Lorentz Geometry and Contact Topology

Stefan Nemirovski¹²

¹Ruhr-Universität Bochum

²Steklov Institute, Moscow

43rd Winter School "Geometry and Physics" Srni, 14–21 January 2023

Lecture 1

"Techniques of differential topology in relativity" $50 + \varepsilon$ years after Roger Penrose

Lorentz manifolds

 \mathcal{X} connected smooth manifold (henceforth usually of dim \geq 3) A *Lorentz metric* \langle , \rangle on \mathcal{X} is a bilinear symmetric form of signature $(+, -, \dots, -)$ on $T\mathcal{X}$.

A non-zero tangent vector is timelike if $\langle v, v \rangle > 0$ null or lightlike if $\langle v, v \rangle = 0$ spacelike if $\langle v, v \rangle < 0$

Null and timelike vectors together are called *non-spacelike*. The zero vector is traditionally in a category by itself.

A Lorentz metric on $\mathcal X$ exists

 $\Leftrightarrow \mathcal{X} \text{ admits a line field (canonical up to homotopy)}$

- $\Leftrightarrow \mathcal{X}$ is either open or has Euler characteristic zero
- $\Leftrightarrow \mathcal{X} \text{ admits a non-vanishing vector field}$

Spacetimes

A time-orientation is a continuous choice of a future hemicone

 $C_x^{\uparrow} = \text{connected component of } \{ v \in T_x \mathcal{X} \mid \langle v, v \rangle \geq 0, v \neq 0 \}$

in the cone of non-spacelike vectors at each point $x \in \mathcal{X}$.

Time orientation \Leftrightarrow orientation on the line field associated to the Lorentz metric. \exists up to passing to a double cover of \mathcal{X} . **Definition**

A spacetime is a connected time-oriented Lorentz manifold. The vectors in C_x^{\uparrow} are called *future-pointing*.

A piecewise smooth curve is *future-directed* (abbreviated *f.-d.*) if all its tangent vectors are future-pointing.

Causality and chronology

 $x, y \in \mathcal{X}$ two points (a.k.a. *events*) in a spacetime \mathcal{X} *Causality relation*:

 $x \le y$ if either x = y or there is a f.-d. curve connecting x to y Chronology relation:

 $x \ll y$ if there is a f.-d. timelike curve connecting x to y

 ${\mathcal X}$ is causal if there are no closed f.-d. curves

 \mathcal{X} is *chronological* if there are no closed f.-d. timelike curves **(Non)example.** A compact spacetime contains closed f.-d. timelike curves and so is never causal (or even chronological). \mathcal{X} is causal $\Leftrightarrow \leq$ is a partial order. (\leq is always reflexive and transitive. Causality means that it is also anti-symmetric, i.e. $x \leq y$ and $y \leq x$ implies x = y.)

Strong causality and Alexandrov topology

 \mathcal{X} is a *strongly causal* spacetime if every point in \mathcal{X} has an arbitrarily small neighbourhood such that every f.-d. curve enters it at most once.

The Alexandrov topology on ${\cal X}$ is the interval topology associated to $\ll,$ i.e. generated by the temporal intervals

 $I_{x,y} := \{z \in \mathcal{X} \mid x \ll z \ll y\}$

This topology is named after Alexander D. Alexandrov and must not be confused with the Alexandrov topology on posets named after Pavel S. Alexandrov.

Theorem (Kronheimer & Penrose 1967)

 $\mathcal X$ is strongly causal \Leftrightarrow Alexandrov topology is Hausdorff

 $\Leftrightarrow \mathsf{Alexandrov} \text{ topology is the manifold topology on } \mathcal{X}.$

Global hyperbolicity

X is called *globally hyperbolic* if
(i) X is strongly causal
(ii) the causal intervals

$$J_{x,y} := \{z \in \mathcal{X} \mid x \le z \le y\}$$

are compact for all $x, y \in \mathcal{X}$.

Name $\Leftrightarrow \exists$ global solutions for the hyperbolic wave equation Bernal & Sánchez 2005:

(i) can be replaced by \mathcal{X} being causal.

Hounnonkpe & Minguzzi 2019:

If dim $\mathcal{X} \geq 3$, (i) can be replaced by \mathcal{X} being non-compact.

The classical definition can be formulated purely in terms of \ll and \leq : The Alexandrov topology is Hausdorff and causal intervals are compact with respect to it.

