
Killing Tensors in Koutras–McIntosh Spacetimes
Boris Kruglikov and Wijnand Steneker

The Koutras–McIntosh family of metrics include conformally flat pp-waves and the Wils metric. It appeared
in their paper of 1996 as an example of a spacetime without scalar curvature invariants and infinitesimal sym-
metries. Here we demonstrate that these metrics have no “hidden symmetries”, by which we mean Killing
tensors of low degrees. The technique we use is the geometric theory of overdetermined PDEs and the Cartan
prolongation-projection method. Application of those allows to prove non-existence of polynomial in mo-
menta integrals for the equation of geodesics in a mathematical rigorous way. Using the same technique we
can classify all lower degree Killing tensors and prove in several examples of pp-waves that all Killing tensors
of degree 3 and 4 are reducible.

Koutras–McIntosh Spacetimes
The following is the Koutras–McIntosh family of spacetimes for (a, b) ̸= (0, 0):

g = 2(ax + b) du dw − 2aw dx du +
(
f (u)(ax + b)(x2 + y2)− a2w2) du2 − dx2 − dy2. (0.1)

These metrics were shown in [1] to possess neither invariants nor symmetries. The first property means that
all polynomial curvature invariants, i.e., complete contractions of tensor products of the Riemann tensor and
its covariant derivatives ∇i1· · · ∇isRabcd, vanish and so cannot be used to distinguished g from the Minkowski
metric. The second property above means there are no Killing vectors, or linear integrals, for (0.1). In the
paper we show that it also does not possess “hidden symmetries” (i.e., Killing tensors of low degrees).

Hamiltonian formalism
The energy function H = 1

2∥p∥
2
g of the geodesic flow writes in local coordinates

H(x, p) =
1

2
gij(x)pipj [gij] = [gij]

−1.

It is well-known that geodesics of g are projections to the base M of trajectories of the corresponding Hamil-
tonian vector field XH = ω−1dH on T ∗M

g
≃ TM .

Integrating the equations of geodesics requires conserved quantities for this Hamiltonian system. A function
I : T ∗M → R is an integral (of motion) XH(I) = 0 if it Poisson commutes with the Hamiltonian:

{H, I} =

n∑
i=1

(
∂H

∂pi

∂I

∂xi
− ∂H

∂xi
∂I

∂pi

)
= 0.

By Noether’s theorem, a Killing field X = Xi(x)∂xi corresponds to a linear in momenta integral of motion
I(x, p) = ⟨p,X⟩ = Xi(x)pi.

More generally, a Killing tensor of degree d corresponds to a homogeneous in momenta polynomial

Id := ai1···id(x) pi1 · · · pid, (0.2)

which Poisson commutes with H , and is thus a polynomial integral.

Geometric Theory of PDEs

I: Killing Equation as a PDE
Since the Hamiltonian is quadratic in momenta, for any (0.2) the Poisson bracket {H, Id} is of degree d+ 1 in
momenta. Consequently, Killing d-tensors correspond to solutions of a system of differential equations formed
by vanishing of p-coefficients of the Poisson bracket, which we call the Killing equation,

Ed := {F = 0 : F ∈ coeffsp({H, Id})}. (0.3)

This is an overdetermined system of linear first order PDEs on the coefficients ai1···id(x) of the Killing tensor.
Actually, there are

(n+d
d+1

)
equations on

(n+d−1
d

)
unknown functions. Denote solutions to this system – the

linear space of all Killing d-tensors – by Kd.

II: Jet Formalism
The notion of jet-space formalizes the computational device of truncated Taylor polynomials. If xi are local
coordinates on N then the jet-space JkN of k-jet of functions u : N → R has local coordinates (xi, uσ) for
multi-indices σ = (i1, . . . , in), is ≥ 0, |σ| =

∑
is ≤ k. The space of k-jets of maps u : Rn → Rm will be

denoted by Jk(n,m). Any map u = (uj) : Rn → Rm lifts to the jet-section jku : Rn → Jk(n,m) given by
xi 7→ u

j
σ = ∂uj(x)/∂xσ.

Definition 1 (Geometric PDE). A partial differential equation of order k is a submanifold E ⊆ Jk(n,m). A
solution of the PDE is defined to be a function u : Rn → Rm such that its k-jet jku takes values in E . We
denote by Sol(E) the space of all (local) solutions of E .

Elements of a k’th order geometric PDE E ⊆ Jk(n,m) are solutions up to order k (at a point).

