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Basic wireless communication model

electromagnetic waves have amplitude and phase  signals are
modeled using complex numbers

M number of transmit antennas

X ∈ C1×M transmitted symbol

N number of receiving antennas

Y ∈ C1×N received symbol

H ∈ CM×N channel matrix (captures the propagation through
environment)

Z ∈ CN white Gaussian noise (i.e. iid CN (0, σ2))

ρ signal to noise ratio (SNR) ρ = ‖X‖/σ

Y = XH + Z (1)
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How does one actually send data?

Pick signals X only from a �nite set C (ideally of size 2B) and given
received Y give a best guess as to which X could have produced it
given our current knowledge of H.
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The channel matrix H

Depends on frequency and time of the transmission

H : It × If → H(t, f ) ∈ CM×N

Numerous models (e.g. coming from the Maxwell equations)
but the baseline is the so called Rayleigh fading where we
assume H(f , t)i ,j ∼ CN (0, 1) = N (0, 12).

Can contain important correlations...

Rt = E[HH∗] ∈ CM×M , Rr = E[H∗H] ∈ CN×N .
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Estimation problems

At the beginning of the communication the receiver does not know
the channel matrix H . . .

1 the communication protocol dictates that each communication
begins with known pilot symbols Xp1 , . . . ,Xps

2 use pilot symbols to estimate H,Rt ,Rr

But for high number of antennas this might be prohibitively
expensive to do for each time and frequency!

Interpolation problem

Interpolate / extrapolate H,Rt in time and/or frequency domain.
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Geometry in estimation

The covariance matrices have constraints (by de�nition)...

Rt ∈ Cov(M)

Cov(M) = {A ∈ CM×M |A∗ = A& spec(A) ≥ 0}
GLM(C)/U(M) ⊂ Cov(M)

What is a �correct geometry� for the problem?
What about degenerate situations?
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Precoding / beamforming

If the transmitter has access to the channel matrix H, we can
improve the quality of the transmission:

X  WH(X )

Zero forcing:
X  X (HH∗)−1H

MMSE:
X  X (HH∗ + 1/ρIM)−1H

Truncated polynomial expansion:

X  X
∑
j

wj(HH
∗)jH
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SVD-based precoding

H = VDU∗

D = diag(d1, . . . , dmin{M,N})

d1 ≥ d2 ≥ · · · dmin{M,N}

Coordinates of X wrt basis of left singular vectors, which
correspond to small singular values, are drowned by the noise.
If the transmitter knows the k largest singular vectors (v1, . . . , vk),
it can use them for precoding and get better power e�ciency /
e�ective SNR.

X  X [v1| · · · |vk ]
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Precoding geometry � k = 1

Left singular vectors are the eigenvectors of HH∗ and hence they
are de�ned up to nonzero complex multiple.
In other words:

Sing1 ' CPM−1 ' U(M)/U(1)× U(M − 1)
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Precoding geometry � k ∈ {1, . . . ,M}

Generically,2 the space of k singular vectors corresponding to k

largest singular values is

Singk ' U(M)/U(1)× · · · × U(1)× U(M − k)

2In case of multiple singular values we have

U(M)/U(k1)× · · · × U(ks)× U(M −
s∑

i=1

ki )
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Kernel based approach
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Kernel based approach

How to linearize complicated space?

With reproducing kernel Hilbert space!

RKHS:

X space we are interested in

H Hilbert space

Φ: X → H feature map

such that there exists k : X × X → C with the property:

∀x , y ∈ X k(x , y) = 〈Φ(x)|Φ(y)〉H

Any �nite computation involving just the scalar product can be
done by evaluating the kernel function.
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Representation theory to the rescue?

Fix a closed subgroup K ≤ G and a unitary G -representation H.

For any v0 ∈ HK the closed G -invariant subspace H0 generated by
v0 is RKHS which is realized on C(G/K ).

Remark: For applications, we care only about e�ective algorithm
for evaluating the kernel function with �good enough� numerical
precision.

