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Plan

— Variational problem for circles in R”

— Inverse problem and its solution in dim 3



|Variational problem for circles in R"|




Curves in R"

— Let X(t) : | — R" be a parametrized curve on some interval /.

Its velocity vector, acceleration vector etc. are denoted by

— — — _ &
fo’fdtx U'=X"= Px U= L

where () = & = U'V,( ). Here V, = W is the Levi-Civita
connection of the Euclidean metric.
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Curves in R"
— Let X(t) : | — R" be a parametrized curve on some interval /.
Its velocity vector, acceleration vector etc. are denoted by
RV, "o n__ d3
U=X = th U =X PX U = 25X
where () = & = U'V,( ). Here V, = W is the Levi-Civita
connection of the Euclidean metric.
— Variational approach: given a Lagrangian
L=L(t,X, U U, ..., U%): | >R,

find extremal curves — or just critical curves — of the integral

"t
/ Ldt, |=][t,t)]

among all curves with fixed endpoints X(t;) and derived vectors
uu )(t,) at endpoints, 0 < j < k.
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Curves in R"
— Let X(t) : | — R" be a parametrized curve on some interval /.
Its velocity vector, acceleration vector etc. are denoted by
RV " " d3
U=X = th U=X PX U = 25X
where () = & = U'V,( ). Here V, = 87 is the Levi-Civita
connection of the Euclidean metric.
— Variational approach: given a Lagrangian
L=L(t,X, U U, ..., U%): | >R,

find extremal curves — or just critical curves — of the integral

"t
/ Ldt, |=][t,t)]

among all curves with fixed endpoints X(t;) and derived vectors
uu )(t,) at endpoints, 0 < j < k.

— If the integral jt? L dt is independent on reparametrization,
then any reparametrization of a critical curve is again critical.
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Curves in R" and variationality

Sl

— Which families of curves are variational in the sense that they
form the family of critical curves of suitable £7? And what is the
lowest order for such L7?

» This is generally a difficult question

» Classical example — straight lines are variational:

» L = (U, U) ~ energy functional (not parametrization invariant)
» L = (U, U)'/? ~» length functional (parametrization invariant)



Curves in R" and variationality

Sl

— Which families of curves are variational in the sense that they
form the family of critical curves of suitable £7? And what is the
lowest order for such L7?

» This is generally a difficult question

» Classical example — straight lines are variational:

» L = (U, U) ~ energy functional (not parametrization invariant)
» L = (U, U)'/? ~» length functional (parametrization invariant)

— Our problem: is the family of all circles — or of all conformal
circles — variational? If so, what is the lowest order Lagrangian?

» find the required Lagrangian (optimally parametrization invariant)
» or show its nonexistence



A suprising answer in dimension 3

— The usual torsion 7 of curves (more or less) solves the problem
on R3 with parametrizarion independent Lagrangian,

L£=7(U, U, U") (U, U)? = {000 (U, U2

where G(U, U’) is the Gramm matrix of U and U":

» critical curves are exactly all circles in R3 (but not straight lines)
> a geometrical explanation is unclear

» N. Thamwattana, J.A. McCoy, J.M. Hill. Energy density
functions for protein structures, Q. J. Mech. Appl. Math.
61(3):431451 (2008).

— But is this the lowest order Lagrangian for circles in R3?

» No.
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Differential equations for circles

G~

— Circles are characterized by constant curvatuture x and zero
torsion 7. Including also straight lines, we have two ODEs

K= ( <EJQUL;,)>2 €R and U"” e span{U,U'}.

Put u = /(U, U). Expanding the latter condition, we obtain the
system of n ODEs

U" +u2[—(U, U") +3u" (U, U')?] U = 3u™%(U, U')U' = 0.

E(U,U',U)




Differential equations for circles

— Circles are characterized by constant curvatuture x and zero
torsion 7. Including also straight lines, we have two ODEs

K= ( d}/jugl))z €R and U"” e span{U,U'}.

Put u = /(U, U). Expanding the latter condition, we obtain the
system of n ODEs

U" +u2[—(U, U") +3u" (U, U')?] U = 3u™%(U, U')U' = 0.

