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Lecture 1

“Techniques of differential topology in relativity”

50 + ε years after Roger Penrose



Lorentz manifolds

X connected smooth manifold (henceforth usually of dim ≥ 3)

A Lorentz metric ⟨ , ⟩ on X is a bilinear symmetric form of
signature (+,−, . . . ,−) on TX .

A non-zero tangent vector is
timelike if ⟨v , v⟩ > 0
null or lightlike if ⟨v , v⟩ = 0
spacelike if ⟨v , v⟩ < 0

Null and timelike vectors together are called non-spacelike.
The zero vector is traditionally in a category by itself.

A Lorentz metric on X exists
⇔ X admits a line field (canonical up to homotopy)
⇔ X is either open or has Euler characteristic zero
⇔ X admits a non-vanishing vector field



Spacetimes

A time-orientation is a continuous choice of a future hemicone

C ↑
x = connected component of {v ∈ TxX | ⟨v , v⟩ ≥ 0, v ̸= 0}

in the cone of non-spacelike vectors at each point x ∈ X .

Time orientation ⇔ orientation on the line field associated
to the Lorentz metric. ∃ up to passing to a double cover of X .

Definition
A spacetime is a connected time-oriented Lorentz manifold.

The vectors in C ↑
x are called future-pointing.

A piecewise smooth curve is future-directed (abbreviated f.-d.)
if all its tangent vectors are future-pointing.



Causality and chronology

x , y ∈ X two points (a.k.a. events) in a spacetime X
Causality relation:

x ≤ y if either x = y or there is a f.-d. curve connecting x to y

Chronology relation:

x ≪ y if there is a f.-d. timelike curve connecting x to y

X is causal if there are no closed f.-d. curves

X is chronological if there are no closed f.-d. timelike curves

(Non)example. A compact spacetime contains closed f.-d.
timelike curves and so is never causal (or even chronological).

X is causal ⇔ ≤ is a partial order. (≤ is always reflexive and
transitive. Causality means that it is also anti-symmetric, i.e.
x ≤ y and y ≤ x implies x = y .)



Strong causality and Alexandrov topology

X is a strongly causal spacetime if every point in X has an
arbitrarily small neighbourhood such that every f.-d. curve
enters it at most once.

The Alexandrov topology on X is the interval topology
associated to ≪, i.e. generated by the temporal intervals

Ix ,y := {z ∈ X | x ≪ z ≪ y}

This topology is named after Alexander D. Alexandrov and
must not be confused with the Alexandrov topology on posets
named after Pavel S. Alexandrov.

Theorem (Kronheimer & Penrose 1967)
X is strongly causal ⇔ Alexandrov topology is Hausdorff
⇔ Alexandrov topology is the manifold topology on X .



Global hyperbolicity

X is called globally hyperbolic if
(i) X is strongly causal
(ii) the causal intervals

Jx ,y := {z ∈ X | x ≤ z ≤ y}

are compact for all x , y ∈ X .

Name ⇝∃ global solutions for the hyperbolic wave equation

Bernal & Sánchez 2005:
(i) can be replaced by X being causal.

Hounnonkpe & Minguzzi 2019:
If dimX ≥ 3, (i) can be replaced by X being non-compact.

The classical definition can be formulated purely in terms of
≪ and ≤: The Alexandrov topology is Hausdorff and causal
intervals are compact with respect to it.



Strong cosmic censorship hypothesis

Penrose 1996:

“Physically reasonable” spacetimes are globally hyperbolic.

Examples:

• Minkowski spacetime

• Lorentz products

X = (R× Y , dt2 − g)

where (Y , g) is a complete Riemann manifold

• Fridman–Lemâıtre–Robertson–Walker spacetimes
(cosmological models)

• Outer parts of black hole models (Schwarzschild, Kerr, . . . )

• Maximally extended Schwarzschild is globally hyperbolic.
Extended Kerr is not even chronological.



Cauchy surfaces

A f.-d. curve γ : (a, b) → X is inextensible if it does not have
limits as t → a+ and t → b−.

A Cauchy surface in X is a subset such that every inextensible
f.-d. curve intersects it exactly once.

A Cauchy function f : X → R is a (continuous) function
increasing from −∞ to +∞ on every inextensible f.-d. curve.
Level sets of f are Cauchy surfaces in X .

