MASARYK **UNIVERSITY**

What is a homotopy equivalence?

Two spaces are homotopy equivalent if it is possible to transform one into another by operations: bending, shrinking and expanding.

Homeomorphism x homotopy equivalence

Let X and Y be topological spaces, and $f: X \to Y$ is a continuous map.

- The map f is a homeomorphism if there is a continuous map $g: Y \to X$ such that $f \circ g = id_Y$ and $g \circ f = \operatorname{id}_X$. The spaces X and Y are said to be homeomorphic in such a case.
- The map f is a homotopy equivalence if there is a continuous map $g: Y \to X$ such that $f \circ g \sim \mathrm{id}_Y$ and $g \circ f \sim \mathrm{id}_X$. The spaces X and Y are homotopy equivalent in that case. For brevity, we denote $X \simeq Y$.

A historical overview of algorithms

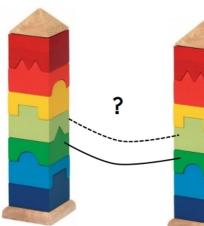
Assume that our input simplicial complexes are simply-connected and finite-dimensional. Are they homotopy equivalent?

- Brown [1] provides an algorithm under the finiteness of all higher homotopy groups. It's based on exhaustive searches as the Postnikov stages of both complexes are finite.
- Another approach presents Nabutovsky and Weinberger [3] under the weaker requirement of finitely generated homotopy groups. However, their exposition lacks implementation details and only sketches key ideas.

Data structure & Basic idea

- Simply-connected simplicial sets of dimension $d < \infty$.
- Simplicial sets with effective homology.
- Sergeraert et al. (e. g.[4]) introduced effective homology framework that mainly provides methods for computation of homology groups of even infinite simplicial sets.

Decompose the input objects into a bunch of simple simplicial sets in a suitable sense. Inductively try to construct homotopy equivalences from the bottom to the upper stage.



Postnikov tower

Let Y be a simply-connected simplicial set. A simplicial Postnikov tower for Y is a collection of maps and spaces as per the diagram such that for each n > 0:

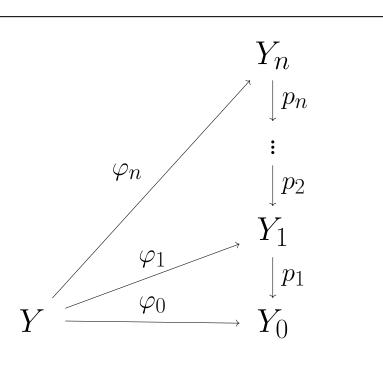
 $\varphi_{n*} \colon \pi_k(Y) \to \pi_k(Y_n)$ are isomorphisms for $0 \le k \le n$, $\pi_k(Y_n) = 0$ for $k \ge n+1$.

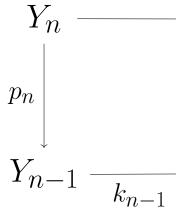
For all $n \geq 1$: Y_n is the pullback of the fibration δ along a map $k_{n-1}: Y_{n-1} \to K(\pi_n(Y), n+1)$. There is the well-known bijection

ev:
$$\operatorname{SMap}(Y_{n-1}, K(\pi_n, n+1)) \to Z^{n+1}(Y_{n-1}, \pi_n).$$

Denote $\kappa_{n-1} := \operatorname{ev}^{-1}(k_{n-1})$ and $[\kappa_{n-1}] \in H^{n+1}(Y_{n-1}; \pi_n(Y)).$

Note. In general, the simplicial set $K(\pi_n, n+1)$ is infinite, so effective homology of $K(\pi_n, n+1)$ and other derived simplicial sets need to be available for algorithmic construction of Postnikov tower (effective Postnikov tower).





Are two finite *H*-spaces homotopy equivalent? Algorithmic approach

Mária Šimková

The Department of Mathematics and Statistics of the Faculty of Science, Masaryk University

Necessary condition

 $i E(\pi_n(Y), n)$ $\rightarrow K(\pi_n(Y), n+1)$ Let X and Y be simply connected simplicial sets with effective homology. Let $\{X_n\}$ and $\{Y_n\}$ be their effective Postnikov towers. If X and Y are homotopy equivalent then Postnikov stages X_n and Y_n are homotopy equivalent for all $n \leq d$. The right diagrams are strictly commutative. Furthermore, there is an isomorphism $\gamma \colon \pi_n(X) \to \pi_n(Y)$ such that the Postnikov classes satisfy the relation

 $\gamma_*[\kappa_{n-1}^X] = f_{n-1}^*[\kappa_{n-1}^Y].$

Equivalence of Postnikov stages x equivalence of X & Y.

Let X and Y be finite simply connected simplicial sets of dimensions $\leq d$ with effective Postnikov towers $\{X_n\}$ and $\{Y_n\}$, respectively. Then |X| and |Y| are homotopy equivalent if and only if there is a homotopy equivalence $f_d \colon X_d \to Y_d$.

