(A Step) Toward a Classification of Conformal Hypersurface Invariants

S. Blitz
Masaryk University

Srní, 43rd Winter School, January 2023

Motivation

Story:

- Ph.D. work on extrinsic Paneitz operator, tractor holography, conformal geometry

Motivation

Story:

- Ph.D. work on extrinsic Paneitz operator, tractor holography, conformal geometry
■ Insufficient machinery \Rightarrow new invariants?

Motivation

Story:

- Ph.D. work on extrinsic Paneitz operator, tractor holography, conformal geometry
■ Insufficient machinery \Rightarrow new invariants? \Rightarrow conformal fundamental forms

Motivation

Story:

- Ph.D. work on extrinsic Paneitz operator, tractor holography, conformal geometry
■ Insufficient machinery \Rightarrow new invariants? \Rightarrow conformal fundamental forms

Ubiquitous appearances:

- Asymptotically Poincaré-Einstein structures
- Anomalies of renormalized volume

■ Willmore invariants
■ Dirichlet-Neumann maps

Motivation

Story:

- Ph.D. work on extrinsic Paneitz operator, tractor holography, conformal geometry
■ Insufficient machinery \Rightarrow new invariants? \Rightarrow conformal fundamental forms
Ubiquitous appearances:
- Asymptotically Poincaré-Einstein structures
- Anomalies of renormalized volume
- Willmore invariants

■ Dirichlet-Neumann maps
Q: Do conformal fundamental forms locally characterize extrinsic conformal hypersurface data?

Setup

Riemannian manifolds

Sam Blitz

Motivation
Setup
Definitions
Main Result
Future
Work
(M, g) smooth

Setup

Riemannian manifolds
(M, g) smooth

Weyl's classical invariant theory
\Rightarrow "natural" invariants built from $\left\{g, g^{-1}, \nabla, R\right\}$

Setup

Riemannian manifolds
(M, g) smooth

Weyl's classical invariant theory
\Rightarrow "natural" invariants built from $\left\{g, g^{-1}, \nabla, R\right\}$
(Broader notions of natural not used here, but maybe later!)

Setup

Riemannian hypersurfaces
$\Sigma \hookrightarrow(M, g)$ smooth

Setup

Riemannian hypersurfaces
$\Sigma \hookrightarrow(M, g)$ smooth

Natural invariants built from:

Setup

Riemannian hypersurfaces
$\Sigma \hookrightarrow(M, g)$ smooth

Natural invariants built from:

- Unit conormal \hat{n}

Setup

Riemannian hypersurfaces
$\Sigma \hookrightarrow(M, g)$ smooth

Motivation

Setup
Definitions
Main Result
Future
Work

Natural invariants built from:

- Unit conormal \hat{n}
- Second fundamental form II

Setup

Riemannian hypersurfaces
$\Sigma \hookrightarrow(M, g)$ smooth

Natural invariants built from:

- Unit conormal \hat{n}
- Second fundamental form II

■ "Bulk" invariants $\left.\right|_{\Sigma}$

Setup

Riemannian hypersurfaces
$\Sigma \hookrightarrow(M, g)$ smooth

Natural invariants built from:

- Unit conormal \hat{n}
- Second fundamental form II

■ "Bulk" invariants $\left.\right|_{\Sigma}$

$$
\Rightarrow\left\{\bar{g}, \bar{g}^{-1}, \hat{n},\left(\bar{\nabla}^{\ell} \Pi\right),\left.\left(\nabla^{m} R\right)\right|_{\Sigma}\right\} \quad \text { (Gover-Waldron) }
$$

Setup

Conformal manifolds

Sam Blitz

Motivation
Setup
Definitions
Main Result
Future
Work
(M, \boldsymbol{c}) smooth: $g, g^{\prime} \in \boldsymbol{c} \quad \Leftrightarrow \quad \exists \Omega \in C_{+}^{\infty} M$ s.t. $g^{\prime}=\Omega^{2} g$

Setup

Conformal manifolds

Sam Blitz

Motivation
Setup
Definitions
Main Result
Future Work
(M, \boldsymbol{c}) smooth: $g, g^{\prime} \in \boldsymbol{c} \quad \Leftrightarrow \quad \exists \Omega \in C_{+}^{\infty} M$ s.t. $g^{\prime}=\Omega^{2} g$