Example
X = (R× Y , dt2 − g) with (Y , g) complete.
Each {t} × Y is a Cauchy surface.

Theorem (Geroch 1970)
X is globally hyperbolic ⇔ ∃ Cauchy function on X
Corollary
X is homeomorphic to R× {Cauchy surface}.



Constructing Cauchy functions (after Geroch)

X globally hyperbolic spacetime

µ smooth probability measure on X
I+(x) := {z ∈ X | x ≪ z} open in X (always)

J+(x) := {z ∈ X | x ≤ z} closed in X (⇐ g.h.)

f +(x) := µ(J+(x))
Sard
= µ(I+(x))

If γ : (a, b) → X is a f.-d. curve, then

(i) f + ◦ γ is continuous and decreasing
(ii) lim

t→b−
f +(γ(t)) = 0 or ∃ lim

t→b−
γ(t) (main use of g.h.)

f := − log f + + log f − is a continuous Cauchy function,
where f − is defined by reversing the time orientation on X .



Smooth splitting of globally hyperbolic spacetimes

Theorem (Bernal & Sánchez 2005)
A globally hyperbolic spacetime admits a smooth Cauchy
function with everywhere timelike gradient.

Corollary
There exists a diffeomorphism ϕ : R×M −→ X such that
(i) ϕ(R× {x}) is a timelike f.-d. curve ∀x ∈ M
(ii) ϕ({t} ×M) is a smooth spacelike Cauchy surface ∀t ∈ R

The set of smooth Cauchy time functions is convex, so all
such splittings are isotopic. The smooth manifold M depends
only on the causal structure of X .

Other proofs and generalisations (to cone fields):
Fathi & Siconolfi 2012, Chruściel & Grant & Minguzzi 2016,
Bernard & Suhr 2018



Smooth structures I

For every n ≥ 3, there exist uncountably many contractible
smooth n-manifolds not homeomorphic to Rn (McMillan 1962,
Curtis & Kwun 1965, Glaser 1966)

For n = 4, there exist uncountably many smooth 4-manifolds
homeomorphic but not diffeomorphic to Rn (Taubes 1987)

Theorem (Stallings 1962; McMillan 1962 + Perelman 2003)
Let X be a contractible n-manifold diffeomorphic to R×M .
Then X is diffeomorphic to Rn.

Corollary (Newman & Clarke 1987; Chernov & N. 2013)
A contractible globally hyperbolic spacetime is diffeomorphic
to Rn but can have any contractible manifold as its Cauchy
surface.

Global hyperbolicity ‘censors out’ a single smooth structure.



Smooth structures II
What if X is not contractible?

Theorem (Chernov & N. 2013)
Suppose that a 4-dimensional globally hyperbolic spacetime X
is homeomorphic to R×M with M closed and orientable.
Then X is diffeomorphic to R×M .

(Proof uses Pereleman’s geometrisation theorem and Turaev’s
topological h-cobordism theorem for geometric 3-manifolds.)

Question
Is it true that at most one smooth structure on a 4-manifold
can underlie a globally hyperbolic spacetime structure?

Example
Not true in (some) higher dimensions. Let Σ be an exotic
7-sphere. Then R× S7 and R× Σ are homeomorphic but not
diffeomorphic (⇐ h-cobordism theorem) and both are globally
hyperbolic products.
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2008

V. Chernov, S. Nemirovski, Cosmic censorship of smooth
structures, Commun. Math. Phys. 320 (2013), 469–473



Lecture 2

“Spaces of null geodesics”

35 years after Robert Low



Levi-Civita connection and geodesics

X spacetime with Lorentz metric ⟨ , ⟩
∇ : TX → TX ⊗ T ∗X Levi-Civita connection:

(i) d⟨v ,w⟩ = ⟨∇v ,w⟩+ ⟨v ,∇w⟩ ⇔ ∇ preserves ⟨ , ⟩
(ii) ∇vw −∇wv = [v ,w ] ⇔ ∇ has zero torsion

γ : (a, b) → X is a geodesic if ∇ ∂
∂t
γ̇ = 0

⟨γ̇, γ̇⟩ = const by (i) ⇒ timelike, null, and spacelike geodesics

Gauss Lemma
Let γs : (a, b) → X , 0 ≤ s < ϵ, be a family of curves such
that γ0 is a geodesic and ⟨γ̇s , γ̇s⟩ is independent of s. Then

⟨γ̇0(t), J(t)⟩ = const

where J(t) := d
ds

∣∣
s=0

γs(t) is the vector field along γ0 tangent
to this family.



