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Curves in Rn 4
13

— Let X (t) : I → Rn be a parametrized curve on some interval I .
Its velocity vector, acceleration vector etc. are denoted by

U = X ′ = d
dtX , U ′ = X ′′ = d2

dt2
X , U ′′ = d3

dt3
X

where ( )′ = d
dt = U r∇r ( ). Here ∇a = ∂

∂xa is the Levi-Civita
connection of the Euclidean metric.

— Variational approach: given a Lagrangian

L = L(t,X ,U,U ′, . . . ,U(k)) : I → R,

find extremal curves – or just critical curves – of the integral∫ t2

t1

L dt, I = [t1, t2]

among all curves with fixed endpoints X (ti ) and derived vectors
U(j)(ti ) at endpoints, 0 ≤ j ≤ k .

— If the integral
∫ t2
t1
L dt is independent on reparametrization,

then any reparametrization of a critical curve is again critical.
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Curves in Rn and variationality 5
13

— Which families of curves are variational in the sense that they
form the family of critical curves of suitable L? And what is the
lowest order for such L?

I This is generally a difficult question

I Classical example – straight lines are variational:

I L = 〈U,U〉 ; energy functional (not parametrization invariant)
I L = 〈U,U〉1/2 ; length functional (parametrization invariant)

— Our problem: is the family of all circles – or of all conformal
circles – variational? If so, what is the lowest order Lagrangian?

I find the required Lagrangian (optimally parametrization invariant)
I or show its nonexistence
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A suprising answer in dimension 3 6
13

— The usual torsion τ of curves (more or less) solves the problem
on R3 with parametrizarion independent Lagrangian,

L = τ(U,U ′,U ′′)〈U,U〉1/2 = ε(U,U′U′′)
G(U,U′) 〈U,U〉

1/2

where G (U,U ′) is the Gramm matrix of U and U ′:

I critical curves are exactly all circles in R3 (but not straight lines)

I a geometrical explanation is unclear

I N. Thamwattana, J.A. McCoy, J.M. Hill. Energy density
functions for protein structures, Q. J. Mech. Appl. Math.
61(3):431451 (2008).

— But is this the lowest order Lagrangian for circles in R3?

I No.



Differential equations for circles 7
13

— Circles are characterized by constant curvatuture κ and zero
torsion τ . Including also straight lines, we have two ODEs

κ =
(
G(U,U′)
〈U,U〉3

)
1
2 ∈ R and U ′′ ∈ span{U,U ′}.

Put u =
√
〈U,U〉. Expanding the latter condition, we obtain the

system of n ODEs

U ′′ + u−2
[
−〈U,U ′′〉+ 3u−2〈U,U ′〉2

]
U − 3u−2〈U,U ′〉U ′︸ ︷︷ ︸

E(U,U′,U′′)

= 0.

— There are many other systems of ODEs E a = 0 characterizing
(conformal) parameter-independent circles. BUT the system
Ea = 0 is in a suitable sense nondegeretare ; E a = 0 has the form

E a = M r
aEr for a multiplier Mb

a = Mb
a(t,X ,U,U ′,U ′′).
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Variational equations for circles 9
13

— Variationality of the system E a = 0 means it is the
Euler-Lagrange equation of a Lagrangian

L = L(t,X ,U,U ′,U ′′),

i.e. it has the form

E a = ∂L
∂Xa
− d

dt
∂L
∂Ua

+ d2

dt2
∂L
∂U′

a
− d3

dt3
∂L
∂U′′

a
= 0.

— Equations of this form are characterized by Helmholtz
conditions

∂E a

∂X b − ∂Eb
∂X a − 1

2
d
dt

(
∂E a

∂Ub − ∂Eb
∂Ua

)
+ 1

4
d3

dt3

(
∂E a

∂U′′b − ∂Eb
∂U′′a

)
= 0,

∂E a

∂Ub + ∂Eb
∂Ua − d

dt

(
∂E a

∂U′b + ∂Eb
∂U′a

)
= 0,

∂E a

∂U′b − ∂Eb
∂U′a − 3

2
d
dt

(
∂E a

∂U′′b − ∂Eb
∂U′′a

)
= 0,

∂E a

∂U′′b + ∂Eb
∂U′′a = 0.
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Helmholtz conditions in low dimensions 10
13

— We need to find (or to prove nonexistence) of a multiplier Mb
a

such that E a = M r
aEr satisfies Helmholtz conditions. This is

generally extremely difficult.

— Our setup: assume Mb
a = Mb

a(t,X ,U,U ′). Then the simplest
Helmholtz condition simplifies the problem significantly in low
dimensions:

I Dimension n = 2: such multpilier does not exist ; (conformal)
circles in the plane are not variational as unparametrized curves.

I Dimension n = 3: the multiplier has the form

Mb
a = ϕU r εr

b
a, ϕ = ϕ(t,X ,U,U ′)

where εabc is the Euclidean volume form on R3. It remains to
determine the function ϕ.

I Dimension n ≥ 4: unclear.

— Remaining Helmholtz cond’s for n = 3 ; ϕ is a constant.
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Lagrangian for (conformal) circles in R3 I. 11
13

— We found the variational system of ODEs

E a = ε(U,U ′′, )a − 3u2〈U,U ′〉ε(U,U ′, )a = 0

for (conformal) unparametrized circles in R3.

— What is the corresponding Lagrangian L = L(t,X ,U,U ′)? The
answer starts with the Vainberg-Tonti formula

Lagrangian :=

∫ 1

0
E (sU + V , sU ′, sU ′′)aX

ads

for any V ∈ R3.

I the case V = 0 is the usual Vainberg-Tonti formula but this
integral does not exist (it is infinite).

I we can modify the Lagrangian by total derivative term
I then the integration is managable by hand
I after sume other technicalities we obtain the result.
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Lagrangian for (conformal) circles in R3 II. 12
13

— Assume ||V || = 1. After integration and further manipulation,
we obtain

L := ε(V ,U,U′)

||U||
(
||U||+〈U,V 〉

) .
One can directly verify that solutions of the EL-equations are
exactly conformal circles.

— We found two Lagrangians for (conformal) unparametrized
circles in R3 but both have sigularities:

I torsion τ excludes straight lines
I the Lagrangian L excludes tangent directions −V

— Final comments/questions:

I is there a globally defined Lagrangian for conformal circles?
I do we have something similar for non-flat metrics?
I what about higher dimensions?
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Thank you for your attention!
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