Necessary & sufficient condition

Let X and Y be simply connected simplicial sets with effective homology. Let $\{X_n\}$ and $\{Y_n\}$ be their effective Postnikov towers. Assume that there is a homotopy equivalence $g_{n-1}: X_{n-1} \to Y_{n-1}$. Then, X_n and Y_n are homotopy equivalent if and only if there is an isomorphism $\gamma: \pi_n(X) \to \pi_n(Y)$ and a homotopy selfequivalence $a_{n-1}: X_{n-1} \to X_{n-1}$ satisfying $\gamma_*[\kappa_{n-1}^X] = (g_{n-1}a_{n-1})^*[\kappa_{n-1}^Y]$. Moreover, if we assume that $g_{n-1} \in iso^{ef}(X_{n-1}, Y_{n-1})$ then $a_{n-1} \in \operatorname{aut}^{\operatorname{ef}}(X_{n-1})$.

Notation. The set $iso^{ef}(A, B)$ contains all effective homotopy equivalences $A \to B$, i.e., homotopy equivalences computed by a specific procedure. It is closed under composition, and every homotopy equivalence is homotopic to an effective homotopy equivalence.

Algorithmic group theory

The equation $\gamma_*[\kappa_{n-1}^X] = (g_{n-1}a)^*[\kappa_{n-1}^Y]$ indicates that we have to use algorithmic group theory. Let G be a group and let $: M \times G \to M$ be the right action of the group G on a set M. For a subgroup S of G, a subset $T \subseteq G$ is called a right transversal of S if T contains exactly one element of each coset from $G/S = \{S \cdot g \subseteq G; g \in G\}$. For every $y \in m^G$, denote a unique $g \in G$ such that $m^g = y$ as $g = \log y$.

<u>Schreier's lemma</u>. Let G be a group generated by elements from a set P, $G = \langle P \rangle$. Let S be a subgroup of G with a finite right transversal T. Then the subgroup S is generated by the set

 $W = S \cap \{ rp(\overline{rp})^{-1} \in G; \ r \in T, \ p \in P, rp \neq \overline{rp} \}.$

The uniquely determined element in $T \cap Sg$ is \overline{g} .

Corollary. Let a finitely generated group G act on a finite set $M, m \in M$ and let $S := \operatorname{Stab}_G(m)$. Then the subgroup S is finitely generated, and its generators are listed in the set W. Orbit-Stabilizer algorithm.

Input: A finitely-generated group $G = \langle P \rangle$ with a right action on a finite set M, an element $m \in M$.

Output: Elements of the orbit m^G and a set Q of Schreier's generators of the stabilizer $\operatorname{Stab}_G(m)$.

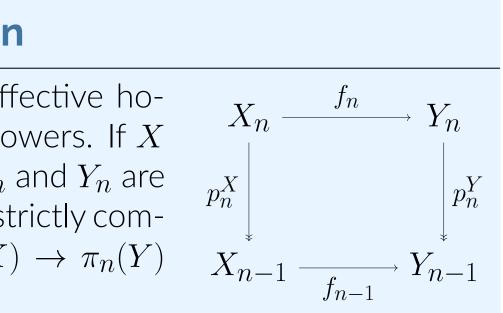
Spaces of finite *k***-type**

A simply connected set X has finite k-type if its effective Postnikov tower $\{X_n\}$ has Postnikov class $[\kappa_n^X]$ of finite order for each $n \in \mathbb{N}$. We will say that X has finite k-type through dimension d if Postnikov classes $[\kappa_n^X]$ are of finite order for all $n \leq d-1$. Example of spaces:

- *H*-spaces, especially Lie groups, topological groups, and simplicial groups,
- *m*-connected spaces with dimension at most 2m,
- *H*-spaces modulo the class of finite groups,
- spaces rationally homotopy equivalent to products of Eilenberg-MacLane spaces.

Main result

Let X and Y be simply connected finite simplicial set of dimension d. Suppose that they are of finite k-type through dimension d. Then the question of whether X and Y are homotopy equivalent is algorithmically decidable. If the spaces are homotopy equivalent, we can find a homotopy equivalence $f: X_d \to Y_d$ between their Postnikov stages in dimension d.



Proof of the main result - 1. phase: Pre-processing

- [2, Section 4].

- Output: A finite set of generators of the group $\operatorname{Aut}^{\operatorname{ef}}(X_n)$.

Proof of the main result - 2. phase: Processing

Base step. Since $X_1 = Y_1$ is a point, so iso⁶ For each $2 \le n \le d$ do:

Induction step. Find a certain lift $f_n \in iso$ $iso^{et}(X_{n-1}, Y_{n-1})$ using methods:

- Update all f_i to the maps $f_i \circ a_i$ for each $2 \le i \le n-1$ if the required a exists.

Algorithm A.