Conformal invariants \subset Riemannian invariants

Setup

Conformal manifolds
(M, \boldsymbol{c}) smooth: $g, g^{\prime} \in \boldsymbol{c} \quad \Leftrightarrow \quad \exists \Omega \in C_{+}^{\infty} M$ s.t. $g^{\prime}=\Omega^{2} g$

Conformal invariants \subset Riemannian invariants Which? Invariants $=$ densities: $\phi=[g ; f]=\left[\Omega^{2} g ; \Omega^{w} f\right]$

Setup

Conformal manifolds
(M, \boldsymbol{c}) smooth: $g, g^{\prime} \in \boldsymbol{c} \quad \Leftrightarrow \quad \exists \Omega \in C_{+}^{\infty} M$ s.t. $g^{\prime}=\Omega^{2} g$

Conformal invariants \subset Riemannian invariants
Which? Invariants $=$ densities: $\phi=[g ; f]=\left[\Omega^{2} g ; \Omega^{w} f\right]$
How to build them? Hard, but solved

Setup

Conformal manifolds
(M, \boldsymbol{c}) smooth: $g, g^{\prime} \in \boldsymbol{c} \quad \Leftrightarrow \quad \exists \Omega \in C_{+}^{\infty} M$ s.t. $g^{\prime}=\Omega^{2} g$

Conformal invariants \subset Riemannian invariants
Which? Invariants $=$ densities: $\phi=[g ; f]=\left[\Omega^{2} g ; \Omega^{w} f\right]$
How to build them? Hard, but solved \Rightarrow tractors, BGGs

Setup

Conformal hypersurfaces

Sam Blitz

$$
\Sigma \hookrightarrow(M, \boldsymbol{c}) \text { smooth }
$$

Setup

Conformal hypersurfaces

Sam Blitz

Motivation
Setup
Definitions
Main Result
Future Work
$\Sigma \hookrightarrow(M, \boldsymbol{c})$ smooth

Conf. hyp. invariants:
$\left\{\bar{g}, \bar{g}^{-1}, \hat{n},\left(\bar{\nabla}^{\ell} \Pi\right),\left.\left(\nabla^{m} R\right)\right|_{\Sigma}\right\}$

Setup

Conformal hypersurfaces

Sam Blitz

Motivation
Setup
Definitions
Main Result
Future Work
$\Sigma \hookrightarrow(M, \boldsymbol{c})$ smooth

Conf. hyp. invariants:
$\left\{\bar{g}, \bar{g}^{-1}, \hat{n},\left(\bar{\nabla}^{\ell} \Pi\right),\left.\left(\nabla^{m} R\right)\right|_{\Sigma}\right\} \leftarrow$ too big

Setup

Conformal hypersurfaces
$\Sigma \hookrightarrow(M, \boldsymbol{c})$ smooth

Conf. hyp. invariants:

$$
\left\{\bar{g}, \bar{g}^{-1}, \hat{n},\left(\bar{\nabla}^{\ell} \Pi\right),\left.\left(\nabla^{m} R\right)\right|_{\Sigma}\right\} \leftarrow \text { too big }
$$

Observation:

$$
\left\{\bar{g}, \bar{g}^{-1}, \bar{\nabla}, \bar{R}, \hat{n}, \stackrel{\circ}{\Pi}, \ldots, \bar{\circ} \underline{\mathrm{~d}^{-1}}\right\} \leftarrow \text { often works }
$$

Setup

Conformal hypersurfaces
$\Sigma \hookrightarrow(M, \boldsymbol{c})$ smooth

Conf. hyp. invariants:

$$
\left\{\bar{g}, \bar{g}^{-1}, \hat{n},\left(\bar{\nabla}^{\ell} \Pi\right),\left.\left(\nabla^{m} R\right)\right|_{\Sigma}\right\} \leftarrow \text { too big }
$$

Observation:
$\left\{\bar{g}, \bar{g}^{-1}, \bar{\nabla}, \bar{R}, \hat{n}, \stackrel{\circ}{\Pi}, \ldots, \underline{\circ^{\mathrm{d}-1}}\right\} \leftarrow$ often works
$\stackrel{\stackrel{\circ}{\mathrm{m}}}{\underline{m}}=[g ; \underline{\circ} \underline{\dot{m}}]=\left[\Omega^{2} g ; \Omega^{3-m} \underline{\stackrel{\circ}{\mathrm{~m}}}\right]=\mathrm{m}^{\text {th }}$ conf. fundamental form

