):
microlocal sheaf theory (e Tamarkin 2008)

Sharp in low dimensions:

o dmM =2 = M +# S? RP? = 52/7,

edimM =3 = M#S3/T, T C O, (Perelman)
Theorem (Frauenfelder & Labrousse & Schlenk 2015)
The fibre class is orderable if the integral cohomology ring
of M is not isomorphic to that of a CROSS.

Proof: 3 positive loop ~ ‘slow growth’ of Floer homology



Linking of skies: Low's conjectures

x,y € X with disjoint skies (not on the same null geodesic)
U := Legendrian isotopy class > &, U S, for unrelated x, y
Corollary (‘Legendrian Low Conjecture’)

If the Cauchy surface M is as in the two theorems above,

x and y are causally related <= &, UG, ¢ U.

TU := smooth isotopy class of links containing U

Example (Low 1988, Natdrio & Tod 2004)

3 X with M 2R3 and x < y € X with 6, UGS, € TU

«~ Linking of 2-spheres reduces to homotopy (Haefliger 1961)
Theorem (Low's conjecture 1988; Chernov & N. 2010)

If M? # S? RP?, x and y causally related < S, UGS, ¢ TU.
«~ description of Legendrian cable links (Ding & Geiges 2010)

Legendrian linking distinguishes between x < y and y < x.
Smooth linking in dim 2 does not (« Traynor 1997).



Twistor map

X globally hyperbolic with ‘nice’ M, dmX =n—+1
S = Legendrian isotopy class of skies in My

S is an infinite dimensional manifold modelled on C>°(S5"!)
(A neighbourhood of a Legendrian A is contactomorphic to a
neighbourhood of the zero section in the 1-jet bundle J(A).
Nearby Legendrians <— graphs of 1-jets of functions on A.)

G X —S8, x— &,, 'ur-twistor map’ of Penrose

Properties
(i) & is a smooth embedding (not proper in general)
(i) < and < are the pull-backs of < and < by &

Remark /Question

Our proof of (ii) was by contradiction. Is there a direct way
of producing a f.-d. curve connecting x to y from a
non-negative Legendrian isotopy connecting &, to &,7



Interval topology on Legendrians
< defines the interval topology on a Legendrian isotopy class

Corollary If M is nice, the interval topology on S induces
the manifold topology on X" via the twistor embedding &.

If the interval topology on S is Hausdorff, one can define
the interval completion X := G(X’) with good properties.

Question

Is the interval topology on an orderable class Hausdorff?

If not, is there a useful notion of ‘strong causality’?
Proposition (Chernov & N. 2020)

If M is smoothly covered by an open subset in R”, then the
interval topology on the fibre class in ST*M is Hausdorff.

Proof: Spectral invariants for 7!(5"71) = ST*R".
Proposition (Chernov & N. 2020)

Nonintersecting Legendrians in an orderable class have disjoint
interval neighbourhoods.



Contact rigidity Il

L — £ universal cover of a Legendrian isotopy class
< lift of < to £ (e~ curves with non-negative projections to £)
Definition (Chernov & N. 2016) _
L is universally orderable if < is a partial order on L
Theorem (Chernov & N. 2016)
The fibre class in ST*M is always universally orderable.
Proof: Generating hypersurfaces for Legendrians in ST*M
(Eliashberg & Gromov 1998, Pushkar’ 2016)
Generalisation: Chantraine & Colin & Dimitroglou Rizell 2019
X globally hyperbolic with Cauchy surface M
= if X is globally hyperbolic with ‘exceptional’ M,

passing to finite covering may assume X simply connected

Corollary (Chernov & N. 2016) _
x<y<= 6,6, where §: X = Sisalift of &
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