E(U,U',U)

— There are many other systems of ODEs E, = 0 characterizing
(conformal) parameter-independent circles. BUT the system
E, = 0 is in a suitable sense nondegeretare ~» E,; = 0 has the form

E,= M",E, fora multiplier M°, = MP,(t, X, U, U, U").
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|Inverse problem and its solution in dim 3]




Variational equations for circles

— Variationality of the system E, = 0 means it is the
Euler-Lagrange equation of a Lagrangian

L=L(tX U U, U",

i.e. it has the form

a T 90X, dt 0U,

T _ 0L d oL d? oL d®> oL
E + dzav; — gwauy = 0
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Variational equations for circles

— Variationality of the system E, = 0 means it is the
Euler-Lagrange equation of a Lagrangian

L=L(tX U U, U",

i.e. it has the form
E oL dac+d20£ &> oL _ g

a2 U, ~ dBouy —

a T 90X, dt 0U,

— Equations of this form are characterized by Helmholtz
conditions
OFy _ OF, _ 1d(0E, OE,) 4 1d°(0E, _ DE,)
oXxPb oxa 2 dt \oub ou? ou’b ou’a
OE, , OE,  d (OE, , OEp\ _
8U?’ + t( Ua + ) =0,
(9Ea_aEb_§7( _ b)_O
QU — 9U= — 2dt\purb  aura) — Y
JE, OE
OUNb + aur?‘a

I
© o

=0,
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Helmholtz conditions in low dimensions

— We need to find (or to prove nonexistence) of a multiplier Mb,
such that E; = M",E, satisfies Helmholtz conditions. This is
generally extremely difficult.



Helmholtz conditions in low dimensions

— We need to find (or to prove nonexistence) of a multiplier M?,
such that E, = M’ ,E, satisfies Helmholtz conditions. This is
generally extremely difficult.

— Our setup: assume M?, = MP,(t, X, U, U’). Then the simplest
Helmholtz condition simplifies the problem significantly in low
dimensions:

» Dimension n = 2: such multpilier does not exist ~» (conformal)
circles in the plane are not variational as unparametrized curves.

> Dimension n = 3: the multiplier has the form
MP, = pU¢,b,, o= o(t, X, U, U)

where €. is the Euclidean volume form on R3. It remains to
determine the function ¢.

» Dimension n > 4: unclear.



Helmholtz conditions in low dimensions 1

— We need to find (or to prove nonexistence) of a multiplier Mb,
such that E; = M",E, satisfies Helmholtz conditions. This is
generally extremely difficult.

— Our setup: assume M?, = MP,(t, X, U, U’). Then the simplest
Helmholtz condition simplifies the problem significantly in low
dimensions:

» Dimension n = 2: such multpilier does not exist ~» (conformal)
circles in the plane are not variational as unparametrized curves.

> Dimension n = 3: the multiplier has the form
MP, = pU¢,b,, o= o(t, X, U, U)

where €. is the Euclidean volume form on R3. It remains to
determine the function ¢.

» Dimension n > 4: unclear.

— Remaining Helmholtz cond'’s for n = 3 ~» ¢ is a constant.



Lagrangian for (conformal) circles in R3 I.

— We found the variational system of ODEs
E,=e(U,U", ), =3u” (U, UNe(U, U, ), =0

for (conformal) unparametrized circles in R3.



Lagrangian for (conformal) circles in R3 I.

— We found the variational system of ODEs
E,=¢(U,U", ), —3u>(U, UNe(U, U, ), =0
for (conformal) unparametrized circles in R3.
— What is the corresponding Lagrangian £ = L(t, X, U, U")? The
answer starts with the Vainberg-Tonti formula

1
Lagrangian := / E(sU+ V,sU’,sU"),X?ds
Jo

for any V € R3,

» the case V = 0 is the usual Vainberg-Tonti formula but this
integral does not exist (it is infinite).

» we can modify the Lagrangian by total derivative term

> then the integration is managable by hand

» after sume other technicalities we obtain the result.



Lagrangian for (conformal) circles in R3 1.
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Lagrangian for (conformal) circles in R3 1. i

— Assume ||V/|| = 1. After integration and further manipulation,
we obtain
_ V)
ol (1ull+u,v))

One can directly verify that solutions of the EL-equations are
exactly conformal circles.



Lagrangian for (conformal) circles in R3 1. e

— Assume ||V/|| = 1. After integration and further manipulation,

we obtain
e(V,U,U")

ER{EAD R
One can directly verify that solutions of the EL-equations are
exactly conformal circles.
— We found two Lagrangians for (conformal) unparametrized

circles in R3 but both have sigularities:

> torsion 7 excludes straight lines
» the Lagrangian £ excludes tangent directions —V



Lagrangian for (conformal) circles in R3 1.

— Assume ||V/|| = 1. After integration and further manipulation,

we obtain
e(V,U,U")

ER{EAD R

One can directly verify that solutions of the EL-equations are
exactly conformal circles.
— We found two Lagrangians for (conformal) unparametrized
circles in R3 but both have sigularities:

> torsion 7 excludes straight lines

» the Lagrangian £ excludes tangent directions —V
— Final comments/questions:

> is there a globally defined Lagrangian for conformal circles?
» do we have something similar for non-flat metrics?
» what about higher dimensions?



Thank you for your attention!
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