Variational characterization of circles in low dimensions

Josef Šilhan (joint with M. Dafinger)

Masaryk University, Brno, Czech Republic

43th Winter School "Geometry and Physics", Srní, 14.1.2023

Plan

- Variational problem for circles in \mathbb{R}^{n}
- Inverse problem and its solution in dim 3

Variational problem for circles in \mathbb{R}^{n}
nverse problem and its solution in dim 3

Curves in \mathbb{R}^{n}

- Let $X(t): I \rightarrow \mathbb{R}^{n}$ be a parametrized curve on some interval I. Its velocity vector, acceleration vector etc. are denoted by

$$
U=X^{\prime}=\frac{d}{d t} X, \quad U^{\prime}=X^{\prime \prime}=\frac{d^{2}}{d t^{2}} X, \quad U^{\prime \prime}=\frac{d^{3}}{d t^{3}} X
$$

where ()$^{\prime}=\frac{d}{d t}=U^{r} \nabla_{r}()$. Here $\nabla_{a}=\frac{\partial}{\partial x^{a}}$ is the Levi-Civita connection of the Euclidean metric.

- Variational approach: given a Lagrangian
find extremal curves - or just critical curves - of the integral
among all curves with fixed endpoints $X\left(t_{i}\right)$ and derived vectors $U^{(j)}\left(t_{i}\right)$ at endpoints, $0 \leq j \leq k$.
- If the integral $\int_{t_{1}}^{t_{2}} \mathcal{L} d t$ is independent on reparametrization, then any reparametrization of a critical curve is again critical.

Curves in \mathbb{R}^{n}

- Let $X(t): I \rightarrow \mathbb{R}^{n}$ be a parametrized curve on some interval I. Its velocity vector, acceleration vector etc. are denoted by

$$
U=X^{\prime}=\frac{d}{d t} X, \quad U^{\prime}=X^{\prime \prime}=\frac{d^{2}}{d t^{2}} X, \quad U^{\prime \prime}=\frac{d^{3}}{d t^{3}} X
$$

where ()$^{\prime}=\frac{d}{d t}=U^{r} \nabla_{r}()$. Here $\nabla_{a}=\frac{\partial}{\partial x^{a}}$ is the Levi-Civita connection of the Euclidean metric.

- Variational approach: given a Lagrangian

$$
\mathcal{L}=\mathcal{L}\left(t, X, U, U^{\prime}, \ldots, U^{(k)}\right): I \rightarrow \mathbb{R}
$$

find extremal curves - or just critical curves - of the integral

$$
\int_{t_{1}}^{t_{2}} \mathcal{L} d t, \quad I=\left[t_{1}, t_{2}\right]
$$

among all curves with fixed endpoints $X\left(t_{i}\right)$ and derived vectors $U^{(j)}\left(t_{i}\right)$ at endpoints, $0 \leq j \leq k$.

Curves in \mathbb{R}^{n}

- Let $X(t): I \rightarrow \mathbb{R}^{n}$ be a parametrized curve on some interval I. Its velocity vector, acceleration vector etc. are denoted by

$$
U=X^{\prime}=\frac{d}{d t} X, \quad U^{\prime}=X^{\prime \prime}=\frac{d^{2}}{d t^{2}} X, \quad U^{\prime \prime}=\frac{d^{3}}{d t^{3}} X
$$

where ()$^{\prime}=\frac{d}{d t}=U^{r} \nabla_{r}()$. Here $\nabla_{a}=\frac{\partial}{\partial x^{a}}$ is the Levi-Civita connection of the Euclidean metric.

- Variational approach: given a Lagrangian

$$
\mathcal{L}=\mathcal{L}\left(t, X, U, U^{\prime}, \ldots, U^{(k)}\right): I \rightarrow \mathbb{R}
$$

find extremal curves - or just critical curves - of the integral

$$
\int_{t_{1}}^{t_{2}} \mathcal{L} d t, \quad I=\left[t_{1}, t_{2}\right]
$$

among all curves with fixed endpoints $X\left(t_{i}\right)$ and derived vectors $U^{(j)}\left(t_{i}\right)$ at endpoints, $0 \leq j \leq k$.