Setup

$\Sigma \hookrightarrow(M, \boldsymbol{c})$ smooth

Conf. hyp. invariants:

$$
\left\{\bar{g}, \bar{g}^{-1}, \hat{n},\left(\bar{\nabla}^{\ell} \Pi\right),\left.\left(\nabla^{m} R\right)\right|_{\Sigma}\right\} \leftarrow \text { too big }
$$

Observation:
$\left\{\bar{g}, \bar{g}^{-1}, \bar{\nabla}, \bar{R}, \hat{n}, \stackrel{\circ}{\Pi}, \ldots, \underline{\circ} \underline{\mathrm{~d}-1}\right\} \leftarrow$ often works
$\stackrel{\stackrel{\circ}{\mathrm{m}}}{\circ}=[g ; \underline{\circ} \underline{\dot{m}}]=\left[\Omega^{2} g ; \Omega^{3-m} \underline{\stackrel{\circ}{\mathrm{~m}}}\right]=\mathrm{m}^{\text {th }}$ conf. fundamental form $\underline{\underline{m}}:=$ "higher order" trace-free II

Definitions

Natural hypersurface invariant

Definition

Let s be any defining function for $\Sigma \hookrightarrow(M, g)$. Let $I[g, s]$ be the restriction to Σ of a (partial) contraction polynomial in the set $\left\{s,|d s|_{g}^{-1}, g, g^{-1}, \nabla, R\right\}$. Then $I[g, s]$ is a natural hypersurface invariant (NHI) when $I[g, s]=I[g, \tilde{s}]$ for any defining functions s, \tilde{s} for Σ.

Definitions

Natural hypersurface invariant

Definition

Let s be any defining function for $\Sigma \hookrightarrow(M, g)$. Let $I[g, s]$ be the restriction to Σ of a (partial) contraction polynomial in the set $\left\{s,|d s|_{g}^{-1}, g, g^{-1}, \nabla, R\right\}$. Then $I[g, s]$ is a natural hypersurface invariant (NHI) when $I[g, s]=I[g, \tilde{s}]$ for any defining functions s, \tilde{s} for Σ.

Can drop s dependence if embedding is clear!

Definitions

Natural hypersurface invariant

Definition

Let s be any defining function for $\Sigma \hookrightarrow(M, g)$. Let $I[g, s]$ be the restriction to Σ of a (partial) contraction polynomial in the set $\left\{s,|d s|_{g}^{-1}, g, g^{-1}, \nabla, R\right\}$. Then $I[g, s]$ is a natural hypersurface invariant (NHI) when $I[g, s]=I[g, \tilde{s}]$ for any defining functions s, \tilde{s} for Σ.

Can drop s dependence if embedding is clear!
Defining function: $\forall p \in M, \quad p \in \Sigma \Leftrightarrow s(p)=0 \neq d s(p)$

Definitions

Natural hypersurface invariant

Definition

Let s be any defining function for $\Sigma \hookrightarrow(M, g)$. Let $I[g, s]$ be the restriction to Σ of a (partial) contraction polynomial in the set $\left\{s,|d s|_{g}^{-1}, g, g^{-1}, \nabla, R\right\}$. Then $I[g, s]$ is a natural hypersurface invariant (NHI) when $I[g, s]=I[g, \tilde{s}]$ for any defining functions s, \tilde{s} for Σ.

Can drop s dependence if embedding is clear!
Defining function: $\forall p \in M, \quad p \in \Sigma \Leftrightarrow s(p)=0 \neq d s(p)$
Contraction polynomial in $\left\{g_{a b}, g^{a b}, X_{a}, Y_{a b}, Z_{a b c}\right\}$: e.g. $\quad g^{a b} X_{a} X_{b}+g^{a a^{\prime}} X_{a^{\prime}} g^{b b^{\prime}} g^{c c^{\prime}} Y_{b^{\prime} c^{\prime}} Z_{a b c}$

Definitions

Definition

Let s be any defining function for $\Sigma \hookrightarrow(M, g)$. Let $I[g, s]$ be the restriction to Σ of a (partial) contraction polynomial in the set $\left\{s,|d s|_{g}^{-1}, g, g^{-1}, \nabla, R\right\}$. Then $I[g, s]$ is a natural hypersurface invariant (NHI) when $I[g, s]=I[g, \tilde{s}]$ for any defining functions s, \tilde{s} for Σ.

