Representations of finite groups and wireless communication

Vít Tuček

Huawei Sweden R&D, Stockholm

43rd WINTER SCHOOL GEOMETRY AND PHYSICS, 2023

Outline

2 Grassmannian communication

Joint work with...

Collaborators = Huawei ∪ Cantabria Huawei = {Olivier Verdier, Gunnar Peters}

Cantabria = {Diego Cuevas, Javier Álvarez-Vizoso, Carlos Beltrán, Ignacio Santamaría}

Huawei = Huawei Technologies Sweden AB Cantabria = University of Cantabria

Section 1

Light introduction to wireless communication

Basic wireless communication model

electromagnetic waves have amplitude and phase \rightsquigarrow signals are modeled using complex numbers

- M number of transmit antennas
- $X \in \mathbb{C}^{1 imes M}$ transmitted symbol
 - N number of receiving antennas
- $Y \in \mathbb{C}^{1 imes N}$ received symbol
- $H \in \mathbb{C}^{M \times N}$ channel matrix (captures the propagation through environment)
 - $Z \in \mathbb{C}^N$ white Gaussian noise (i.e. iid $\mathbb{C}\mathcal{N}(0,\sigma^2)$)
 - ho signal to noise ratio (SNR) $ho = \|X\|/\sigma$

$$Y = XH + Z \tag{1}$$

How does one actually send data?

Pick signals X only from a finite set C (ideally of size 2^B) and given received Y give a best guess as to which X could have produced it given our current knowledge of H.

The channel matrix H

• Depends on frequency and time of the transmission

$$H: I_t \times I_f \to H(t, f) \in \mathbb{C}^{M \times N}$$

- Numerous models (e.g. coming from the Maxwell equations) but the baseline is the so called Rayleigh fading where we assume $H(f, t)_{i,j} \sim \mathbb{CN}(0, 1) = \mathcal{N}(0, 1_2)$.
- Can contain important correlations...

$$R_t = \mathbb{E}[HH^*] \in \mathbb{C}^{M \times M}, \quad R_r = \mathbb{E}[H^*H] \in \mathbb{C}^{N \times N}$$

Estimation problems

At the beginning of the communication the receiver does not know the channel matrix $H \dots$

- the communication protocol dictates that each communication begins with known pilot symbols X_{p1},..., X_{ps}
- 2 use pilot symbols to estimate H, R_t, R_r

But for high number of antennas this might be prohibitively expensive to do for each time and frequency!

Interpolation problem

Interpolate / extrapolate H, R_t in time and/or frequency domain.

Geometry in estimation

The covariance matrices have constraints (by definition)...

$$\begin{aligned} R_t \in Cov(M) \\ Cov(M) &= \{A \in \mathbb{C}^{M \times M} \mid A^* = A \& \operatorname{spec}(A) \geq 0\} \\ \operatorname{GL}_M(\mathbb{C}) / U(M) \subset Cov(M) \end{aligned}$$

What is a "correct geometry" for the problem? What about degenerate situations?

Precoding / beamforming

If the transmitter has access to the channel matrix H, we can improve the quality of the transmission:

 $X \rightsquigarrow W_H(X)$

Zero forcing:

$$X \rightsquigarrow X(HH^*)^{-1}H$$

MMSE:

$$X \rightsquigarrow X(HH^* + 1/\rho I_M)^{-1}H$$

Truncated polynomial expansion:

$$X \rightsquigarrow X \sum_{j} w_{j} (HH^{*})^{j} H$$

SVD-based precoding

$$H = VDU^*$$
$$D = \operatorname{diag}(d_1, \dots, d_{\min\{M,N\}})$$
$$d_1 \ge d_2 \ge \cdots d_{\min\{M,N\}}$$

Coordinates of X wrt basis of left singular vectors, which correspond to small singular values, are drowned by the noise. If the transmitter knows the k largest singular vectors (v_1, \ldots, v_k) , it can use them for precoding and get better power efficiency / effective SNR.