Space of light rays I

NX := {inextensible f.-d. null geodesics}/ ∼
γ(t) ∼ γ(λt + τ), λ > 0, τ ∈ R, affine reparametrisation

NX can be a rather wild topological space in general.

X globally hyperbolic, M ⊂ X spacelike Cauchy surface

ρM : NX −→ ST ∗M

ρM(γ) := [⟨γ̇(t0), · ⟩|TM ] ∈ ST ∗
γ(t0)

M , γ(t0) ∈ M

ODE theory & linear algebra:
• ρM is well-defined and bijective

• ρM′ ◦ (ρM)−1 : ST ∗M
diffeo−→ ST ∗M ′ for any other M ′

NX is a smooth manifold — but more is true



Contact structure on contact elements

M smooth manifold

ST ∗M = {non-zero 1-forms on M mod positive scalars}
= {co-oriented hyperplanes in TM}
= {contact elements on M}

πM : ST ∗M → M projection to M (sphere bundle)

ST ∗M ∋ ξ 7−→ co-oriented hyperplane Hξ ⊂ TξST
∗M

Hξ = ker π∗
Mξ viewing ξ as a 1-form up to positive scalar

H ⊂ T (ST ∗M) distribution of co-oriented hyperplanes

This distribution is ‘maximally nonintegrable’, i.e. a contact
structure on ST ∗M .



Contact forms on contact elements

λ =
∑

pidqi canonical 1-form on T ∗M : λξ = π∗
Mξ

ω = dλ =
∑

dpi ∧ dqi canonical symplectic form on T ∗M

ι : ST ∗M ↪→ T ∗M any fibrewise starshaped embedding. Then

(i) ker ι∗λ = H (respecting co-orientation)
(ii) ι∗λ ∧ d(ι∗λ) ∧ · · · ∧ d(ι∗λ) = ι∗(ϵ ⌟ωn) ̸= 0

ι ↔ ι∗λ gives us all contact forms defining H

(T ∗M − O, ω = dλ) is the symplectisation of (ST ∗M ,H)

Example
g Riemann metric on M

ιg : ST ∗M
∼=−→ S∗

gM ⊂ T ∗M unit length 1-forms w.r.t. g
αg := ι∗gλ contact form on ST ∗M associated to g
Ωg := αg ∧ dαg ∧ · · · ∧ dαg Liouville measure of g



Space of light rays II

X globally hyperbolic, M ⊂ X spacelike Cauchy surface

ιM := ιg ◦ ρM : NX → ST ∗M → S∗
gM where g = −⟨ , ⟩|M

αM := ρ∗Mαg = ι∗Mλ contact form on NX associated to M

γ ∈ NX , x = γ(t0) ∈ M , nM(x) f.-p. unit normal to M at x

ιM(γ) =
⟨γ̇(t0), · ⟩|M
⟨γ̇(t0), nM(x)⟩

v = d
ds

∣∣
s=0

γs tangent vector to NX at γ = γ0

J(t) = d
ds

∣∣
s=0

γs(t) Jacobi field on γ for a family γs

Lemma αM(v) =
⟨γ̇(t0), J(t0)⟩
⟨γ̇(t0), nM(x)⟩

Gauss Lemma ⇒ αM′(v) = fMM′(γ) · αM(v), fMM′ > 0

Theorem (Low 1988)
NX is a contact manifold and each ρM is a contactomorphism



Redshift

M ,M ′ ⊂ X spacelike Cauchy surfaces

γ ∈ NX , x = γ(t0) ∈ M , x ′ = γ(t ′0) ∈ M ′

αM′ =
⟨γ̇(t0), nM(x)⟩
⟨γ̇(t ′0), nM′(x ′)⟩

αM

⟨γ̇, n⟩ = energy of the photon γ(t) measured by n
∼ frequency of the photon γ(t) measured by n

⟨γ̇, nE ⟩
⟨γ̇, nR⟩

= redshift from nE to nR along the light ray γ ∈ NX

Corollary (Chernov & N. 2018)
The ratio of the contact forms on NX associated to Cauchy
surfaces M and M ′ is the redshift between them.