Possible future project, not yet approved. :-/
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Section 2

Grassmannian communication
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Block fading

Assume that the channel matrix does not change for T
transmissions:

Y1 = X1H + Z1
...

YT = XTH + ZT

Y = XH + Z

X ∈ CT×M transmitted symbol
Y ∈ CT×N received symbol
H ∈ CM×N channel matrix (captures the propagation through

environment)
Z ∈ CT×N white Gaussian noise (i.e. iid CN (0, σ2))

ρ signal to noise ratio (SNR) ρ = ‖X‖F/σVít Tu£ek
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Grassmannian communication

If M = N and Z = 0 then we
have

Y = XH

and

colspan(X) = colspan(Y ).

Vít Tu£ek
Representations of �nite groups and wireless communication



Light introduction to wireless communication
Grassmannian communication

Constellations of subspaces

Classical vs Grassmannian signaling

Degrees of freedom:

classicaly X ∈ CT×M ... MT

Grassmannian X ∈ Gr(M,T ) ... TM −M2 = M(T −M)

64 points on Gr(1, 2)
4096 points on Gr(2, 4)
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Details of Grassmannian signaling

We assume that H is iid CN (0, 1) (Rayleigh block fading).
We start with the conditional probability of receiving Y ∈ CN

assuming X ∈ CM was sent.

Y = XH+ Z

P(Y |X ) =
exp(− tr(Y ∗(1T + XX ∗)−1Y ))

πTN det(1T + XX ∗)

Observation:

∀h ∈ U(M) : P(Y |Xh) = P(Y |X )

∀g ∈ U(T ) : P(gY |gX ) = P(Y |X )
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Capacity

Theorem (Marzetta-Hochwald-Zheng-Tse-Durisi-Riegler)

Assume T ≥ M + N. Given a constraint on power of the signal

(e.g. ‖X‖F = 1) the distribution on X that maximizes the Shannon

information I (Y ;X ) is the uniform distribution on the

Grassmannian.

I (Y ;X ) = E log
p(Y |X )

p(Y )

C = sup
pX

I (Y ;X )
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Capacity

Proof.

1 ∀g ∈ U(T ) ∀h ∈ U(M) : I (Y |X ) = I (Y |g−1Xh)

2 Let p0 be a �xed probability distribution of X and de�ne

p1(X ) =
1

|U(T )||U(M)|

∫
g∈U(T )

∫
h∈U(M)

p0(g−1Xh).

Since I (Y |X ) is concave wrt pX we have by the Jensen's
inequality

I (Y |Xp1) ≥ I (Y |Xp0).
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Capacity

Proof.
3 Capacity achieving distribution X = gD where g is uniformly

distributed on U(T ) and independent of D which is T ×M

nonnegative diagonal matrix whose pdf is invariant with
respect to permutations.

4 For T ≥ M + N we can drop the diagonal factor, for
T < M + N the capacity achieving distribution is nontrivial.
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Detection

In practical situation we consider �nite set of tall unitary matrices
X ∗X = 1M .

C = {X1, . . . ,Xk}

Given a received signal Y , how do we guess which Xi was sent?

De�nition (Maximum Likelihood Detector)

ML(Y ) = arg max
X∈C

p(Y |X )
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Towards codebook criteria

P(Y |X ) =
exp(− tr(Y ∗(1T + XX ∗)−1Y ))

πTN det(1T + XX ∗)

Since we assume X ∗X = 1M we can simplify

ML(Y ) = arg max
X∈C

tr(YY ∗XX ∗).

