Conformal Killing trajectories on conformal Riemannian sphere

Lenka Zalabová

joint work with Jan Gregorovič, Josef Šilhan and Vojtěch Žádník

We study flows of conformal Killing fields and we ask whether they are conformal circles or helices.

- ightharpoonup Conformal Riemannian structure on a smooth manifold M of dimension n is a class of Riemannian metrics that differ by a multiple of an everywhere positive function.
- *Conformal Killing fields* are infinitesimal symmetries of the conformal structure.
- $ightharpoonup Model conformal manifold admitting the most conformal symmetries is the sphere <math>S^n$ with the conformal class represented by the standard round metric.
- → The Lie algebra of conformal Killing fields is isomorphic to

$$\mathfrak{g} = \mathfrak{so}(n+1,1)$$

and for general element we write

$$K = \begin{pmatrix} a & Z & 0 \\ X & A & -Z^t \\ 0 & -X^t & -a \end{pmatrix},$$

where $X, Z^t \in \mathbb{R}^n$, $a \in \mathbb{R}$ and $A \in \mathfrak{so}(n)$. In this notation, the grading of \mathfrak{g} is according to the diagonal, where $\mathfrak{g}_{-1} \simeq \mathbb{R}^n$ is below the diagonal.

- ightharpoonup As a homogeneous space, $S^n \cong G/P$, where we consider G = O(n+1,1) as the principal group and $P \subset G$ its Poincaré subgroup.
- ightharpoonup Each $K \in \mathfrak{so}(n+1,1)$ corresponds to a section of adjoint tractor bundle

$$\mathbf{K} = \mathrm{Ad}_{q^{-1}}(X), \quad g \in SO(n+1,1)$$

We focus on flows of conformal Killing fields.

→ We consider key conformal invariants associated to a flow of a conformal Killing field as follows:

$$\alpha_1 = -\frac{\operatorname{proj} \mathbf{K}^4}{\operatorname{proj} \mathbf{K}^2}, \quad \alpha_2 = \frac{\operatorname{proj} \mathbf{K}^6}{\operatorname{proj} \mathbf{K}^2}, \quad \alpha_3 = -\frac{\operatorname{proj} \mathbf{K}^8}{\operatorname{proj} \mathbf{K}^2}, \quad \dots$$

Here proj denotes the projection to left-bottom position in the matrix (as K^{2k} can be viewed as an element of $S^2\mathbb{R}^{n+2}$).

- ⇒ Note that the first non-trivial quantity changes under a reparametrization of the curve.
- ⇒ Its vanishing determines a preferred family of parametrizations with freedom given by the projective group of the line (projective parameter).

Consider Hankel matrices

$$H_r^{odd} := \begin{pmatrix} 0 & -1 & \alpha_1 \\ -1 & \alpha_1 & -\alpha_2 \\ \alpha_1 & -\alpha_2 & \alpha_3 \\ & & \ddots \\ & & & \alpha_{2r-3} \end{pmatrix},$$

$$H_r^{even} := \begin{pmatrix} 1 & -\alpha_1 & \alpha_2 \\ -\alpha_1 & \alpha_2 & -\alpha_3 \\ \alpha_2 & -\alpha_3 & \alpha_4 \\ & & \ddots \\ & & & \alpha_{2r-2} \end{pmatrix}$$

and denote

$$h_r^{odd} := \det(H_r^{odd}), \quad h_r^{even} := \det(H_r^{even}).$$

→ There is a sequence of natural relative conformal invariants of the curve given by

$$\Delta_j = \begin{cases} h_i^{odd} \cdot h_i^{even}, & \text{for } j = 2i, \\ h_{i+1}^{odd} \cdot h_i^{even}, & \text{for } j = 2i + 1. \end{cases}$$

→ They then provide the absolute conformal invariants, the conformal curvatures of the curve, by

$$\kappa_{i} = \begin{cases} -\frac{1}{2}(-\Delta_{4})^{-\frac{5}{2}} \left(\alpha_{1} \Delta_{4}^{2} - \frac{1}{2}\Delta_{4}\Delta_{4}'' + \frac{9}{16}\Delta_{4}'^{2}\right), & \text{for } i = 1, \\ -(-\Delta_{4})^{-\frac{1}{4}} \left(\Delta_{i+1}\Delta_{i+3}\right)^{\frac{1}{2}} \Delta_{i+2}^{-1}, & \text{for } i = 2, \dots, n-1. \end{cases}$$

These invariants allow us to recognize nicely conformal circles and helices.