Input: $[\kappa_{n-1}^X] \in \operatorname{Tor}(H^{n+1}(X_{n-1};\pi_n(X)))$ $iso^{et}(X_{n-1}, Y_{n-1}).$ $f_n \in iso^{\text{et}}(X_n, Y_n)$. If no, then $X \not\simeq Y$.

- Find if there is $(a, \alpha) \in \operatorname{Aut}^{\operatorname{ef}}(X_{n-1}) \times \operatorname{Aut}(\pi_n(Y)) := G$ such that

- If it is missing in the list, then $X_n \not\simeq Y_n$. It implies that $X \not\simeq Y$.

Corollary

Let X and Y be finite simplicial sets. Then the question, if X and Y are stably homotopy equivalent, is algorithmically decidable. Proof:

- connectivity for r sufficiently large.
- Both $S^r X$ and $S^r Y$ are of finite k-type through their dimension.
- equivalent.

- 2014.
- 2012.

Department of Mathematics and Statistics

• Compute effective Postnikov towers for both sets X and Y according to the instructions in

• That algorithm provides suitable isomorphism types $\sigma \colon \pi_n(X) \to \pi_n(Y)$ of homotopy groups. • If the homotopy groups $\pi_n(X)$ and $\pi_n(Y)$ have different isomorphism types, then $X \not\simeq Y$. • Using Postnikov classes, check that both spaces are of finite k-type through dimension d. • Compute inductively generators of $\operatorname{Aut}^{\operatorname{ef}}(X_n) = \operatorname{Aut}(X_n)$ for $n \leq d$ via the algorithm: Input: A finite set of generators of $\operatorname{Aut}^{\operatorname{ef}}(X_{n-1})$ and $[\kappa_{n-1}^X] \in \operatorname{Tor}(H^{n+1}(X_{n-1};\pi_n(X))).$

$\operatorname{so}^{\operatorname{ef}}(X_1, Y_1) = {\operatorname{id}}.$	X_n	f_n	$\cdots \rightarrow Y_n$
$o^{\mathrm{ef}}(X_n,Y_n) \text{ of } f_{n-1} \in$	$\downarrow X_{n-1}$ -	$a \xrightarrow{f_r} X_{n-1} \xrightarrow{f_r}$	$\stackrel{i-1}{\longrightarrow} Y_{n-1}$
		g_{n-1}	7 10 1

• Seek $a \in \operatorname{aut}^{\operatorname{ef}}(X_{n-1})$ such that g_{n-1} satisfies $\gamma_*[\kappa_{n-1}^X] = f_{n-1}^*[\kappa_{n-1}^Y]$ by the algorithm (A).

)),
$$[\kappa_{n-1}^Y] \in \operatorname{Tor}(H^{n+1}(Y_{n-1};\pi_n(Y)))$$
 and $f_{n-1} \in$

Output: A decision whether $X_n \simeq Y_n$. If yes, the algorithm provides a homotopy equivalence

 $\sigma_*[\kappa_{n-1}^X] = \alpha_*^{-1} a^* f_{n-1}^*[\kappa_{n-1}^Y].$ • Consider the action $\operatorname{Tor}(H^{n+1}(X_{n-1};\pi_n(Y))) \times G \to \operatorname{Tor}(H^{n+1}(X_{n-1};\pi_n(Y)))$ $([\kappa], [g], \gamma) \longmapsto \gamma_*^{-1} g^*[\kappa].$ • Apply the Orbit-Stabilizer algorithm and compute the orbit of the element $f_{n-1}^*[\kappa_{n-1}^Y]$. • Go through the finite list of the orbit elements and decide if $\sigma_*[\kappa_{n-1}^X] \in (f_{n-1}^*[\kappa_{n-1}^Y])^G$. • If $\sigma_*[\kappa_{n-1}^X] \in (f_{n-1}^*[\kappa_{n-1}^Y])^G$ then take $\log(\sigma_*[\kappa_{n-1}^X]) = ([a], \alpha)$ and f_n is a lift of $g_{n-1} = f_{n-1}a$.

• X and Y of finite dimension are stably homotopy equivalent if $\exists r \in \mathbb{N} : S^r X \simeq S^r Y$. • The dimensions of multiple suspensions $S^r X$ and $S^r Y$ of X and Y are less than twice their

• The previous algorithm decides if $S^r X \simeq S^r Y$, i.e., if X and Y are stably homotopy

References

[1] E. H. Brown. Finite computability of Postnikov complexes. The Annals of Mathematics, 65(1):1, January 1957. [2] M. Čadek, M. Krčál, J. Matoušek, L. Vokřínek, and U. Wagner. Polynomial-time computation of homotopy groups and Postnikov systems in fixed dimension. SIAM Journal on Computing, 43(5):1728–1780, January

[3] A. Nabutovsky and S. Weinberger. Algorithmic aspects of homeomorphism problems. Contemporary mathematics - American Mathematical Society, pages 245–250. American Mathematical Society, 1999. [4] J. Rubio and F. Sergeraert. Constructive homological algebra and applications. *arXiv1208.3816*, pages 1–154,