$$X \rightsquigarrow X[v_1|\cdots|v_k]$$

Precoding geometry – k = 1

Left singular vectors are the eigenvectors of HH^* and hence they are defined up to nonzero complex multiple. In other words:

$$\operatorname{Sing}_1 \simeq \mathbb{C}P^{M-1} \simeq U(M)/U(1) \times U(M-1)$$

Precoding geometry – $k \in \{1, \ldots, M\}$

Generically,² the space of k singular vectors corresponding to k largest singular values is

$$\operatorname{Sing}_k \simeq U(M)/U(1) \times \cdots \times U(1) \times U(M-k)$$

²In case of multiple singular values we have

$$U(M)/U(k_1) \times \cdots \times U(k_s) \times U(M - \sum_{i=1}^{s} k_i)$$

Kernel based approach

Input Space

Feature Space

Kernel based approach

How to linearize complicated space?

With reproducing kernel Hilbert space!

RKHS:

- X space we are interested in
- \mathcal{H} Hilbert space
- $\Phi \colon X \to \mathcal{H}$ feature map

such that there exists $k: X \times X \to \mathbb{C}$ with the property:

$$\forall x, y \in X \quad k(x, y) = \langle \Phi(x) | \Phi(y) \rangle_{\mathcal{H}}$$

Any finite computation involving just the scalar product can be done by evaluating the kernel function.

Representation theory to the rescue?

Fix a closed subgroup $K \leq G$ and a unitary G-representation \mathcal{H} .

For any $v_0 \in \mathcal{H}^K$ the closed *G*-invariant subspace \mathcal{H}_0 generated by v_0 is RKHS which is realized on $\mathcal{C}(G/K)$.

Remark: For applications, we care only about effective algorithm for evaluating the kernel function with "good enough" numerical precision.

Possible future project, not yet approved. :-/

Section 2

Grassmannian communication

Block fading

Assume that the channel matrix does not change for T transmissions:

$$Y_1 = X_1 H + Z_1$$

$$\vdots$$

$$Y_T = X_T H + Z_T$$

Y = XH + Z

$$\begin{split} & X \in \mathbb{C}^{T \times M} \quad \text{transmitted symbol} \\ & Y \in \mathbb{C}^{T \times N} \quad \text{received symbol} \\ & H \in \mathbb{C}^{M \times N} \quad \text{channel matrix (captures the propagation through} \\ & \quad \text{environment)} \\ & Z \in \mathbb{C}^{T \times N} \quad \text{white Gaussian noise (i.e. iid } \mathbb{C}\mathcal{N}(0, \sigma^2)) \end{split}$$

Grassmannian communication

If
$$M = N$$
 and $Z = 0$ then we have

$$Y = XH$$

and

 $\operatorname{colspan}(X) = \operatorname{colspan}(Y).$

Classical vs Grassmannian signaling

Degrees of freedom:

classicaly $X \in \mathbb{C}^{T \times M} \dots MT$ Grassmannian $X \in Gr(M, T) \dots TM - M^2 = M(T - M)$

Details of Grassmannian signaling

We assume that H is iid $\mathbb{CN}(0,1)$ (Rayleigh block fading). We start with the conditional probability of receiving $Y \in \mathbb{C}^N$ assuming $X \in \mathbb{C}^M$ was sent.

 $\mathbf{Y} = X\mathbf{H} + \mathbf{Z}$

$$P(Y|X) = \frac{\exp(-\operatorname{tr}(Y^*(1_T + XX^*)^{-1}Y))}{\pi^{TN}\det(1_T + XX^*)}$$

Observation:

$$\forall h \in U(M): P(Y|Xh) = P(Y|X)$$

$$\forall g \in U(T): P(gY|gX) = P(Y|X)$$

Capacity

Theorem (Marzetta-Hochwald-Zheng-Tse-Durisi-Riegler)

Assume $T \ge M + N$. Given a constraint on power of the signal (e.g. $||X||_F = 1$) the distribution on X that maximizes the Shannon information I(Y; X) is the uniform distribution on the Grassmannian.

$$I(Y; X) = \mathbb{E} \log \frac{p(Y|X)}{p(Y)}$$
$$C = \sup_{P_X} I(Y; X)$$

Capacity

Proof.