Strong cosmic censorship hypothesis

Penrose 1996:

"Physically reasonable" spacetimes are globally hyperbolic. Examples:

- Minkowski spacetime
- Lorentz products

$$\mathcal{X} = (\mathbb{R} \times Y, dt^2 - g)$$

where (Y, g) is a *complete* Riemann manifold

- Fridman-Lemaître-Robertson-Walker spacetimes (cosmological models)
- Outer parts of black hole models (Schwarzschild, Kerr, ...)
- Maximally extended Schwarzschild is globally hyperbolic. Extended Kerr is not even chronological.

Cauchy surfaces

A f.-d. curve $\gamma : (a, b) \to \mathcal{X}$ is *inextensible* if it does not have limits as $t \to a+$ and $t \to b-$.

A Cauchy surface in \mathcal{X} is a subset such that every inextensible f.-d. curve intersects it exactly once.

A Cauchy function $f : \mathcal{X} \to \mathbb{R}$ is a (continuous) function increasing from $-\infty$ to $+\infty$ on every inextensible f.-d. curve. Level sets of f are Cauchy surfaces in \mathcal{X} .

Example

$$\mathcal{X} = (\mathbb{R} \times Y, dt^2 - g)$$
 with (Y, g) complete.
Each $\{t\} \times Y$ is a Cauchy surface.

Theorem (Geroch 1970)

 ${\mathcal X}$ is globally hyperbolic $\Leftrightarrow \exists$ Cauchy function on ${\mathcal X}$

Corollary

 \mathcal{X} is homeomorphic to $\mathbb{R} \times \{$ Cauchy surface $\}$.

Constructing Cauchy functions (after Geroch)

 \mathcal{X} globally hyperbolic spacetime μ smooth probability measure on \mathcal{X} $I^+(x) := \{z \in \mathcal{X} \mid x \ll z\}$ open in \mathcal{X} (always) $J^+(x) := \{z \in \mathcal{X} \mid x < z\}$ closed in \mathcal{X} (\Leftarrow g.h.) $f^+(x) := \mu(J^+(x)) \stackrel{\text{Sard}}{=} \mu(I^+(x))$ If $\gamma: (a, b) \to \mathcal{X}$ is a f.-d. curve, then (i) $f^+ \circ \gamma$ is continuous and decreasing (ii) $\lim_{t\to b-} f^+(\gamma(t)) = 0$ or $\exists \lim_{t\to b-} \gamma(t)$ (main use of g.h.) $f := -\log f^+ + \log f^-$ is a *continuous* Cauchy function, where f^{-} is defined by reversing the time orientation on \mathcal{X} .

Smooth splitting of globally hyperbolic spacetimes

Theorem (Bernal & Sánchez 2005)

A globally hyperbolic spacetime admits a *smooth* Cauchy function with everywhere *timelike* gradient.

Corollary

There exists a diffeomorphism $\phi : \mathbb{R} \times M \longrightarrow \mathcal{X}$ such that (i) $\phi(\mathbb{R} \times \{x\})$ is a timelike f.-d. curve $\forall x \in M$ (ii) $\phi(\{t\} \times M)$ is a smooth spacelike Cauchy surface $\forall t \in \mathbb{R}$

The set of smooth Cauchy time functions is convex, so all such splittings are isotopic. The smooth manifold M depends only on the causal structure of \mathcal{X} .

Other proofs and generalisations (to cone fields): Fathi & Siconolfi 2012, Chruściel & Grant & Minguzzi 2016, Bernard & Suhr 2018

Smooth structures I

For every $n \ge 3$, there exist uncountably many contractible smooth *n*-manifolds not homeomorphic to \mathbb{R}^n (McMillan 1962, Curtis & Kwun 1965, Glaser 1966)

For n = 4, there exist uncountably many smooth 4-manifolds homeomorphic but not diffeomorphic to \mathbb{R}^n (Taubes 1987)

Theorem (Stallings 1962; McMillan 1962 + Perelman 2003) Let X be a contractible *n*-manifold diffeomorphic to $\mathbb{R} \times M$. Then X is diffeomorphic to \mathbb{R}^n .

Corollary (Newman & Clarke 1987; Chernov & N. 2013) A contractible globally hyperbolic spacetime is diffeomorphic to \mathbb{R}^n but can have any contractible manifold as its Cauchy surface.

Global hyperbolicity 'censors out' a single smooth structure.

Smooth structures II

What if \mathcal{X} is not contractible?

Theorem (Chernov & N. 2013)

Suppose that a 4-dimensional globally hyperbolic spacetime \mathcal{X} is homeomorphic to $\mathbb{R} \times M$ with M closed and orientable. Then \mathcal{X} is diffeomorphic to $\mathbb{R} \times M$.