Can drop s dependence if embedding is clear!
Defining function: $\forall p \in M, \quad p \in \Sigma \Leftrightarrow s(p)=0 \neq d s(p)$
Contraction polynomial in $\left\{g_{a b}, g^{a b}, X_{a}, Y_{a b}, Z_{a b c}\right\}$: e.g. $\quad g^{a b} X_{a} X_{b}+g^{a a^{\prime}} X_{a^{\prime}} g^{b b^{\prime}} g^{c c^{\prime}} Y_{b^{\prime} c^{\prime}} Z_{a b c}$

Partial contraction polynomial:
e.g. $\quad X_{a} X_{b}+Y_{a b}+Z_{a b c} g^{c c^{\prime}} X_{c^{\prime}}$

Definitions

Conformal hypersurface invariant

Definition

Let $\Sigma \hookrightarrow(M, \boldsymbol{c})$ be a conformal hypersurface embedding, and for some $g \in \boldsymbol{c}$, let $I[g]$ be an NHI for $\Sigma \hookrightarrow(M, g)$. Then $I[\boldsymbol{c}, \sigma]$ is a natural conformal hypersurface invariant (NCHI) of weight w when, for any $\Omega \in C_{+}^{\infty} M$,

$$
I\left[\Omega^{2} g\right]=\Omega^{w} I[g]
$$

Definitions

Conformal hypersurface invariant

Definition

Let $\Sigma \hookrightarrow(M, \boldsymbol{c})$ be a conformal hypersurface embedding, and for some $g \in \boldsymbol{c}$, let $I[g]$ be an NHI for $\Sigma \hookrightarrow(M, g)$. Then $I[\boldsymbol{c}, \sigma]$ is a natural conformal hypersurface invariant (NCHI) of weight w when, for any $\Omega \in C_{+}^{\infty} M$,

$$
I\left[\Omega^{2} g\right]=\Omega^{w} I[g]
$$

Examples:

- $w\left(\hat{n}_{a}\right)=1$
- $w\left(\stackrel{\circ}{\Pi}_{a b}\right)=1 \leftarrow$ trace-free part of II
- $w\left(W_{a b c d} \mid \Sigma\right)=2$

Definitions

Transverse order

Definition

Let $I[g]$ be an NHI for $\Sigma \hookrightarrow(M, g)$ with g generic and s a defining function, and suppose that

$$
I\left[g+s^{k} h\right] \neq I[g]=I\left[g+s^{k+1} h^{\prime}\right]
$$

for some h and any h^{\prime} such that $g+s^{k} h$ and $g+s^{k+1} h^{\prime}$ are metrics on M. Then $I[g]$ has transverse order k, and write $\mathrm{TO}(I[g])=k$.

Definitions

Transverse order

Definition

Let $I[g]$ be an NHI for $\Sigma \hookrightarrow(M, g)$ with g generic and s a defining function, and suppose that

Motivation Setup

Definitions

$$
I\left[g+s^{k} h\right] \neq I[g]=I\left[g+s^{k+1} h^{\prime}\right]
$$

for some h and any h^{\prime} such that $g+s^{k} h$ and $g+s^{k+1} h^{\prime}$ are metrics on M. Then $I[g]$ has transverse order k, and write $\mathrm{TO}(I[g])=k$.

Examples:

- $\mathrm{TO}(\hat{n})=0$
- $\mathrm{TO}(\mathrm{II})=1$
- $\mathrm{TO}\left(\left.R\right|_{\Sigma}\right)=2$

Definitions

Definition

Let $I[g]$ be an NHI for $\Sigma \hookrightarrow(M, g)$ with g generic and s a defining function, and suppose that

$$
I\left[g+s^{k} h\right] \neq I[g]=I\left[g+s^{k+1} h^{\prime}\right]
$$

for some h and any h^{\prime} such that $g+s^{k} h$ and $g+s^{k+1} h^{\prime}$ are metrics on M. Then $I[g]$ has transverse order k, and write $\mathrm{TO}(I[g])=k$.