- 2 Let p_0 be a fixed probability distribution of X and define

$$p_1(X) = \frac{1}{|U(T)||U(M)|} \int_{g \in U(T)} \int_{h \in U(M)} p_0(g^{-1}Xh).$$

Since I(Y|X) is concave wrt p_X we have by the Jensen's inequality

$$I(Y|X_{p_1}) \geq I(Y|X_{p_0}).$$

Capacity

Proof.

- Capacity achieving distribution X = gD where g is uniformly distributed on U(T) and independent of D which is $T \times M$ nonnegative diagonal matrix whose pdf is invariant with respect to permutations.
- For T ≥ M + N we can drop the diagonal factor, for T < M + N the capacity achieving distribution is nontrivial.

Detection

In practical situation we consider finite set of tall unitary matrices $X^*X = 1_M$.

$$\mathcal{C} = \{X_1, \ldots, X_k\}$$

Given a received signal Y, how do we guess which X_i was sent?

Definition (Maximum Likelihood Detector)

 $ML(Y) = \underset{X \in \mathcal{C}}{\arg \max p(Y|X)}$

Towards codebook criteria

$$P(Y|X) = \frac{\exp(-\operatorname{tr}(Y^*(1_T + XX^*)^{-1}Y))}{\pi^{TN} \det(1_T + XX^*)}$$

Since we assume $X^*X = 1_M$ we can simplify

$$ML(Y) = \underset{X \in \mathcal{C}}{\operatorname{arg\,max}} \operatorname{tr}(YY^*XX^*).$$

Moreover, we can interpret XX^* as the orthogonal projection to the subspace of \mathbb{C}^T spanned by the columns of X.

Grassmannians

$$Gr(M, T) = \{ V \leq \mathbb{C}^T \mid \dim V = M \}$$

$$\simeq U(T)/U(M) \times U(T - M)$$

$$\simeq \{ X \in M(T, M, \mathbb{C}) \mid X^*X = 1_M \}/U(M)$$

$$\simeq \{ P \in M(T, T, \mathbb{C}) \mid P^* = P \& P^2 = P \& \operatorname{rank} P = M \}$$

$$= \{ P \in \operatorname{Sym}(T) \mid P^2 = P \& \operatorname{tr} P = M \}$$

Frobenius inner product on Sym(T):

$$\langle A | B \rangle_F = \operatorname{tr}(A^*B)$$

Embedings of Grassmannians

J.H. Conway, R.H. Hardin, N.J.A. Sloane: *Packing Lines, Planes, etc.: Packings in Grassmannian Space*

Grassmannians

Definition (Chordal distance)

$$d_{Ch}(A,B) = \|A - B\|_F$$

On Gr(M, T) this restricts to

$$d_{Ch}(A,B) = \sqrt{2}\sqrt{M - \operatorname{tr}(AA^*BB^*)}$$

and so

$$ML(Y) = \arg\min_{X \in \mathcal{C}} d_{Ch}(YY^*, XX^*)$$

Towards codebook criteria

Problem

What is the optimal constellation $C = \{X_1, \ldots, X_k\}$ of a given size?

Since our ML detector is picking up the closest constellation point wrt the chordal distance a good choice might be

Chordal criterion

$$\mathcal{C}_{ch} = rg\max_{\mathcal{C}} \max_{X_i \neq X_j \in \mathcal{C}} \min_{d_{ch}(X_i, X_j)}$$

but can we justify that?

Towards codebook criteria – pairwise error

Pairwise error of mistaking X_i for X_j is

$$P_e(X_i, X_j) = \sum_{j=1}^M \operatorname{Res}_{w=\imath a_j} \left(\frac{-1}{w + \imath/2} \prod_{m=1}^M \left(\frac{1+\alpha}{\alpha^2 (1-d_m^2)(w^2 + a_m^2)} \right) \right)$$

where $\alpha = \rho T/M$, $a_j^2 = 1/4 + (1 + \alpha)/(\alpha^2(1 - d_j^2))$ and $1 \ge d_1 \ge d_2 \cdots \ge d_m$ are the singular values³ of $X_j^* X_i$. The product omits the terms where $d_m = 1$.