- If the integral $\int_{t_{1}}^{t_{2}} \mathcal{L} d t$ is independent on reparametrization, then any reparametrization of a critical curve is again critical.

Curves in \mathbb{R}^{n} and variationality

- Which families of curves are variational in the sense that they form the family of critical curves of suitable \mathcal{L} ? And what is the lowest order for such \mathcal{L} ?
- This is generally a difficult question
- Classical example - straight lines are variational:
- $\mathcal{L}=\langle U, U\rangle \leadsto$ energy functional (not parametrization invariant)
- $\mathcal{L}=\langle U, U\rangle^{1 / 2} \leadsto$ length functional (parametrization invariant)
- Our problem: is the family of all circles - or of all conformal circles - variational? If so, what is the lowest order Lagrangian?
- find the required Lagrangian (optimally parametrization invariant)
- or show its nonexistence

Curves in \mathbb{R}^{n} and variationality

- Which families of curves are variational in the sense that they form the family of critical curves of suitable \mathcal{L} ? And what is the lowest order for such \mathcal{L} ?
- This is generally a difficult question
- Classical example - straight lines are variational:
- $\mathcal{L}=\langle U, U\rangle \leadsto$ energy functional (not parametrization invariant)
- $\mathcal{L}=\langle U, U\rangle^{1 / 2} \leadsto$ length functional (parametrization invariant)
- Our problem: is the family of all circles - or of all conformal circles - variational? If so, what is the lowest order Lagrangian?
- find the required Lagrangian (optimally parametrization invariant)
- or show its nonexistence

A suprising answer in dimension 3

- The usual torsion τ of curves (more or less) solves the problem on \mathbb{R}^{3} with parametrizarion independent Lagrangian,

$$
\mathcal{L}=\tau\left(U, U^{\prime}, U^{\prime \prime}\right)\langle U, U\rangle^{1 / 2}=\frac{\epsilon\left(U, U^{\prime} U^{\prime \prime}\right)}{G\left(U, U^{\prime}\right)}\langle U, U\rangle^{1 / 2}
$$

where $G\left(U, U^{\prime}\right)$ is the Gramm matrix of U and U^{\prime} :

- critical curves are exactly all circles in \mathbb{R}^{3} (but not straight lines)
- a geometrical explanation is unclear
- N. Thamwattana, J.A. McCoy, J.M. Hill. Energy density functions for protein structures, Q. J. Mech. Appl. Math. 61(3):431451 (2008).
- But is this the lowest order Lagrangian for circles in \mathbb{R}^{3} ?
- No.

Differential equations for circles

- Circles are characterized by constant curvatuture κ and zero torsion τ. Including also straight lines, we have two ODEs

$$
\kappa=\left(\frac{G\left(U, U^{\prime}\right)}{\langle U, U\rangle^{3}}\right)^{\frac{1}{2}} \in \mathbb{R} \quad \text { and } \quad U^{\prime \prime} \in \operatorname{span}\left\{U, U^{\prime}\right\}
$$

Put $u=\sqrt{\langle U, U\rangle}$. Expanding the latter condition, we obtain the system of n ODEs

$$
\underbrace{U^{\prime \prime}+u^{-2}\left[-\left\langle U, U^{\prime \prime}\right\rangle+3 u^{-2}\left\langle U, U^{\prime}\right\rangle^{2}\right] U-3 u^{-2}\left\langle U, U^{\prime}\right\rangle U^{\prime}}_{E\left(U, U^{\prime}, U^{\prime \prime}\right)}=0
$$

- There are many other systems of ODEs $\bar{E}_{a}=0$ characterizing (conformal) parameter-independent circles. BUT the system $E_{a}=0$ is in a suitable sense nondegeretare $\sim \bar{E}_{a}=0$ has the form

Differential equations for circles

- Circles are characterized by constant curvatuture κ and zero torsion τ. Including also straight lines, we have two ODEs

$$
\kappa=\left(\frac{G\left(U, U^{\prime}\right)}{\langle U, U\rangle^{3}}\right)^{\frac{1}{2}} \in \mathbb{R} \quad \text { and } \quad U^{\prime \prime} \in \operatorname{span}\left\{U, U^{\prime}\right\}
$$