- → conformal circles ... all conformal curvatures vanish,
- $ightharpoonup conformal helices ... the first conformal curvature <math>\kappa_1$ is constant and all others vanish.
- \rightarrow The behavior of invariants along all flows depends only on the Adjoint G-orbit of K.
- → These orbits can be classified in terms of normal forms, i.e. uniquely chosen representatives of non-zero adjoint orbits in \mathfrak{g} , according to [2, items 13–16 in table III].
- → The number of orbits grows according to the dimension.
- → We illustrate the principles in dimension 3 and 4.

Dimension 3

The normal representatives take form as follows, where where a,b,c>0

$$K_{3} = \begin{pmatrix} \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & -b & \cdot & \cdot \\ \cdot & b & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \end{pmatrix}, \quad K_{4} = \begin{pmatrix} \cdot & \cdot & \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & -b & \cdot \\ \cdot & \cdot & b & \cdot & \cdot \\ \cdot & \cdot & -b & \cdot & \cdot \\ \cdot & \cdot & \cdot & -b & \cdot \\ \cdot & \cdot & \cdot & -b & \cdot \\ \cdot & \cdot & \cdot & -b & \cdot \\ \cdot & \cdot & b & \cdot & \cdot \\ \cdot & \cdot & b & \cdot & \cdot \\ \cdot & -c & \cdot & \cdot \end{pmatrix},$$

In the following summary, invariants α start by first in order and Δ start by fourth in order (first non-trivial), and * denotes that the first one is non-constant.

type	lpha's	Δ 's	zeros	remark
K_1	0	0	1 point	translation
K_2	$-a^2, a^4, -a^6, \dots$	0	2 points	homothety
K_3	b^2, b^4, b^6, \dots	0	line	rotation
K_6	c^2, c^4, c^6, \dots	0	none	$b = \frac{c}{\sqrt{2}}$
K_4	*	*	1 point	
K_5	*	*	2 points	
K_6	*	*	none	$b \neq \frac{c}{\sqrt{2}}$

- → Let us emphasize that there is no element for which $\Delta_4 \neq 0$ and $\Delta_5 = 0$ everywhere.
- \rightarrow Note that orbits in the first part have vanishing κ_1 and orbits in the second part have non-constant κ_1 .

Dimension 4

→ All orbits from above table appear, one only has to add a zero row and column to an appropriate position.

There is an additional orbit, where where a, b, c > 0

$$K_7 = \begin{pmatrix} a & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & -b & \cdot & \cdot & \cdot \\ \cdot & b & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & -c & \cdot \\ \cdot & \cdot & \cdot & c & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & -a \end{pmatrix}$$

- \rightarrow Invariants α , Δ , κ for this orbit are non-constant for all possible a, b, c except the case b = c.
- \rightarrow In the case b=c, invariants take form

$$\alpha_{1} = -(a - c)(a + c),$$

$$\alpha_{2} = a^{4} - a^{2}c^{2} + c^{4},$$

$$\alpha_{3} = -(a - c)(a + c)(a^{4} + c^{4}),$$

$$\cdots$$

$$\Delta_{4} = -a^{2}c^{2},$$

$$\Delta_{5} = 0,$$

$$\cdots$$

$$\kappa_{1} = \frac{(a - c)^{2}(a + c)^{2}}{4a^{2}c^{2}},$$

$$\kappa_{2} = 0.$$

Theorem 1.

- \longrightarrow On the conformal sphere of dimension 3, all flow lines of Killing fields are conformal circles for K_1, K_2, K_3 and K_6 for $b = \frac{c}{\sqrt{2}}$ and there are no Killing fields with all flows conformal spirals.
- ightharpoonup On the conformal sphere of dimension 4, all flow lines of Killing fields are conformal circles for K_1, K_2, K_3 and K_6 for $b = \frac{c}{\sqrt{2}}$ and flow lines of Killing fields are conformal spirals for K_7 for b = c.

REFERENCES

- $[1] \ \ T.\ N.\ Bailey\ and\ M.\ G.\ Eastwood.\ Conformal\ circles\ and\ parametrizations\ of\ curves\ in\ conformal\ manifolds.\ Proceedings\ of\ the\ American\ Mathematical\ Society,\ 108(I):215\ -\ 221,\ 1990$
- [2] D. Djokovič, J. Patera, P. Winternitz, and H. Zassenhaus. Normal forms of elements of classical real and complex Lie and Jordan algebras. J. Math. Phys., 24(6):1363-1374, 1982.
- [3] J. Šilhan and V. Žádník, Conformal theory of curves with tractors. J. Math. Anal. Appl., 473(1):112=140, 2019