Remark
(NX , contact structure) is a conformal invariant of X .
Contact forms on NX reflect the metric properties of X .



Space of light rays III

What if X is not globally hyperbolic?

Observation (Penrose 1980s, Khesin & Tabachnikov 2009)
If NX is a smooth manifold, then it is contact.

Examples

• X is strongly causal
⇒ NX is smooth but not necessarily Hausdorff (Low 1988)

• X is causally simple (strongly causal and ≤ is closed)
⇒ NX is Hausdorff if X is conformally equivalent
to an open subset of a globally hyperbolic spacetime;
not true in general (Hedicke & Suhr 2020)

• ∃ compact X such that NX is a manifold
(Guillemin 1989, Suhr 2013, Marin-Salvador 2021)

Question
Which contact manifolds may occur?



Skies (a.k.a. celestial spheres)

Sx := {γ ∈ NX | x ∈ γ} the sky of x ∈ X
If M is a Cauchy surface with x ∈ M (∃ by Bernal–Sánchez),
ρM(Sx) = ST ∗

xM = fibre of ST ∗M at x ∈ M

A submanifold in a (2n + 1)-dimensional contact manifold
is Legendrian if it is tangent to the contact distribution and
has dimension n (maximal possible).

Example
Fibres of ST ∗M are Legendrian ⇐ H ⊃ ker dπM

Corollary
Sx is a Legendrian sphere in NX

Properties
(i) Sx ∩Sy ̸= ∅ ⇔ ∃ null geodesic through x and y
(ii) Sx and Sy tangent at γ ⇔ x and y conjugate along γ



Wavefronts
Λ ⊂ ST ∗M Legendrian, W (Λ) := πM(Λ) wavefront of Λ

Generically, W (Λ) is a singular co-oriented hypersurface in M .

Wx ,M := πM ◦ ρM(Sx) ⊂ M wavefront of x on M

β
M

Figure: Expanding wavefronts for a f.-d. timelike curve near β ∩M



Legendrian isotopies

A Legendrian isotopy in a contact manifold (Y ,H) is an
equivalence class of parametrised Legendrian isotopies:

j : L× [0, 1] −→ Y

where jt = j |L×{t} : L ↪→ Y is Legendrian ∀t ∈ [0, 1].
Parametrised isotopies are equivalent if they differ by a
fibrewise diffeomorphism of L× [0, 1].

Definition (Eliashberg & Polterovich 2000, Bhupal 2001)
A Legendrian isotopy j : L× [0, 1] → Y in (Y ,H = kerα)

is
non-negative

positive
if α( d

dt
jt(x))

≥ 0
> 0

∀(x , t) ∈ L× [0, 1].

Independent of parametrisation and contact form defining H .

Example
Legendrian isotopy in ST ∗M is non-negative ⇐⇒
wavefronts in M move in the direction of their co-orientation.



F.-d. curves and Legendrian isotopies

β : (a, b) → X smooth curve (not necessarily f.-d.)

Sβ(t) Legendrian isotopy in NX

γ ∈ Sβ(t0) and v = d
dt

∣∣
γ
Sβ(t) for some parametrisation

αM(v) =
⟨γ̇, β̇(t0)⟩
⟨γ̇, nM(x)⟩

for a Cauchy surface M ∋ x = β(t0)

A vector in a time-oriented Lorentz vector space is f.-p.
(resp., f.-p. timelike) ⇐⇒ its scalar product with every
f.-p. null vector is non-negative (resp., positive).