Put $u=\sqrt{\langle U, U\rangle}$. Expanding the latter condition, we obtain the system of n ODEs

$$
\underbrace{U^{\prime \prime}+u^{-2}\left[-\left\langle U, U^{\prime \prime}\right\rangle+3 u^{-2}\left\langle U, U^{\prime}\right\rangle^{2}\right] U-3 u^{-2}\left\langle U, U^{\prime}\right\rangle U^{\prime}}_{E\left(U, U^{\prime}, U^{\prime \prime}\right)}=0 .
$$

- There are many other systems of ODEs $\bar{E}_{a}=0$ characterizing (conformal) parameter-independent circles. BUT the system $E_{a}=0$ is in a suitable sense nondegeretare $\sim \bar{E}_{a}=0$ has the form

$$
\bar{E}_{a}=M^{r}{ }_{a} E_{r} \quad \text { for a multiplier } \quad M_{a}^{b}=M_{a}^{b}\left(t, X, U, U^{\prime}, U^{\prime \prime}\right) .
$$

Variational problem for circles in \mathbb{R}^{7}

Inverse problem and its solution in dim 3

Variational equations for circles

- Variationality of the system $\bar{E}_{a}=0$ means it is the Euler-Lagrange equation of a Lagrangian

$$
\mathcal{L}=\mathcal{L}\left(t, X, U, U^{\prime}, U^{\prime \prime}\right)
$$

i.e. it has the form

$$
\bar{E}_{a}=\frac{\partial \mathcal{L}}{\partial X_{a}}-\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial U_{a}}+\frac{d^{2}}{d t^{2}} \frac{\partial \mathcal{L}}{\partial U_{a}^{\prime}}-\frac{d^{3}}{d t^{3}} \frac{\partial \mathcal{L}}{\partial U_{a}^{\prime \prime}}=0 .
$$

- Equations of this form are characterized by Helmholtz conditions

Variational equations for circles

- Variationality of the system $\bar{E}_{a}=0$ means it is the Euler-Lagrange equation of a Lagrangian

$$
\mathcal{L}=\mathcal{L}\left(t, X, U, U^{\prime}, U^{\prime \prime}\right)
$$

i.e. it has the form

$$
\bar{E}_{a}=\frac{\partial \mathcal{L}}{\partial X_{a}}-\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial U_{a}}+\frac{d^{2}}{d t^{2}} \frac{\partial \mathcal{L}}{\partial U_{a}^{\prime}}-\frac{d^{3}}{d t^{3}} \frac{\partial \mathcal{L}}{\partial U_{a}^{\prime \prime}}=0 .
$$

- Equations of this form are characterized by Helmholtz conditions

$$
\begin{aligned}
& \frac{\partial \bar{E}_{a}}{\partial X^{b}}-\frac{\partial \bar{E}_{b}}{\partial X^{a}}-\frac{1}{2} \frac{d}{d t}\left(\frac{\partial \bar{E}_{a}}{\partial U^{b}}-\frac{\partial \bar{E}_{b}}{\partial U^{a}}\right)+\frac{1}{4} \frac{d^{3}}{d t^{3}}\left(\frac{\partial \bar{E}_{a}}{\partial U^{\prime \prime b}}-\frac{\partial \bar{E}_{b}}{\partial U^{\prime \prime a}}\right)=0, \\
& \frac{\partial \bar{E}_{a}}{\partial U^{b}}+\frac{\partial \bar{E}_{b}}{\partial U^{a}}-\frac{d}{d t}\left(\frac{\partial \bar{E}_{a}}{\partial U^{\prime b}}+\frac{\partial \bar{E}_{b}}{\partial U^{\prime a}}\right)=0, \\
& \frac{\partial \bar{E}_{a}}{\partial U^{\prime b}}-\frac{\partial \bar{E}_{b}}{\partial U^{\prime a}}-\frac{3}{2} \frac{d}{d t}\left(\frac{\partial \bar{E}_{a}}{\partial U^{\prime \prime b}}-\frac{\partial \bar{E}_{b}}{\partial U^{\prime \prime a}}\right)=0, \\
& \frac{\partial \bar{E}_{a}}{\partial U^{\prime \prime b}}+\frac{\partial \bar{E}_{b}}{\partial U^{\prime \prime a}}=0 .
\end{aligned}
$$