(Proof uses Pereleman's geometrisation theorem and Turaev's topological *h*-cobordism theorem for geometric 3-manifolds.)

Question

Is it true that at most one smooth structure on a 4-manifold can underlie a globally hyperbolic spacetime structure?

Example

Not true in (some) higher dimensions. Let Σ be an exotic 7-sphere. Then $\mathbb{R} \times S^7$ and $\mathbb{R} \times \Sigma$ are homeomorphic but not diffeomorphic (\Leftarrow *h*-cobordism theorem) and both are globally hyperbolic products.

Literature

R. Penrose, *Techniques of differential topology in relativity*, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 7. Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1972

E. Minguzzi, M. Sanchez, *The causal hierarchy of spacetimes*, Recent developments in pseudo-Riemannian geometry, 299–358, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2008

V. Chernov, S. Nemirovski, *Cosmic censorship of smooth structures*, Commun. Math. Phys. **320** (2013), 469–473

Lecture 2

"Spaces of null geodesics" 35 years after Robert Low

Levi-Civita connection and geodesics

 \mathcal{X} spacetime with Lorentz metric \langle , \rangle $\nabla: T\mathcal{X} \to T\mathcal{X} \otimes T^*\mathcal{X}$ Levi-Civita connection: (i) $d\langle v, w \rangle = \langle \nabla v, w \rangle + \langle v, \nabla w \rangle \Leftrightarrow \nabla$ preserves \langle , \rangle (ii) $\nabla_{v} w - \nabla_{w} v = [v, w] \Leftrightarrow \nabla$ has zero torsion $\gamma: (a, b)
ightarrow \mathcal{X}$ is a geodesic if $abla_{rac{\partial}{\partial i}} \dot{\gamma} = 0$ $\langle \dot{\gamma}, \dot{\gamma} \rangle = \text{const by (i)} \Rightarrow \text{timelike, null, and spacelike geodesics}$ Gauss Lemma Let $\gamma_s : (a, b) \to \mathcal{X}$, $0 \le s < \epsilon$, be a family of curves such that γ_0 is a geodesic and $\langle \dot{\gamma}_s, \dot{\gamma}_s \rangle$ is independent of s. Then

 $\langle \dot{\gamma}_0(t), J(t)
angle = ext{const}$

where $J(t) := \frac{d}{ds}\Big|_{s=0} \gamma_s(t)$ is the vector field along γ_0 tangent to this family.

Space of light rays I

$$\begin{split} \mathfrak{N}_{\mathcal{X}} &:= \{\text{inextensible f.-d. null geodesics}\}/\sim \\ \gamma(t) &\sim \gamma(\lambda t + \tau), \lambda > 0, \tau \in \mathbb{R}, \text{ affine reparametrisation} \\ \mathfrak{N}_{\mathcal{X}} \text{ can be a rather wild topological space in general.} \\ \mathcal{X} \text{ globally hyperbolic, } M \subset \mathcal{X} \text{ spacelike Cauchy surface} \end{split}$$

 $\rho_M:\mathfrak{N}_{\mathcal{X}}\longrightarrow ST^*M$

 $\rho_{\mathcal{M}}(\boldsymbol{\gamma}) := [\langle \dot{\gamma}(t_0), \cdot \rangle |_{\mathcal{T}\mathcal{M}}] \in ST^*_{\gamma(t_0)}\mathcal{M}, \quad \gamma(t_0) \in \mathcal{M}$

ODE theory & linear algebra:

• ρ_M is well-defined and bijective

• $\rho_{M'} \circ (\rho_M)^{-1} : ST^*M \xrightarrow{\text{diffeo}} ST^*M'$ for any other M'

 $\mathfrak{N}_{\mathcal{X}}$ is a smooth manifold — but more is true

Contact structure on contact elements

M smooth manifold

 $\pi_{M}: ST^{*}M \to M \text{ projection to } M \text{ (sphere bundle)}$ $ST^{*}M \ni \xi \longmapsto \text{co-oriented hyperplane } H_{\xi} \subset T_{\xi}ST^{*}M$ $H_{\xi} = \ker \pi_{M}^{*}\xi \quad \text{viewing } \xi \text{ as a 1-form up to positive scalar}$ $H \subset T(ST^{*}M) \text{ distribution of co-oriented hyperplanes}$ This distribution is 'maximally nonintegrable', i.e. a *contact* structure on $ST^{*}M$.