β is f.-d. (timelike) ⇐⇒ αM( d
dt
Sβ(t)) ≥ 0 (> 0)

Proposition (Chernov & N. 2010, 2020)

β is
f.-d.

f.-d. timelike
⇐⇒ Sβ(t) is

non-negative
positive
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Lecture 3

Causality and contact topology



Causality and orderability I

Λ,Λ′ closed Legendrian submanifolds

Λ ≼ Λ′

Λ Î Λ′ if ∃ non-negative
positive

Legendrian isotopy from Λ to Λ′

Proposition A (Chernov & N. 2010, 2020)
x ≤ y =⇒ Sx ≼ Sy and x ≪ y =⇒ Sx Î Sy

Definition (Eliashberg & Polterovich 2000)
A Legendrian isotopy class L is orderable if ≼ is a partial order
on it (⇔ ∄ non-constant non-negative loops in L).
Proposition B (Chernov & N. 2010, 2020)
If X is globally hyperbolic and the Legendrian isotopy class
of skies in NX is orderable, the converse implications hold:
x ≤ y ⇐= Sx ≼ Sy and x ≪ y ⇐= Sx Î Sy

Recall that ρM maps the class of skies to the class of the fibre
of ST ∗M for any Cauchy surface M ⊂ X .



Causality and orderability II

Legendrian link = ordered pair of disjoint Legendrians

Observation (Low 1988, Chernov & Rudyak 2008)
{(x , y) ∈ X × X | x and y causally unrelated} is connected
for any globally hyperbolic X , dimX ≥ 3. Hence Sx ⊔Sy is
in the same isotopy class of Legendrian links for any such x , y .

- X ∼= R×M smooth splitting, t : X → R Cauchy function

- {(x , y) | x ̸= y , t(x) = t(y)} connected, x and y unrelated

- If t(y) ̸= t(x), move y into {t(x)} ×M along R× {y
¯
}.

Legendrian isotopy extension theorem ⇒
Λ ≼ Λ′ and Λ Î Λ′ are preserved under Legendrian link isotopy

Proof of Proposition B (for ≤ and ≼)
Assume that the sky class is orderable and Sx ≼ Sy .
- x and y must be causally related, as otherwise Sy ≼ Sx 	
- y ≤ x is impossible, as this also implies Sy ≼ Sx by Prop. A



Do orderable Legendrian isotopy classes exist?
Example (Colin & Ferrand & Pushkar’ 2007-2017)
Positive Legendrian loop in ST ∗R2:

Not in the Legendrian isotopy class of the fibre of ST ∗R2.

Theorem (Liu 2020, Pancholi & Pérez & Presas 2018)
There is a positive Legendrian loop based at any loose
Legendrian (‘containing’ a zigzag × closed submanifold).

Theorem (Laudenbach 2008)
There is a positive loop of Legendrian immersions based at
any Legendrian submanifold.



Refocussing spacetimes

Definition (Besse 1978)
A Riemannian manifold (Y , g) is called a Y x

ℓ -manifold if all
unit speed geodesics from x ∈ Y return to x at time ℓ > 0.

Examples: CROSSes (Sn, RPn, CPn, HPn, CaP2) and their
isometric quotients; certain exotic spheres

The fibre class in ST ∗Y is not orderable:
(Co-)geodesic flow is contact ⇒ positive loop based at ST ∗

x Y

Proposition B is false for (R× Y , dt2 − g):
- null geodesics: (s, γ(s)) with γ a unit speed geodesic in Y
- S(0,x) = S(ℓ,x) light rays through (0, x) refocus at (ℓ, x)
- (0, x ′)≪ (ℓ, x) if x ′ is close to x ⇒ S(0,x ′) Î S(ℓ,x)

- S(0,x ′) Î S(0,x) but (0, x
′) is causally unrelated to (0, x)

Y is compact, π1(Y ) is finite, and its rational cohomology ring
is generated by one element (Bérard-Bergery 1977)



Positive vs non-negative Legendrian loops
Proposition (Chernov & N. 2016)
∃ non-constant non-negative loop ⇐⇒ ∃ positive loop

Different from the Lorentz case: causality ̸= chronology

Caveat Method of proof (Eliashberg & Polterovich 2000)
⇝ positive loop homotopic to an iterate of non-negative one

Question Is the following non-negative loop in ST ∗S2

homotopic to a positive one? (Its double iterate is.)

Lorentz origin: Skies of points on a null geodesic in R× S2.



Contact rigidity I

Theorem (Chernov & N. 2010)

The fibre class in ST ∗M is orderable if the universal cover M̃
of M is non-compact.