Helmholtz conditions in low dimensions

- We need to find (or to prove nonexistence) of a multiplier $M^{b}{ }_{a}$ such that $\bar{E}_{a}=M^{r}{ }_{a} E_{r}$ satisfies Helmholtz conditions. This is generally extremely difficult.
- Our setup: assume $M^{b}{ }_{a}=M^{b}{ }_{a}\left(t, X, U, U^{\prime}\right)$. Then the simplest Helmholtz condition simplifies the problem significantly in low dimensions:
- Dimension $n=2$: such multpilier does not exist \leadsto (conformal) circles in the plane are not variational as unparametrized curves. - Dimension $n=3$: the multiplier has the form
where $\epsilon_{a b c}$ is the Euclidean volume form on \mathbb{R}^{3}. It remains to determine the function φ

Helmholtz conditions in low dimensions

- We need to find (or to prove nonexistence) of a multiplier $M^{b}{ }_{a}$ such that $\bar{E}_{a}=M^{r}{ }_{a} E_{r}$ satisfies Helmholtz conditions. This is generally extremely difficult.
- Our setup: assume $M^{b}{ }_{a}=M^{b}{ }_{a}\left(t, X, U, U^{\prime}\right)$. Then the simplest Helmholtz condition simplifies the problem significantly in low dimensions:
- Dimension $n=2$: such multpilier does not exist \leadsto (conformal) circles in the plane are not variational as unparametrized curves.
- Dimension $n=3$: the multiplier has the form

$$
M_{a}^{b}=\varphi U^{r} \epsilon_{r}{ }^{b}{ }_{a}, \quad \varphi=\varphi\left(t, X, U, U^{\prime}\right)
$$

where $\epsilon_{a b c}$ is the Euclidean volume form on \mathbb{R}^{3}. It remains to determine the function φ.

- Dimension $n \geq 4$: unclear.

Helmholtz conditions in low dimensions

- We need to find (or to prove nonexistence) of a multiplier $M^{b}{ }_{a}$ such that $\bar{E}_{a}=M^{r}{ }_{a} E_{r}$ satisfies Helmholtz conditions. This is generally extremely difficult.
- Our setup: assume $M^{b}{ }_{a}=M^{b}{ }_{a}\left(t, X, U, U^{\prime}\right)$. Then the simplest Helmholtz condition simplifies the problem significantly in low dimensions:
- Dimension $n=2$: such multpilier does not exist \leadsto (conformal) circles in the plane are not variational as unparametrized curves.
- Dimension $n=3$: the multiplier has the form

$$
M_{a}^{b}=\varphi U^{r} \epsilon_{r}{ }^{b}{ }_{a}, \quad \varphi=\varphi\left(t, X, U, U^{\prime}\right)
$$

where $\epsilon_{a b c}$ is the Euclidean volume form on \mathbb{R}^{3}. It remains to determine the function φ.

- Dimension $n \geq 4$: unclear.
— Remaining Helmholtz cond's for $n=3 \leadsto \varphi$ is a constant.

Lagrangian for (conformal) circles in $\mathbb{R}^{3} \mathrm{I}$.

- We found the variational system of ODEs

$$
\bar{E}_{a}=\epsilon\left(U, U^{\prime \prime},-\right)_{a}-3 u^{2}\left\langle U, U^{\prime}\right\rangle \epsilon\left(U, U^{\prime},--\right)_{a}=0
$$

for (conformal) unparametrized circles in \mathbb{R}^{3}.

- What is the corresponding Lagrangian $\mathcal{L}=\mathcal{L}\left(t, X, U, U^{\prime}\right)$? The answer starts with the Vainberg-Tonti formula

for any $V \in \mathbb{R}^{3}$
- the case $V=0$ is the usual Vainberg-Tonti formula but this
integral does not exist (it is infinite).
- we can modify the Lagrangian by total derivative term
- then the integration is managable by hand
- after sume other technicalities we obtain the result.