Contact forms on contact elements

$$\lambda = \sum p_i dq_i \text{ canonical 1-form on } T^*M: \ \lambda_{\xi} = \pi_M^*\xi$$

$$\omega = d\lambda = \sum dp_i \wedge dq_i \text{ canonical symplectic form on } T^*M$$

$$\iota: ST^*M \hookrightarrow T^*M \text{ any fibrewise starshaped embedding. Then}$$

(i) ker $\iota^*\lambda = H$ (respecting co-orientation)
(ii) $\iota^*\lambda \wedge d(\iota^*\lambda) \wedge \cdots \wedge d(\iota^*\lambda) = \iota^*(\epsilon \,\lrcorner\, \omega^n) \neq 0$

$$\iota \leftrightarrow \iota^*\lambda \text{ gives us all contact forms defining } H$$

($T^*M - O, \omega = d\lambda$) is the symplectisation of (ST^*M, H)
Example
 σ Diamonan metric on M

g Riemann metric on M

$$\begin{split} \iota_g &: ST^*M \xrightarrow{\cong} S_g^*M \subset T^*M \text{ unit length 1-forms w.r.t. } g \\ \alpha_g &:= \iota_g^*\lambda \text{ contact form on } ST^*M \text{ associated to } g \\ \Omega_g &:= \alpha_g \wedge d\alpha_g \wedge \cdots \wedge d\alpha_g \text{ Liouville measure of } g \end{split}$$

Space of light rays II

 \mathcal{X} globally hyperbolic, $M \subset \mathcal{X}$ spacelike Cauchy surface $\iota_{\mathcal{M}} := \iota_{g} \circ \rho_{\mathcal{M}} : \mathfrak{N}_{\mathcal{X}} \to ST^{*}M \to S_{g}^{*}M$ where $g = -\langle , \rangle|_{\mathcal{M}}$ $\alpha_M := \rho_M^* \alpha_g = \iota_M^* \lambda$ contact form on $\mathfrak{N}_{\mathcal{X}}$ associated to M $\gamma \in \mathfrak{N}_{\mathcal{X}}, x = \gamma(t_0) \in M, n_M(x)$ f.-p. unit normal to M at x $\iota_{M}(\boldsymbol{\gamma}) = \frac{\langle \dot{\boldsymbol{\gamma}}(t_{0}), \cdot \rangle|_{M}}{\langle \dot{\boldsymbol{\gamma}}(t_{0}), \boldsymbol{n}_{M}(\boldsymbol{x}) \rangle}$ $\mathbf{v} = \left. rac{d}{ds}
ight|_{s=0} \gamma_s$ tangent vector to $\mathfrak{N}_{\mathcal{X}}$ at $\gamma = \gamma_0$ $J(t) = \frac{d}{ds}\Big|_{s=0} \gamma_s(t)$ Jacobi field on γ for a family γ_s $\alpha_{M}(\mathbf{v}) = \frac{\langle \dot{\gamma}(t_{0}), J(t_{0}) \rangle}{\langle \dot{\gamma}(t_{0}), n_{M}(\mathbf{x}) \rangle}$ Lemma Gauss Lemma $\Rightarrow \alpha_{M'}(\mathbf{v}) = f_{MM'}(\boldsymbol{\gamma}) \cdot \alpha_M(\mathbf{v}), f_{MM'} > 0$ **Theorem** (Low 1988) $\mathfrak{N}_{\mathcal{X}}$ is a contact manifold and each ρ_{M} is a contactomorphism

Redshift

$$\begin{split} &M, M' \subset \mathcal{X} \text{ spacelike Cauchy surfaces} \\ &\gamma \in \mathfrak{N}_{\mathcal{X}}, \, x = \gamma(t_0) \in M, \, x' = \gamma(t'_0) \in M' \\ &\alpha_{M'} = \frac{\langle \dot{\gamma}(t_0), n_M(x) \rangle}{\langle \dot{\gamma}(t'_0), n_{M'}(x') \rangle} \alpha_M \\ &\langle \dot{\gamma}, n \rangle = \text{energy of the photon } \gamma(t) \text{ measured by } n \\ &\sim \text{frequency of the photon } \gamma(t) \text{ measured by } n \\ &\frac{\langle \dot{\gamma}, n_E \rangle}{\langle \dot{\gamma}, n_R \rangle} = \text{redshift from } n_E \text{ to } n_R \text{ along the light ray } \gamma \in \mathfrak{N}_{\mathcal{X}} \end{split}$$

Corollary (Chernov & N. 2018)

The ratio of the contact forms on $\mathfrak{N}_{\mathcal{X}}$ associated to Cauchy surfaces M and M' is the redshift between them.