Theorem (Cuevas-Santamaria-T)

$$P_{e}(X_{i}, X_{j}) = \frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \prod_{m=1}^{M} \left(1 + \frac{\alpha^{2}(1 - d_{m}^{2})}{4(1 + \alpha)\cos^{2}\theta} \right)^{-N} \mathrm{d}\theta$$

³the cosines of the principal angles between the subspaces $[X_i]$ and $[X_j]$ Vit Tuček

Towards codebook criteria – pairwise error

For $\rho \rightarrow 0$ we have

$$P_e(X_i, X_j) = 1/2 - \frac{T\sqrt{N}d_{ch}(X_i, X_j)}{4M} + o(\rho)$$

Chordal criterion

$$\mathcal{C}_{ch} = rg\max_{\mathcal{C}} \min_{X_i
eq X_j \in \mathcal{C}} d_{ch}(X_i, X_j)$$

Towards codebook criteria – pairwise error

For $\rho \to \infty$ we have

$$\lim_{\rho \to \infty} \rho^{MN} P_e(X_i, X_j) = \frac{1}{2} \left(\frac{4M}{T}\right)^N M \frac{(2NM-1)!!}{(2NM)!!} \prod_{m=1}^M (1-d_m^2)^{-N}$$

Coherence criterion

$$\mathcal{C}_{coh} = \arg \max_{\mathcal{C}} \min_{X_i
eq X_j \in \mathcal{C}} \det(1_M - X_i^* X_j X_j^* X_i)^{\Lambda}$$

Union bound criterion

$$\mathcal{C}_{UB} = \operatorname*{arg\,min}_{\mathcal{C}} \sum_{i < j} \det(\mathbb{1}_M - X_i^* X_j X_j^* X_i)^{-N}$$

Section 3

Constellations of subspaces

Constellation design - numerical optimization

- Start with random constellation of the given number K of points.
- At each iteration, for each point X_k find the L "closest points" and move X_k away from its neighbors.

Works nice but we want
$$|C| = 2^B$$
...

GrassLattice

We can efficiently construct & detect on rectangular grids.

Problem

Can we map such a grid invertibly into the Grassmannian so that it is near optimal wrt our cost functions?

GrassLattice (M = 1)

() Take the unit hypercube in $\mathbb{R}^{2(T-1)}$ and map¹ it through

$$(a_1, \ldots, a_n, b_1, \ldots, b_{T-1}) \mapsto (z_i = F^{-1}(a_i) + \imath F^{-1}(b_i))_{i=1}^{T-1} \in \mathbb{C}^{T-1}$$

3 Map the $\mathbb{CN}(0, 1_{T-1})$ -distributed vector $z \in \mathbb{C}^{T-1}$ to the unit disc by

$$z\mapsto w=zf(\|z\|)$$

where $f(r) = \frac{1}{r} \left(1 - \exp(-t^2) \sum_{k=0}^{T-2} \frac{r^2 k}{k!} \right)^{1/2(T-1)}$ (it makes w is uniformly distributed in the unit disc $B(0,1) \in \mathbb{C}^n$)

Map w to the Grassmannian by

$$w\mapsto (\sqrt{1-|w|^2},w)$$

 $^{{}^{1}}F$ is the distribution function of $\mathcal{N}(0,1/2)$

GrassLattice (M = 1) in pictures

GrassLattice (M = 1) in pictures

GrassLattice (M = 1) in pictures

GrassLattice (M = 1) – the other chart?

We can alternatively use $w \mapsto (w, \sqrt{1 - |w|^2})$ and get twice as many points if we shrink the lattice and rotate one chart

What rotations should one choose for T > 2?

GrassLattice for M > 1?

The last map $w \mapsto (\sqrt{1 - |w|^2}, w)$ is actually not just measure preserving but even symplectomorphism.