Examples:

- $\mathrm{TO}(\hat{n})=0$
- $\mathrm{TO}(\Pi)=1$
- $\mathrm{TO}\left(\left.R\right|_{\Sigma}\right)=2$

Important: TO is compatible with NCHIs

Definitions

Transverse order equivalence

Definition

Let $I[g], L[g]$ be NHIs for $\Sigma \hookrightarrow(M, g)$ with g generic of the same tensor type. Then for $k \in \mathbb{N}$ we say that

$$
I[g] \stackrel{k}{\sim} L[g]
$$

when $I[g]-L[g]$ has transverse order at most $k-1$.

Definitions

Transverse order equivalence

Definition

Let $I[g], L[g]$ be NHIs for $\Sigma \hookrightarrow(M, g)$ with g generic of the same tensor type. Then for $k \in \mathbb{N}$ we say that

$$
I[g] \stackrel{k}{\sim} L[g]
$$

when $I[g]-L[g]$ has transverse order at most $k-1$.
Allows us to work "modulo lower order"

Definitions

Definition

Let $I[g], L[g]$ be NHIs for $\Sigma \hookrightarrow(M, g)$ with g generic of the same tensor type. Then for $k \in \mathbb{N}$ we say that

$$
I[g] \stackrel{k}{\sim} L[g]
$$

when $I[g]-L[g]$ has transverse order at most $k-1$.
Allows us to work "modulo lower order"
Example: Theorema egregium

$$
\begin{gathered}
S c-R i c_{\hat{n} \hat{n}} \stackrel{\Sigma}{=} \bar{S} c+\Pi^{2}-(\operatorname{tr} \Pi)^{2} \\
\Rightarrow S c \stackrel{2}{\sim} R i c_{\hat{n} \hat{n}}
\end{gathered}
$$

Definitions

Conformal fundamental forms

Definition

Let $\Sigma \hookrightarrow(M, \boldsymbol{c})$, let $2 \leq m \in \mathbb{N}$, and let $g \in \boldsymbol{c}$. For an NCHI $I[\boldsymbol{c}]$ represented by $I[g] \in \Gamma\left(\odot_{\circ}^{2} T^{*} \Sigma\right)$, if

$$
\mathrm{TO}(I[\boldsymbol{c}])=m-1 \quad \text { and } \quad w(I[\boldsymbol{c}])=3-m
$$

then $I[\boldsymbol{c}]$ is an $m^{\text {th }}$ conformal fundamental form.

Definitions

Conformal fundamental forms

Definition

Let $\Sigma \hookrightarrow(M, \boldsymbol{c})$, let $2 \leq m \in \mathbb{N}$, and let $g \in \boldsymbol{c}$. For an NCHI $I[\boldsymbol{c}]$ represented by $I[g] \in \Gamma\left(\odot_{\circ}^{2} T^{*} \Sigma\right)$, if

$$
\mathrm{TO}(I[\boldsymbol{c}])=m-1 \quad \text { and } \quad w(I[\boldsymbol{c}])=3-m
$$

then $I[\boldsymbol{c}]$ is an $m^{\text {th }}$ conformal fundamental form.

Canonical construction exists!

\Rightarrow the $m^{\text {th }}$ fundamental form $=: \underline{\circ} \underline{\underline{m}}$.

Definitions

Conformal fundamental forms

Definition

Let $\Sigma \hookrightarrow(M, \boldsymbol{c})$, let $2 \leq m \in \mathbb{N}$, and let $g \in \boldsymbol{c}$. For an NCHI $I[\boldsymbol{c}]$ represented by $I[g] \in \Gamma\left(\odot_{\circ}^{2} T^{*} \Sigma\right)$, if

$$
\mathrm{TO}(I[\boldsymbol{c}])=m-1 \quad \text { and } \quad w(I[\boldsymbol{c}])=3-m
$$

then $I[\boldsymbol{c}]$ is an $m^{\text {th }}$ conformal fundamental form.

Canonical construction exists!

\Rightarrow the $m^{\text {th }}$ fundamental form $=: \underline{\circ} \underline{\underline{m}}$.
(Caveat: canonical construction only exists for M even dimensional and for $m \leq d-1$.)

Main Result

Statement

Can we specify NCHIs entirely with tensors on Σ ?