Lagrangian for (conformal) circles in $\mathbb{R}^{3} \mathrm{I}$.

- We found the variational system of ODEs

$$
\bar{E}_{a}=\epsilon\left(U, U^{\prime \prime},-\right)_{a}-3 u^{2}\left\langle U, U^{\prime}\right\rangle \epsilon\left(U, U^{\prime},--\right)_{a}=0
$$

for (conformal) unparametrized circles in \mathbb{R}^{3}.

- What is the corresponding Lagrangian $\mathcal{L}=\mathcal{L}\left(t, X, U, U^{\prime}\right)$? The answer starts with the Vainberg-Tonti formula

$$
\text { Lagrangian }:=\int_{0}^{1} \bar{E}\left(s U+V, s U^{\prime}, s U^{\prime \prime}\right)_{a} X^{a} d s
$$

for any $V \in \mathbb{R}^{3}$.

- the case $V=0$ is the usual Vainberg-Tonti formula but this integral does not exist (it is infinite).
- we can modify the Lagrangian by total derivative term
- then the integration is managable by hand
- after sume other technicalities we obtain the result.

Lagrangian for (conformal) circles in \mathbb{R}^{3} II.

- Assume $\|V\|=1$. After integration and further manipulation, we obtain

One can directly verify that solutions of the EL-equations are exactly conformal circles.

- We found two Lagrangians for (conformal) unparametrized circles in \mathbb{R}^{3} but both have sigularities:
- torsion τ excludes straight lines
- the Lagrangian \mathcal{L} excludes tangent directions - V
- Final comments/questions:
- is there a globally defined I agrangian for conformal circles?
- do we have something similar for non-flat metrics?
- what about higher dimensions?

Lagrangian for (conformal) circles in \mathbb{R}^{3} II.

- Assume $\|V\|=1$. After integration and further manipulation, we obtain

$$
\mathcal{L}:=\frac{\epsilon\left(V, U, U^{\prime}\right)}{\|U\|(\|U\|+\langle U, V\rangle)}
$$

One can directly verify that solutions of the EL-equations are exactly conformal circles.

- We found two Lagrangians for (conformal) unparametrized circles in \mathbb{R}^{3} but both have sigularities:
- torsion τ excludes straight lines
- the Lagrangian \mathcal{L} excludes tangent directions $-V$
- Final comments/questions:
- is there a globally defined I agrangian for conformal circles?
- do we have something similar for non-flat metrics?
- what about higher dimensions?

Lagrangian for (conformal) circles in \mathbb{R}^{3} II.

- Assume $\|V\|=1$. After integration and further manipulation, we obtain

$$
\mathcal{L}:=\frac{\epsilon\left(V, U, U^{\prime}\right)}{\|U\|(\|U\|+\langle U, V\rangle)}
$$

One can directly verify that solutions of the EL-equations are exactly conformal circles.

- We found two Lagrangians for (conformal) unparametrized circles in \mathbb{R}^{3} but both have sigularities:
- torsion τ excludes straight lines
- the Lagrangian \mathcal{L} excludes tangent directions -V
- Final comments/questions:
- is there a globally defined Lagrangian for conformal circles?
- do we have something similar for non-flat metrics?
- what about higher dimensions?

Lagrangian for (conformal) circles in \mathbb{R}^{3} II.

- Assume $\|V\|=1$. After integration and further manipulation, we obtain

$$
\mathcal{L}:=\frac{\epsilon\left(V, U, U^{\prime}\right)}{\|U\|(\|U\|+\langle U, V\rangle)}
$$

One can directly verify that solutions of the EL-equations are exactly conformal circles.

- We found two Lagrangians for (conformal) unparametrized circles in \mathbb{R}^{3} but both have sigularities:
- torsion τ excludes straight lines
- the Lagrangian \mathcal{L} excludes tangent directions -V
- Final comments/questions:
- is there a globally defined Lagrangian for conformal circles?
- do we have something similar for non-flat metrics?
- what about higher dimensions?

Thank you for your attention!