Remark

 $(\mathfrak{N}_{\mathcal{X}}, \text{contact structure})$ is a *conformal* invariant of \mathcal{X} . Contact forms on $\mathfrak{N}_{\mathcal{X}}$ reflect the *metric* properties of \mathcal{X} .

Space of light rays III

What if \mathcal{X} is *not* globally hyperbolic?

Observation (Penrose 1980s, Khesin & Tabachnikov 2009) If $\mathfrak{N}_{\mathcal{X}}$ is a smooth manifold, then it is contact.

Examples

- $\bullet \ \mathcal{X}$ is strongly causal
 - \Rightarrow $\mathfrak{N}_{\mathcal{X}}$ is smooth but not necessarily Hausdorff (Low 1988)
- \mathcal{X} is causally simple (strongly causal and \leq is closed) $\Rightarrow \mathfrak{N}_{\mathcal{X}}$ is Hausdorff *if* \mathcal{X} is conformally equivalent to an open subset of a globally hyperbolic spacetime; not true in general (Hedicke & Suhr 2020)
- ∃ compact X such that 𝔅_X is a manifold (Guillemin 1989, Suhr 2013, Marin-Salvador 2021)

Question

Which contact manifolds may occur?

Skies (a.k.a. celestial spheres)

 $\mathfrak{S}_x := \{ \gamma \in \mathfrak{N}_{\mathcal{X}} \mid x \in \gamma \}$ the *sky* of $x \in \mathcal{X}$ If *M* is a Cauchy surface with $x \in M$ (\exists by Bernal–Sánchez), $\rho_M(\mathfrak{S}_x) = ST_x^*M = \text{fibre of } ST^*M \text{ at } x \in M$ A submanifold in a (2n + 1)-dimensional contact manifold is *Legendrian* if it is tangent to the contact distribution and has dimension *n* (maximal possible).

Example

Fibres of ST^*M are Legendrian $\leftarrow H \supset \ker d\pi_M$

Corollary

 $\mathfrak{S}_{\mathsf{x}}$ is a Legendrian sphere in $\mathfrak{N}_{\mathcal{X}}$

Properties

(i) $\mathfrak{S}_x \cap \mathfrak{S}_y \neq \emptyset \Leftrightarrow \exists$ null geodesic through x and y (ii) \mathfrak{S}_x and \mathfrak{S}_y tangent at $\gamma \Leftrightarrow x$ and y conjugate along γ

Wavefronts

 $\Lambda \subset ST^*M$ Legendrian, $W(\Lambda) := \pi_M(\Lambda)$ wavefront of Λ Generically, $W(\Lambda)$ is a *singular* co-oriented hypersurface in M. $\mathfrak{W}_{x,M} := \pi_M \circ \rho_M(\mathfrak{S}_x) \subset M$ wavefront of x on M

Figure: Expanding wavefronts for a f.-d. timelike curve near $\beta \cap M$

Legendrian isotopies

A Legendrian isotopy in a contact manifold (Y, H) is an equivalence class of parametrised Legendrian isotopies:

$$j: L \times [0,1] \longrightarrow Y$$

where $j_t = j|_{L \times \{t\}} : L \hookrightarrow Y$ is Legendrian $\forall t \in [0, 1]$. Parametrised isotopies are equivalent if they differ by a fibrewise diffeomorphism of $L \times [0, 1]$.

Definition (Eliashberg & Polterovich 2000, Bhupal 2001) A Legendrian isotopy $j : L \times [0,1] \rightarrow Y$ in $(Y, H = \ker \alpha)$ is $\begin{array}{c} non-negative \\ positive \end{array}$ if $\alpha(\frac{d}{dt}j_t(x)) \stackrel{\geq}{>} 0 \\ > 0 \end{array} \forall (x,t) \in L \times [0,1].$

Independent of parametrisation and contact form defining H.

Example

Legendrian isotopy in ST^*M is non-negative \iff wavefronts in M move in the direction of their co-orientation.

F.-d. curves and Legendrian isotopies

 $\beta: (a, b) \to \mathcal{X}$ smooth curve (not necessarily f.-d.) $\mathfrak{S}_{\beta(t)}$ Legendrian isotopy in $\mathfrak{N}_{\mathcal{X}}$ $\gamma \in \mathfrak{S}_{\beta(t_0)}$ and $\mathbf{v} = \frac{d}{dt} \Big|_{\mathbf{v}} \mathfrak{S}_{\beta(t)}$ for some parametrisation $\alpha_{M}(\mathbf{v}) = \frac{\langle \dot{\gamma}, \beta(t_{0}) \rangle}{\langle \dot{\gamma}, \eta_{M}(x) \rangle} \text{ for a Cauchy surface } M \ni x = \beta(t_{0})$ A vector in a time-oriented Lorentz vector space is f.-p. (resp., f.-p. timelike) \iff its scalar product with every f.-p. null vector is non-negative (resp., positive). β is f.-d. (timelike) $\iff \alpha_M(\frac{d}{dt}\mathfrak{S}_{\beta(t)}) \ge 0 \ (>0)$ **Proposition** (Chernov & N. 2010, 2020)