Main Result

Statement

Can we specify NCHIs entirely with tensors on Σ ? Yes (to a certain order):

Motivation
Setup
Definitions
Main Result

Theorem

Let $\Sigma \hookrightarrow\left(M^{d}, \boldsymbol{c}\right)$ with d even and let $I[\boldsymbol{c}]$ be an NCHI with $\mathrm{TO}(I[\boldsymbol{c}])=k$ for $k \in\{0,1, \ldots, d-2\}$. Then, for any $g \in \boldsymbol{c}$, $I[g]$ can be expressed as a (partial) contraction polynomial in elements of the set

$$
\left\{\bar{g}, \bar{g}^{-1}, \bar{\nabla}, \bar{R}, \hat{n}, \stackrel{\circ}{\Pi}, \ldots, \overline{\mathrm{k}+1}\right\}
$$

Main Result

Statement

Can we specify NCHIs entirely with tensors on Σ ? Yes (to a certain order):

Definitions
Main Result

Theorem

Let $\Sigma \hookrightarrow\left(M^{d}, \boldsymbol{c}\right)$ with d even and let $I[\boldsymbol{c}]$ be an NCHI with $\mathrm{TO}(I[\boldsymbol{c}])=k$ for $k \in\{0,1, \ldots, d-2\}$. Then, for any $g \in \boldsymbol{c}$, $I[g]$ can be expressed as a (partial) contraction polynomial in elements of the set

$$
\left\{\bar{g}, \bar{g}^{-1}, \bar{\nabla}, \bar{R}, \hat{n}, \stackrel{\circ}{\Pi}, \ldots, \overline{\mathrm{k}+1}\right\} .
$$

Proof idea: Relies on decomposition of tensors in Riemannian setting to projections and then eliminates all but the remaining tensors from the list of possible terms.

Main Result

Hypersurface Tensor Projection

Theorema egregium:

$$
S c-R i c_{\hat{n} \hat{n}} \stackrel{\Sigma}{=} \bar{S} c+\Pi^{2}-(\operatorname{tr} \Pi)^{2}
$$

Main Result

Hypersurface Tensor Projection

Theorema egregium:

Sam Blitz

Motivation

Setup

Definitions
Main Result
Future Work

$$
S c-R i c_{\hat{n} \hat{n}} \stackrel{\Sigma}{=} \bar{S} c+\Pi^{2}-(\operatorname{tr} \Pi)^{2}
$$

Gauß equation:

$$
R_{a b c d}^{\top} \stackrel{\Sigma}{=} \bar{R}_{a b c d}-\Pi_{a c} \Pi_{b d}+\Pi_{a d} \Pi_{b c}
$$

Main Result

Hypersurface Tensor Projection

Theorema egregium:

Sam Blitz

Motivation

Setup

Definitions
Main Result
Future Work

$$
S c-\operatorname{Ric}_{\hat{n} \hat{n}} \stackrel{\Sigma}{=} \bar{S} c+\Pi^{2}-(\operatorname{tr} \Pi)^{2}
$$

Gauß equation:

$$
R_{a b c d}^{\top} \stackrel{\Sigma}{=} \bar{R}_{a b c d}-\Pi_{a c} \Pi_{b d}+\Pi_{a d} \Pi_{b c}
$$

Codazzi-Mainardi equation:

$$
R_{a b c \hat{n}}^{\top} \stackrel{\Sigma}{=} \bar{\nabla}_{a} \Pi_{b c}-\bar{\nabla}_{b} \Pi_{a c}
$$

Main Result

Hypersurface Tensor Projection

Theorema egregium:

$$
S c-R i c_{\hat{n} \hat{n}} \stackrel{\Sigma}{=} \bar{S} c+\Pi^{2}-(\operatorname{tr} \Pi)^{2}
$$

Gauß equation:

$$
R_{a b c d}^{\top} \stackrel{\Sigma}{=} \bar{R}_{a b c d}-\Pi_{a c} \Pi_{b d}+\Pi_{a d} \Pi_{b c}
$$

Codazzi-Mainardi equation:

$$
R_{a b c \hat{n}}^{\top} \stackrel{\Sigma}{=} \bar{\nabla}_{a} \Pi_{b c}-\bar{\nabla}_{b} \Pi_{a c}
$$