Moreover, we can interpret XX ∗ as the orthogonal projection to the
subspace of CT spanned by the columns of X .
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Grassmannians

Gr(M,T ) = {V ≤ CT | dimV = M}
' U(T )/U(M)× U(T −M)

' {X ∈ M(T ,M,C) |X ∗X = 1M}/U(M)

' {P ∈ M(T ,T ,C) |P∗ = P &P2 = P & rankP = M}
= {P ∈ Sym(T ) |P2 = P & trP = M}

Frobenius inner product on Sym(T ):

〈A |B〉F = tr(A∗B)

Vít Tu£ek
Representations of �nite groups and wireless communication



Light introduction to wireless communication
Grassmannian communication

Constellations of subspaces

Embedings of Grassmannians
J.H. Conway, R.H. Hardin, N.J.A. Sloane: Packing Lines, Planes, etc.: Packings in

Grassmannian Space
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Grassmannians

De�nition (Chordal distance)

dCh(A,B) = ‖A− B‖F

On Gr(M,T ) this restricts to

dCh(A,B) =
√
2
√
M − tr(AA∗BB∗)

and so
ML(Y ) = arg min

X∈C
dCh(YY ∗,XX ∗)
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Towards codebook criteria

Problem

What is the optimal constellation C = {X1, . . . ,Xk} of a given size?

Since our ML detector is picking up the closest constellation point
wrt the chordal distance a good choice might be

Chordal criterion

Cch = arg max
C

min
Xi 6=Xj∈C

dch(Xi ,Xj)

but can we justify that?
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Towards codebook criteria � pairwise error

Pairwise error of mistaking Xi for Xj is

Pe(Xi ,Xj) =
M∑
j=1

Resw=ıaj

(
−1

w + ı/2

M∏
m=1

(
1 + α

α2(1− d2m)(w2 + a2m)

))

where α = ρT/M, a2j = 1/4 + (1 + α)/(α2(1− d2j )) and
1 ≥ d1 ≥ d2 · · · ≥ dm are the singular values3 of X ∗j Xi . The
product omits the terms where dm = 1.

Theorem (Cuevas-Santamaria-T)

Pe(Xi ,Xj) =
1
π

∫ π
2

0

M∏
m=1

(
1 +

α2(1− d2m)

4(1 + α) cos2 θ

)−N
dθ

3the cosines of the principal angles between the subspaces [Xi ] and [Xj ]
Vít Tu£ek

Representations of �nite groups and wireless communication



Light introduction to wireless communication
Grassmannian communication

Constellations of subspaces

Towards codebook criteria � pairwise error

For ρ→ 0 we have

Pe(Xi ,Xj) = 1/2−
T
√
Ndch(Xi ,Xj)

4M
+ o(ρ)

Chordal criterion

Cch = arg max
C

min
Xi 6=Xj∈C

dch(Xi ,Xj)
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Towards codebook criteria � pairwise error

For ρ→∞ we have

lim
ρ→∞

ρMNPe(Xi ,Xj) =
1
2

(
4M
T

)N

M
(2NM − 1))!!

(2NM)!!

M∏
m=1

(1− d2m)−N

Coherence criterion

Ccoh = arg max
C

min
Xi 6=Xj∈C

det(1M − X ∗i XjX
∗
j Xi )

N

Union bound criterion

CUB = arg min
C

∑
i<j

det(1M − X ∗i XjX
∗
j Xi )

−N
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Section 3

Constellations of subspaces
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Constellation design - numerical optimization

1 Start with random constellation of the given number K of
points.

2 At each iteration, for each point Xk �nd the L �closest points�
and move Xk away from its neighbors.

Works nice but we want |C| = 2B ...
Vít Tu£ek
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GrassLattice

We can e�ciently construct & detect on rectangular grids.

Problem

Can we map such a grid invertibly into the Grassmannian so that it
is near optimal wrt our cost functions?
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GrassLattice (M = 1)

1 Take the unit hypercube in R2(T−1) and map1 it through

(a1, . . . , an, b1, . . . , bT−1) 7→ (zi = F−1(ai )+ıF−1(bi ))T−1i=1
∈ CT−1.

2 Map the CN (0, 1T−1)-distributed vector z ∈ CT−1 to the unit
disc by

z 7→ w = zf (‖z‖)

where f (r) = 1
r

(
1− exp(−t2)

∑T−2
k=0

r2k
k!

)1/2(T−1)
(it makes w is uniformly distributed in the unit disc B(0, 1) ∈ Cn)

3 Map w to the Grassmannian by

w 7→ (
√
1− |w |2,w)

1F is the distribution function of N (0, 1/2)
Vít Tu£ek
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GrassLattice (M = 1) � the other chart?