Method of proof: Spectral invariants of generating functions
for Lagrangians in T ∗M̃ ( ⇝Sikorav 1980s, Viterbo 1992)

Another proof (Guillermou & Kashiwara & Schapira 2012):
microlocal sheaf theory ( ⇝Tamarkin 2008)

Sharp in low dimensions:
• dimM = 2 ⇒ M ̸= S2,RP2 = S2/Z2

• dimM = 3 ⇒ M ̸= S3/Γ, Γ ⊂ O4 (Perelman)

Theorem (Frauenfelder & Labrousse & Schlenk 2015)
The fibre class is orderable if the integral cohomology ring
of M̃ is not isomorphic to that of a CROSS.

Proof: ∃ positive loop ⇝ ‘slow growth’ of Floer homology



Linking of skies: Low’s conjectures

x , y ∈ X with disjoint skies (not on the same null geodesic)

U := Legendrian isotopy class ∋ Sx ⊔Sy for unrelated x , y

Corollary (‘Legendrian Low Conjecture’)
If the Cauchy surface M is as in the two theorems above,
x and y are causally related ⇐⇒ Sx ⊔Sy /∈ U .
T U := smooth isotopy class of links containing U
Example (Low 1988, Natário & Tod 2004)
∃ X with M ∼= R3 and x ≪ y ∈ X with Sx ⊔Sy ∈ T U
⇝Linking of 2-spheres reduces to homotopy (Haefliger 1961)

Theorem (Low’s conjecture 1988; Chernov & N. 2010)
If M2 ̸= S2,RP2, x and y causally related ⇔ Sx ⊔Sy /∈ T U .
⇝description of Legendrian cable links (Ding & Geiges 2010)

Legendrian linking distinguishes between x ≤ y and y ≤ x .
Smooth linking in dim 2 does not ( ⇝Traynor 1997).



Twistor map

X globally hyperbolic with ‘nice’ M , dimX = n + 1

S = Legendrian isotopy class of skies in NX

S is an infinite dimensional manifold modelled on C∞(Sn−1)
(A neighbourhood of a Legendrian Λ is contactomorphic to a
neighbourhood of the zero section in the 1-jet bundle J 1(Λ).
Nearby Legendrians ←→ graphs of 1-jets of functions on Λ.)

S : X −→ S, x 7→ Sx , ‘ur-twistor map’ of Penrose

Properties
(i) S is a smooth embedding (not proper in general)
(ii) ≤ and ≪ are the pull-backs of ≼ and Î by S

Remark/Question
Our proof of (ii) was by contradiction. Is there a direct way
of producing a f.-d. curve connecting x to y from a
non-negative Legendrian isotopy connecting Sx to Sy?



Interval topology on Legendrians
Î defines the interval topology on a Legendrian isotopy class

Corollary If M is nice, the interval topology on S induces
the manifold topology on X via the twistor embedding S.

If the interval topology on S is Hausdorff, one can define
the interval completion X̂ := S(X ) with good properties.

Question
Is the interval topology on an orderable class Hausdorff?
If not, is there a useful notion of ‘strong causality’?

Proposition (Chernov & N. 2020)
If M is smoothly covered by an open subset in Rn, then the
interval topology on the fibre class in ST ∗M is Hausdorff.

Proof: Spectral invariants for J 1(Sn−1) ∼= ST ∗Rn.

Proposition (Chernov & N. 2020)
Nonintersecting Legendrians in an orderable class have disjoint
interval neighbourhoods.



Contact rigidity II

L̃ → L universal cover of a Legendrian isotopy class

⋞ lift of ≼ to L̃ ( ⇝curves with non-negative projections to L)
Definition (Chernov & N. 2016)

L is universally orderable if ⋞ is a partial order on L̃
Theorem (Chernov & N. 2016)
The fibre class in ST ∗M is always universally orderable.

Proof: Generating hypersurfaces for Legendrians in ST ∗M
(Eliashberg & Gromov 1998, Pushkar’ 2016)

Generalisation: Chantraine & Colin & Dimitroglou Rizell 2019

X̃ globally hyperbolic with Cauchy surface M̃
⇒ if X is globally hyperbolic with ‘exceptional’ M ,

passing to finite covering may assume X simply connected

Corollary (Chernov & N. 2016)

x ≤ y ⇐⇒ S̃x ⋞ S̃y where S̃ : X → S̃ is a lift of S
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