Fialkow-Gauss equation:

$$
W_{\hat{n} a b \hat{n}}+(d-3) P_{a b}^{\top} \stackrel{\sum}{=} \check{\Pi}_{a b}^{2}-\frac{1}{2(d-2)} \stackrel{I}{\Pi}^{2} \bar{g}_{a b}+(d-3)\left(\bar{P}_{a b}-H \check{\Pi}_{a b}-\frac{1}{2} H^{2} g_{a b}\right)
$$

Main Result

Key Observation

Expected:

Definitions

Main Result

$$
\mathrm{TO}\left(R_{\hat{n} a b \hat{n}}\right)=\mathrm{TO}\left(R c_{a b}^{\top}\right)=\mathrm{TO}\left(R i c_{\hat{n} \hat{n}}\right)=2
$$

Main Result

Key Observation

Expected:
Definitions
Main Result

$$
\mathrm{TO}\left(R_{\hat{n} a b \hat{n}}\right)=\mathrm{TO}\left(R i c_{a b}^{\top}\right)=\mathrm{TO}\left(R i c_{\hat{n} \hat{n}}\right)=2
$$

"Unexpected" (lower):

$$
\mathrm{TO}\left(R_{a b c d}^{\top}\right)=\mathrm{TO}\left(R_{a b c \hat{n}}^{\top}\right)=\mathrm{TO}\left(R_{i c}^{\top} c_{a \hat{n}}^{\top}\right)=1
$$

Main Result

Key Observation

Expected:

Definitions
Main Result

$$
\mathrm{TO}\left(R_{\hat{n} a b \hat{n}}\right)=\mathrm{TO}\left(R i c_{a b}^{\top}\right)=\mathrm{TO}\left(R i c_{\hat{n} \hat{n}}\right)=2
$$

"Unexpected" (lower):

$$
\mathrm{TO}\left(R_{a b c d}^{\top}\right)=\mathrm{TO}\left(R_{a b c \hat{n}}^{\top}\right)=\mathrm{TO}\left(R i c_{a \hat{n}}^{\top}\right)=1
$$

Generalize to higher derivatives?

Main Result

Calculations

Compute modulo lower order:

$$
\begin{aligned}
& \quad\left(: \nabla_{\hat{n}}^{m}: R_{a b c d}\right)^{\top} \stackrel{m+2}{\sim} 0 \\
& \left(\hat{n}^{d}: \nabla_{\hat{n}}^{m}: R_{d a b c}\right)^{\top} \stackrel{m+2}{\sim} 0 \\
& \left(\hat{n}^{c} \hat{n}^{d}: \nabla_{\hat{n}}^{m}: R_{c a b d}\right)^{\top} \stackrel{m+2}{\sim}(d-2)\left(: \nabla_{\hat{n}}^{m}: P_{a b}\right)_{\circ}^{\top}+\bar{g}_{a b}: \nabla_{\hat{n}}^{m}:\left.J\right|_{\Sigma} \\
& \quad\left(: \nabla_{\hat{n}}^{m}: R i c_{a b}\right)^{\top} \stackrel{m+2}{\sim}(d-2)\left(: \nabla_{\hat{n}}^{m}: P_{a b}\right)_{\circ}^{\top}+\bar{g}_{a b}: \nabla_{\hat{n}}^{m}:\left.J\right|_{\Sigma} \\
& \quad\left(\hat{n}^{b}: \nabla_{\hat{n}}^{m}: R i c_{a b}\right)^{\top} \stackrel{m+2}{\sim} 0 \\
& \left(\hat{n}^{a} \hat{n}^{b}: \nabla_{\hat{n}}^{m}: R i c_{a b}\right)^{\top} \stackrel{m+2}{\sim}(d-1): \nabla_{\hat{n}}^{m}:\left.J\right|_{\Sigma} \\
& \quad: \nabla_{\hat{n}}^{m}:\left.S c\right|_{\Sigma} \stackrel{m+2}{\sim} 2(d-1): \nabla_{\hat{n}}^{m}:\left.J\right|_{\Sigma} . \\
& \left(: \nabla_{\hat{n}}^{m}:=\hat{n}^{a_{1}} \cdots \hat{n}^{a_{m}} \nabla_{a_{1}} \cdots \nabla_{a_{m}}\right)
\end{aligned}
$$