We can alternatively use w 7→ (w ,
√
1− |w |2) and get twice as

many points if we shrink the lattice and rotate one chart

What rotations should one choose for T > 2?
Vít Tu£ek
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GrassLattice for M > 1?

The last map w 7→ (
√
1− |w |2,w) is actually not just measure

preserving but even symplectomorphism.

For general M, the map

W 7→
(√

1M −W ∗W
W

)
is also symplectomorphism map into Gr(M,T ) from the set of
matrices where the square root is well de�ned:

{W ∈ C(T−M)×M | ‖W ‖op < 1} (Cartan domain of type I)
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GrassLattice for M > 1?

Problem

Let D be a Cartan symmetric domain of type I.

Can we explicitely map a unit hypercube into D in a
measure-preserving way?

Given B ∈ N, can we e�ciently construct 2B points in D so that
the resulting subspace constellation is close to optimal?
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Finite group constellations

Given a �nite subgroup G ≤ U(T ) and a basepoint
[B] ∈ Gr(M,T ) we can consider its orbit as a constellation

CG ,B = {[gB] | g ∈ G}

basepoint matters

generically |CG ,B | = |G | but
smaller orbits can be also
useful
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Example [Pitaval, Tirkkonen]

The following basepoint is optimal for two dimensional
representation of the dihedral group D8 giving rise to a
constellation of 8 points on CP1.(

cos 1
4

arccos(3
7
− 6
√
2

7
)(

1

21/4
+ ı
√
1− 1√

2

)
sin 1

4
arccos(3

7
− 6
√
2

7
)

)
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Finite group constellations � �nding good basepoint

1 Instead of optimizing over
∏K

k=1 Gr(M,T ) we optimize just
over Gr(M,T ).

2 Our cost functions are U(T )-invariant which reduces the
evaluation complexity from K 2 to K :

{dch([giB], [gjB]) | (gi , gj) ∈ G} = {dch([gB], [B]) | g ∈ G}

3 Further simpli�cations:

Criteria for group-based constellations

Cch ←− arg min
[B]∈Gr(M,T )

max
g∈G

Tr[(B∗gB)(B∗g−1B)]

CUB ←− arg min
[B]∈Gr(M,T )

∑
g∈G

det[1M − (B∗gB)(B∗g−1B)]−N
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Finite group constellations � advantages

1 encoding and storage:
G = {g i11 · · · g

ik
k | ij = 1, . . . ,Nj} and k ∼ log |G |

2 for each group one gets constellation for any Grassmannian
(add transmit antennas = store one more basepoint)

3 some provably optimal constellations are of this type (see e.g.
Conway et al)
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Finite group constellations � performance
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Finite group constellations � obstacles

Problem

Which subgroups should we choose?

For our applications we could in principle just numerically explore
�nite subgroups of U(T ) for T ≤ 10, but classi�cation of �nite
subgroups of U(T ) is known only for T ≤ 4
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Finite group constellations � obstacles

Theorem (Jordan)

There exists a real function f such that every �nite subgroup of

GLd (C) has a normal Abelian subgroup of index bounded by f (d).

f (d) = (d + 1)! for d ≥ 71
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Finite group constellations � group approximability

Let ε > 0. Consider a metric group G with a left-invariant distance
function. We say that G is ε-approximable if there exists a �nite
subset H ⊂ G and with its own group law ◦H such that

1 For each g ∈ G there exists a point in H of distance at most ε.
2 For each a, b ∈ H we have d(a ◦G b, a ◦H b) ≤ ε.

Group G is approximable if it is ε-approximable for any ε > 0.
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Finite group constellations � obstacles

Theorem (Turing)

1 If a metric group is approximable and has a faithfull

representation in GL(C, d), then it is approximable by groups

which also have faithful degree d linear representations.

2 If a Lie group is approximable, then it is compact and abelian.
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Thank you!
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