 β is $\begin{array}{c} \text{f.-d.}\\ \text{f.-d. timelike} \end{array} \iff \mathfrak{S}_{\beta(t)} \text{ is } \begin{array}{c} \text{non-negative}\\ \text{positive} \end{array}$

Literature

R. J. Low, *The space of null geodesics*, Proceedings of the Third World Congress of Nonlinear Analysts, Part 5 (Catania, 2000). Nonlinear Anal. **47** (2001), 3005–3017

V. Chernov, S. Nemirovski, *Legendrian links, causality, and the Low conjecture*, Geom. Funct. Anal. **19** (2010), 1320–1333

V. Chernov, S. Nemirovski, *Redshift and contact forms*, J. Geom. Phys. **123** (2018), 379–384

V. Chernov, S. Nemirovski, *Interval topology in contact geometry*, Commun. Contemp. Math. **22** (2020), 1950042, 19 pp.

Lecture 3

Causality and contact topology

Causality and orderability I

 Λ, Λ' closed Legendrian submanifolds $\begin{array}{ll} \Lambda \preccurlyeq \Lambda' \\ \Lambda \ll \Lambda' \end{array} \mbox{if } \exists & \begin{array}{c} \mbox{non-negative} \\ \mbox{positive} \end{array} \mbox{Legendrian isotopy from } \Lambda \mbox{ to } \Lambda' \end{array}$ **Proposition A** (Chernov & N. 2010, 2020) $x \leq y \Longrightarrow \mathfrak{S}_x \preccurlyeq \mathfrak{S}_y$ and $x \ll y \Longrightarrow \mathfrak{S}_x \ll \mathfrak{S}_y$ **Definition** (Eliashberg & Polterovich 2000) A Legendrian isotopy class \mathcal{L} is *orderable* if \preccurlyeq is a partial order on it ($\Leftrightarrow \nexists$ non-constant non-negative loops in \mathcal{L}). **Proposition B** (Chernov & N. 2010, 2020) If \mathcal{X} is globally hyperbolic and the Legendrian isotopy class of skies in $\mathfrak{N}_{\mathcal{X}}$ is orderable, the converse implications hold: $x \leq y \iff \mathfrak{S}_x \preccurlyeq \mathfrak{S}_y$ and $x \ll y \iff \mathfrak{S}_x \ll \mathfrak{S}_y$ Recall that ρ_M maps the class of skies to the class of the fibre of ST^*M for any Cauchy surface $M \subset \mathcal{X}$.

Causality and orderability II

Legendrian link = ordered pair of disjoint Legendrians **Observation** (Low 1988, Chernov & Rudyak 2008) $\{(x, y) \in \mathcal{X} \times \mathcal{X} \mid x \text{ and } y \text{ causally unrelated}\}\$ is connected for any globally hyperbolic \mathcal{X} , dim $\mathcal{X} > 3$. Hence $\mathfrak{S}_{\chi} \sqcup \mathfrak{S}_{\chi}$ is in the same isotopy class of Legendrian *links* for any such x, y. - $\mathcal{X} \cong \mathbb{R} \times M$ smooth splitting, $t : \mathcal{X} \to \mathbb{R}$ Cauchy function - { $(x, y) \mid x \neq y, t(x) = t(y)$ } connected, x and y unrelated - If $t(y) \neq t(x)$, move y into $\{t(x)\} \times M$ along $\mathbb{R} \times \{y\}$. Legendrian isotopy extension theorem \Rightarrow $\Lambda \preccurlyeq \Lambda'$ and $\Lambda \ll \Lambda'$ are preserved under Legendrian link isotopy **Proof of Proposition B** (for \leq and \preccurlyeq) Assume that the sky class is orderable and $\mathfrak{S}_{\chi} \preccurlyeq \mathfrak{S}_{\gamma}$. - x and y must be causally related, as otherwise $\mathfrak{S}_v \preccurlyeq \mathfrak{S}_x$

- $y \leq x$ is impossible, as this also implies $\mathfrak{S}_y \preccurlyeq \mathfrak{S}_x$ by Prop. A

Do orderable Legendrian isotopy classes exist?