For general M, the map

$$W \mapsto \begin{pmatrix} \sqrt{1_M - W^*W} \\ W \end{pmatrix}$$

is also symplectomorphism map into Gr(M, T) from the set of matrices where the square root is well defined:

$$\{ W \in \mathbb{C}^{(au - M) imes M} \, | \, \| W \|_{op} < 1 \}$$
 (Cartan domain of type I)

GrassLattice for M > 1?

Problem

Let D be a Cartan symmetric domain of type I.

Can we explicitely map a unit hypercube into D in a measure-preserving way?

Given $B \in \mathbb{N}$, can we efficiently construct 2^B points in D so that the resulting subspace constellation is close to optimal?

Finite group constellations

Given a finite subgroup $G \leq U(T)$ and a basepoint $[B] \in Gr(M, T)$ we can consider its orbit as a constellation

 $\mathcal{C}_{G,B} = \{[gB] \,|\, g \in G\}$

- basepoint matters
- generically |C_{G,B}| = |G| but smaller orbits can be also useful

Example [Pitaval, Tirkkonen]

The following basepoint is optimal for two dimensional representation of the dihedral group D_8 giving rise to a constellation of 8 points on $\mathbb{C}P^1$.

$$\begin{pmatrix} \cos\frac{1}{4}\arccos(\frac{3}{7}-\frac{6\sqrt{2}}{7})\\ \left(\frac{1}{2^{1/4}}+i\sqrt{1-\frac{1}{\sqrt{2}}}\right)\sin\frac{1}{4}\arccos(\frac{3}{7}-\frac{6\sqrt{2}}{7}) \end{pmatrix}$$

Finite group constellations - finding good basepoint

- Instead of optimizing over $\prod_{k=1}^{K} Gr(M, T)$ we optimize just over Gr(M, T).
- Our cost functions are U(T)-invariant which reduces the evaluation complexity from K^2 to K:

 $\{d_{ch}([g_iB], [g_jB]) | (g_i, g_j) \in G\} = \{d_{ch}([gB], [B]) | g \in G\}$

• Further simplifications:

Criteria for group-based constellations

$$\mathcal{C}_{ch} \longleftarrow \arg\min_{[B] \in Gr(M,T)} \max_{g \in G} \operatorname{Tr}[(B^*gB)(B^*g^{-1}B)]$$
$$\mathcal{C}_{UB} \longleftarrow \arg\min_{[B] \in Gr(M,T)} \sum_{g \in G} \det[1_M - (B^*gB)(B^*g^{-1}B)]^{-N}$$

Detection for abelian subgroups

Detection for abelian subgroups

Detection for abelian subgroups

Finite group constellations - advantages

- encoding and storage: $G = \{g_1^{i_1} \cdots g_k^{i_k} \mid i_j = 1, \dots, N_j\} \text{ and } k \sim \log |G|$
- for each group one gets constellation for any Grassmannian (add transmit antennas = store one more basepoint)
- some provably optimal constellations are of this type (see e.g. Conway et al)

Finite group constellations – performance

Percentage of bound attained

Finite group constellations – obstacles

Problem

Which subgroups should we choose?

For our applications we could in principle just numerically explore finite subgroups of U(T) for $T \le 10$, but classification of finite subgroups of U(T) is known only for $T \le 4$

Finite group constellations – obstacles

Theorem (Jordan)

There exists a real function f such that every finite subgroup of $GL_d(\mathbb{C})$ has a normal Abelian subgroup of index bounded by f(d).

f(d) = (d + 1)! for $d \ge 71$

Finite group constellations – group approximability

Let $\epsilon > 0$. Consider a metric group G with a left-invariant distance function. We say that G is ϵ -approximable if there exists a finite subset $H \subset G$ and with its own group law \circ_H such that

• For each $g \in G$ there exists a point in H of distance at most ϵ .

2 For each $a, b \in H$ we have $d(a \circ_G b, a \circ_H b) \leq \epsilon$.

Group G is approximable if it is ϵ -approximable for any $\epsilon > 0$.

Finite group constellations – obstacles

Theorem (Turing)

- If a metric group is approximable and has a faithfull representation in GL(ℂ, d), then it is approximable by groups which also have faithful degree d linear representations.
- **2** If a Lie group is approximable, then it is compact and abelian.

Thank you!