III: Prolongation
To find the solutions of the PDE E = {F (xi, u

j
σ) = 0} up to order k + 1 and higher, we have to differentiate

the defining equations. To encode the chain rule, we define the q’th total derivative of F : Jk → Rs to be a
vector-function on Jk+1 given by

DqF :=
∂F

∂xq
+

m∑
j=1

∑
|σ|≤k

∂F

∂u
j
σ

· ujσ+1q. (0.4)

(Here we use the notation σ + 1q for the multi-index obtained by adding 1 to the q’th entry of σ.) Now, a point
(xi, u

j
σ) ∈ Jk+1 is said to be a solution of E up to order k + 1 if it satisfies the following system of equations:

E (1) :=
{
F (xi, u

j
σ) = 0, (DqF )(xi, u

j
σ) = 0 ∀ q = 1, . . . , n

}
.

The resulting system of equations is called the first prolongation of E . By construction, a solution of the pro-
longation E (1) is still a solution of E . We inductively define the l’th prolongation by E (l) = (E (l−1))(1) ⊂ Jk+l.
It corresponds to solutions up to order k + l (at a point).
Definition 2 (Finite Type). A PDE E ⊆ Jk(n,m) is called of finite type l if after l prolongations all the
highest order derivatives of the dependent variables can be expressed algebraically in terms of the lower order
derivatives. A PDE is called of Frobenius type if it is of finite type 0.
Theorem 3 (Killing PDE is of Finite Type). The PDE Ed defining a Killing d-tensor is a first order linear PDE
of finite type d with Sol(Ed) = Kd. This equation and its prolongations possess no compatibility conditions
before achieving Frobenius type.

IV: Projection
Let E = {F (xi, u

j
σ) = 0} ⊆ Jk(n,m) be a PDE of order k. Its solution up to order k can be extended

to order (k + l) if and only if it belongs to the projection of the prolongation πk+l,k(E (l)) ⊆ E , where
πk+l,k(j

k+lu) := jku. In the case of equality here, every k-jet solution can be extended to a (k + l)-
jet solution. In the opposite case, there is a linear combination of iterated total derivatives up to order l,
□(F ) =

∑
|τ |≤l a

τDτF , which has order k.

Definition 4 (Compatibility). A compatibility condition of E is an equation defining πk+l,k(E) that is alge-
braically independent of F and that is satisfied by all formal solutions.

Associated to a PDE is the Cartan distribution. Solutions arise as integral manifolds of this distribution. There-
fore, in the PDE setting, Frobenius theorem implies:
Theorem 5 (Frobenius Theorem). Solutions of a PDE E ⊆ Jk(n,m) of finite type l are determined uniquely
by their (k + l − 1)-jets. If in addition E has no compatibility conditions, then for every ξ ∈ E (l) there exists a
local solution u ∈ Sol(E) satisfying jk+lx u = ξ.

Algorithmic implementation
The above criterion allows for an effective implementation of evaluation of dimKd for a given metric g using
computer algebra systems. The Killing PDE E as well as its prolongations E (k) are linear in (k + 1)-jets of
the dependent variables. We convert this linear system of equations to a matrix-valued function Mk(x) on the
spacetime. For our class of metrics g the entries are polynomial with rational coefficients. Hence to make use
of computer algebra software, we insert a rational point x0 ∈ M to obtain a matrix with rational coefficients
(in this case computer calculations are exact!).

Algorithm. (Cartan’s Prolongation Method for Geodesic Flow).
(Input: A nonnegative integer d, a point x0.)

• Step 1.) Compute the Poisson bracket {H, Id} of a polynomial in momenta p function Id with the Hamil-
tonian.

• Step 2.) Collect the coefficients of {H, Id} with respect to the momentum variables. Define the first
order linear PDE E := {F = 0 : F ∈ coeffsp({H, Id})}.

• Step 3.) Set k := 0.

– Convert the linear system of equations E (k) w.r.t. the variables Vk+1,d := {ai1···idα : |α| ≤ k + 1} into a
matrix Mk(x) that depends on the x-coordinates.

– Substitute x0 to obtain a matrix Mk := Mk(x0), the k’th prolongation matrix.
– Set δk := columns(Mk)− rank(Mk).

If (k ≤ d) or (k > d and δk ̸= δk−1), increase k by 1 and repeat Step 3.

• Step 4.) Return (δk, k).

(Output: The dimension of the space of Killing d-tensors is dimKd = δk. The integer k indicates the
number of prolongations necessary to find all compatibility conditions of E .)