Example (Colin & Ferrand & Pushkar' 2007-2017) Positive Legendrian loop in $ST^*\mathbb{R}^2$:

Not in the Legendrian isotopy class of the fibre of $ST^*\mathbb{R}^2$. **Theorem** (Liu 2020, Pancholi & Pérez & Presas 2018) There is a positive Legendrian loop based at any *loose* Legendrian ('containing' a zigzag × closed submanifold).

Theorem (Laudenbach 2008)

There is a positive loop of Legendrian *immersions* based at any Legendrian submanifold.

Refocussing spacetimes

Definition (Besse 1978)

A Riemannian manifold (Y, g) is called a Y_{ℓ}^{x} -manifold if all unit speed geodesics from $x \in Y$ return to x at time $\ell > 0$.

Examples: CROSSes $(S^n, \mathbb{R}P^n, \mathbb{C}P^n, \mathbb{H}P^n, \mathbb{C}aP^2)$ and their isometric quotients; certain exotic spheres

The fibre class in ST^*Y is *not* orderable:

(Co-)geodesic flow is contact \Rightarrow positive loop based at ST_x^*Y Proposition B is false for $(\mathbb{R} \times Y, dt^2 - g)$:

- null geodesics: $(s, \gamma(s))$ with γ a unit speed geodesic in Y

- $\mathfrak{S}_{(0,x)} = \mathfrak{S}_{(\ell,x)}$ light rays through (0,x) refocus at (ℓ,x)
- $(0, x') \ll (\ell, x)$ if x' is close to $x \Rightarrow \mathfrak{S}_{(0, x')} \ll \mathfrak{S}_{(\ell, x)}$
- $\mathfrak{S}_{(0,x')} \ll \mathfrak{S}_{(0,x)}$ but (0,x') is causally unrelated to (0,x)

Y is compact, $\pi_1(Y)$ is finite, and its rational cohomology ring is generated by one element (Bérard-Bergery 1977)

Positive vs non-negative Legendrian loops

Proposition (Chernov & N. 2016) \exists non-constant non-negative loop $\iff \exists$ positive loop *Different* from the Lorentz case: causality \neq chronology **Caveat** Method of proof (Eliashberg & Polterovich 2000) \rightsquigarrow positive loop homotopic to an *iterate* of non-negative one **Question** Is the following non-negative loop in ST^*S^2 homotopic to a positive one? (Its double iterate is.)

Lorentz origin: Skies of points on a null geodesic in $\mathbb{R} \times S^2$.

Contact rigidity I

Theorem (Chernov & N. 2010)

The fibre class in ST^*M is orderable if the universal cover \widetilde{M} of M is non-compact.

Method of proof: Spectral invariants of generating functions for Lagrangians in $T^*\widetilde{M}$ (\leftrightarrow Sikorav 1980s, Viterbo 1992) Another proof (Guillermou & Kashiwara & Schapira 2012): microlocal sheaf theory (\leftarrow Tamarkin 2008)

Sharp in low dimensions:

- dim $M = 2 \Rightarrow M \neq S^2$, $\mathbb{R}P^2 = S^2/\mathbb{Z}_2$
- dim $M = 3 \Rightarrow M \neq S^3/\Gamma$, $\Gamma \subset O_4$ (Perelman)

Theorem (Frauenfelder & Labrousse & Schlenk 2015) The fibre class is orderable if the integral cohomology ring of \widetilde{M} is not isomorphic to that of a CROSS.

Proof: \exists positive loop \rightsquigarrow 'slow growth' of Floer homology

Linking of skies: Low's conjectures

 $x, y \in \mathcal{X}$ with disjoint skies (not on the same null geodesic) $\mathcal{U} := \text{Legendrian isotopy class} \ni \mathfrak{S}_x \sqcup \mathfrak{S}_y$ for *un*related x, y **Corollary** ('Legendrian Low Conjecture') If the Cauchy surface M is as in the two theorems above, x and y are causally related $\iff \mathfrak{S}_x \sqcup \mathfrak{S}_y \notin \mathcal{U}$. $\mathcal{TU} := smooth$ isotopy class of links containing \mathcal{U} **Example** (Low 1988, Natário & Tod 2004) $\exists \mathcal{X} \text{ with } M \cong \mathbb{R}^3 \text{ and } x \ll y \in \mathcal{X} \text{ with } \mathfrak{S}_x \sqcup \mathfrak{S}_y \in \mathcal{TU}$ \leftarrow Linking of 2-spheres reduces to homotopy (Haefliger 1961) **Theorem** (Low's conjecture 1988; Chernov & N. 2010) If $M^2 \neq S^2$, $\mathbb{R}P^2$, x and y causally related $\Leftrightarrow \mathfrak{S}_x \sqcup \mathfrak{S}_y \notin \mathcal{TU}$. \leftrightarrow description of Legendrian cable links (Ding & Geiges 2010) Legendrian linking distinguishes between x < y and y < x. Smooth linking in dim 2 does not (\leftarrow Traynor 1997).