Proof. (Sketch correctness algorithm). Rows of the matrix Mk represent equations defining E (k)d , so they con-
sist of the original Killing PDE, their differential corollaries and compatibility conditions. Consequently, δk is
number of free jets (coordinates on fibers of the equation Ed → N ). In view of the Frobenius theorem, each
free variable corresponds to a (k + 1) jet-solution of the Killing PDE. The first condition (k ≤ d) addresses
whether the prolongation has achieved Frobenius type, see Theorem 3. The second part (k > d and δk ̸= δk−1)
checks whether all compatibility conditions have been computed.

Improving computability of the algorithm.

• (Exploiting Sparsity.) The prolongation matrices Mk that we encounter here are sparse. We generate a
matrix with only zeroes and then substitute the nonzero values.

• (LinBox). The LinBox package in Sage allows for fast rank computations of large sparse integer matrices.
• (Combinatorial Description of Prolongations.) We have that {H, Id} is of degree d + 1 in momenta.

Given a multi-index τ of length d + 1, we compute the pτ -coefficient in terms of the coefficients ai1...id(x)
of Id. Using the multi-index Leibniz rule, we can then determine the general expression for the derivative
∂α(coeffτ ({H, Id})), where α is a multi-index. We obtain the equations of the prolongation as a function of
the multi-indices τ and α. This combinatorial description significantly reduces generation time in Maple.

Conformally Flat pp-Waves
These are given by the following formula:

g = 2dx3dx4 +
(
f (x3)((x1)2 + (x2)2)

)
(dx3)2 − (dx1)2 − (dx2)2 (0.5)

Sippel and Goenner classified pp-waves in terms of their isometry groups. For conformally flat pp-waves
there are three classes: f (x3) = c, f (x3) = c(x3)−2 and the generic case with dimK1 = 6. We apply our
prolongation-projection algorithm to the following four metrics (rescaling of f does not play a role for the first
three metrics):

(i) f (x3) = 1, (ii) f (x3) = x3, (iii) f (x3) = (x3)2, (iv) f (x3) = 2(x3)−2.

If two subsequent values δk, δk+1 are equal (with k ≥ d), the sequence of δ-values stabilizes and we can read
off the number of Killing d-tensors. In the table this is shown by circling this δ-value.

Linear E E (1) E (2) E (3) E (3)

δ 10 10 7 7 . . .
Quadratic E . . . E (4) E (5) E (6)

δ 30 . . . 29 28 28
Cubic E . . . E (6) E (7) E (8)

δ 65 . . . 87 84 84
Quartic E . . . E (10) E (11) E (12)

δ 119 . . . 211 210 210

Linear E E (1) E (2) E (3) E (3)

δ 10 10 7 6 6
Quadratic E . . . E (5) E (6) E (7)

δ 30 . . . 24 22 22
Cubic E . . . E (11) E (12) E (13)

δ 65 . . . 63 62 62
Quartic E . . . E (17) E (18) E (19)

δ 119 . . . 150 148 148

Table 1: Metrics 2,3. Metrics 1,4.

The number of Killing d-tensors include those which are reducible, i.e., can be written as a linear combi-
nation of products of lower order Killing tensors. A variation on Cartan’s algorithm computes the relations
among Killing tensors. Counting these allows us to compute the number of irreducible Killing tensors. For
conformally flat pp-waves, we can obtain:
Theorem 6. For a generic conformally flat pp-wave (0.5) all 3- and 4- Killing tensors are combinations of
Killing vectors, the Hamiltonian and an irreducible Killing 2-tensor.

Absence of Killing Tensors for the Wils Metric
The Wils metric is given by

g = 2x1dx3dx4 − 2x4dx1dx3 +
(
f (x3)x1((x1)2 + (x2)2)− (x4)2

)
(dx3)2 − (dx1)2 − (dx2)2. (0.6)

Application of Cartan’s algorithm yields:
Theorem 7. The Wils metric (0.6) for f (u) = um, m = 0, 1, 2, admits no Killing tensors up to degree 6 except
for powers of the Hamiltonian.

This also implies that for generic values of the functional parameter f there are no lower degree Killing tensors.
Now we want to be more specific on those exceptional parameters.
Theorem 8. The Wils metric generically admits no Killing fields and Killing 2-tensors. It admits a Killing field
if and only if f is of the form

f (x3) = (c0 + c1x
3 + c2(x

3))−2. (0.7)

for some constants c1 ̸= 0, c2, c3. The only Killing 2-tensor is given by the square of the Killing vector.
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