Twistor map

 ${\mathcal X}$ globally hyperbolic with 'nice' M, dim ${\mathcal X}=n+1$

 $\mathcal{S}=\mathsf{Legendrian}$ isotopy class of skies in $\mathfrak{N}_\mathcal{X}$

S is an infinite dimensional manifold modelled on $C^{\infty}(S^{n-1})$ (A neighbourhood of a Legendrian Λ is contactomorphic to a neighbourhood of the zero section in the 1-jet bundle $\mathcal{J}^1(\Lambda)$. Nearby Legendrians \longleftrightarrow graphs of 1-jets of functions on Λ .)

 $\mathfrak{S}: \mathcal{X} \longrightarrow \mathcal{S}$, $x \mapsto \mathfrak{S}_x$, 'ur-twistor map' of Penrose

Properties

(i) \mathfrak{S} is a smooth embedding (not proper in general)

(ii) \leq and \ll are the pull-backs of \preccurlyeq and \ll by \mathfrak{S}

Remark/Question

Our proof of (ii) was by contradiction. Is there a direct way of producing a f.-d. curve connecting x to y from a non-negative Legendrian isotopy connecting \mathfrak{S}_x to \mathfrak{S}_y ?

Interval topology on Legendrians

 \ll defines the *interval topology* on a Legendrian isotopy class

Corollary If M is nice, the interval topology on S induces the manifold topology on X via the twistor embedding \mathfrak{S} .

If the interval topology on S is Hausdorff, one can define the interval completion $\widehat{\mathcal{X}} := \overline{\mathfrak{S}(\mathcal{X})}$ with good properties.

Question

Is the interval topology on an orderable class Hausdorff? If not, is there a useful notion of 'strong causality'?

Proposition (Chernov & N. 2020)

If *M* is smoothly covered by an open subset in \mathbb{R}^n , then the interval topology on the fibre class in ST^*M is Hausdorff.

Proof: Spectral invariants for $\mathcal{J}^1(S^{n-1}) \cong ST^*\mathbb{R}^n$.

Proposition (Chernov & N. 2020)

Nonintersecting Legendrians in an orderable class have disjoint interval neighbourhoods.

Contact rigidity II

 $\widetilde{\mathcal{L}}
ightarrow \mathcal{L}$ universal cover of a Legendrian isotopy class \preccurlyeq lift of \preccurlyeq to $\widetilde{\mathcal{L}}$ (\leftrightarrow curves with non-negative projections to \mathcal{L}) Definition (Chernov & N. 2016) \mathcal{L} is *universally orderable* if \preccurlyeq is a partial order on \mathcal{L} **Theorem** (Chernov & N. 2016) The fibre class in ST^*M is always *universally* orderable. Proof: Generating hypersurfaces for Legendrians in ST^*M (Eliashberg & Gromov 1998, Pushkar' 2016) Generalisation: Chantraine & Colin & Dimitroglou Rizell 2019 \mathcal{X} globally hyperbolic with Cauchy surface M \Rightarrow if \mathcal{X} is globally hyperbolic with 'exceptional' M, passing to finite covering may assume \mathcal{X} simply connected Corollary (Chernov & N. 2016) $x \leq y \iff \widetilde{\mathfrak{S}}_x \preccurlyeq \widetilde{\mathfrak{S}}_y$ where $\widetilde{\mathfrak{S}} : \mathcal{X} \to \widetilde{\mathcal{S}}$ is a lift of \mathfrak{S}

Literature

J. Natário, P. Tod, *Linking, Legendrian linking and causality*, Proc. London Math. Soc. (3) **88** (2004), 251–272

V. Chernov, S. Nemirovski, *Non-negative Legendrian isotopy in ST***M*, Geom. Topol. **14** (2010), 611–626

U. Frauenfelder, C. Labrousse, F. Schlenk, *Slow volume* growth for Reeb flows on spherizations and contact *Bott–Samelson theorems*, J. Topol. Anal. **7** (2015), 407–451

V. Chernov, S. Nemirovski, *Universal orderability of Legendrian isotopy classes*, J. Symplectic Geom. **14** (2016), 149–170