Main Result

Calculations

Compute modulo lower order:

$$
\begin{aligned}
& \quad\left(: \nabla_{\hat{n}}^{m}: R_{a b c d}\right)^{\top} \stackrel{m+2}{\sim} 0 \\
& \left(\hat{n}^{d}: \nabla_{\hat{n}}^{m}: R_{d a b c}\right)^{\top} \stackrel{m+2}{\sim} 0 \\
& \left(\hat{n}^{c} \hat{n}^{d}: \nabla_{\hat{n}}^{m}: R_{c a b d}\right)^{\top} \stackrel{m+2}{\sim}(d-2)\left(: \nabla_{\hat{n}}^{m}: P_{a b}\right)_{\circ}^{\top}+\bar{g}_{a b}: \nabla_{\hat{n}}^{m}:\left.J\right|_{\Sigma} \\
& \quad\left(: \nabla_{\hat{n}}^{m}: R i c_{a b}\right)^{\top} \stackrel{m+2}{\sim}(d-2)\left(: \nabla_{\hat{n}}^{m}: P_{a b}\right)_{\circ}^{\top}+\bar{g}_{a b}: \nabla_{\hat{n}}^{m}:\left.J\right|_{\Sigma} \\
& \left(\hat{n}^{b}: \nabla_{\hat{n}}^{m}: R i c_{a b}\right)^{\top} \stackrel{m+2}{\sim} 0 \\
& \left(\hat{n}^{a} \hat{n}^{b}: \nabla_{\hat{n}}^{m}: R i c_{a b}\right)^{\top} \stackrel{m+2}{\sim}(d-1): \nabla_{\hat{n}}^{m}:\left.J\right|_{\Sigma} \\
& \quad: \nabla_{\hat{n}}^{m}: S c\left|\Sigma \stackrel{m+2}{\sim} 2(d-1): \nabla_{\hat{n}}^{m}: J\right|_{\Sigma} . \\
& \left(: \nabla_{\hat{n}}^{m}:=\hat{n}^{a_{1}} \cdots \hat{n}^{a_{m}} \nabla_{a_{1}} \cdots \nabla_{a_{m}}\right)
\end{aligned}
$$

(Slightly) better basis!

Main Result

Conformal fundamental forms, T-curvature

Canonical conf. FFs [B. '21]:
For d even, $2 \leq m \leq d-2$

Motivation
Setup
Definitions
Main Result

Future

Work

$$
\left(: \nabla_{\hat{n}}^{m-2}: P_{a b}\right)_{\circ}^{\top} \stackrel{m}{\sim} \alpha{\underline{\bar{m}^{\circ}+1}}_{a b}
$$

Main Result

Conformal fundamental forms, T-curvature

Canonical conf. FFs [B. '21]:
For d even, $2 \leq m \leq d-2$

Motivation
Setup
Definitions
Main Result
Future Work

$$
\left(: \nabla_{\hat{n}}^{m-2}: P_{a b}\right)_{\circ}^{\top} \stackrel{m}{\sim} \alpha{\underline{\bar{m}^{\circ}+1}}_{a b}
$$

T-curvatures [Gover-Peterson '21]: For $2 \leq m \leq d-2$:

$$
: \nabla_{\tilde{n}}^{m}:\left.J\right|_{\Sigma} \stackrel{m}{\sim} \beta T_{m}^{g}
$$

$T_{m}^{g}=m^{\text {th }}$ order generalization of mean curvature

Main Result

Conformal fundamental forms, T-curvature

Canonical conf. FFs [B. '21]:
For d even, $2 \leq m \leq d-2$

$$
\left(: \nabla_{\hat{n}}^{m-2}: P_{a b}\right)_{\circ}^{\top} \stackrel{m}{\sim} \alpha \underline{\circ}+\frac{\circ}{\mathrm{m}+1}_{a b}
$$

Definitions
Main Result
Future Work
T-curvatures [Gover-Peterson '21]: For $2 \leq m \leq d-2$:

$$
: \nabla_{\tilde{n}}^{m}:\left.J\right|_{\Sigma} \stackrel{m}{\sim} \beta T_{m}^{g}
$$

$T_{m}^{g}=m^{\text {th }}$ order generalization of mean curvature
Important feature:

$$
T_{m}^{\Omega^{2} g}=\Omega^{-m}\left(T_{m}^{g}+\delta_{m} \log \Omega\right)
$$

where $\delta_{m}=\gamma: \nabla_{\hat{n}}^{m}:+$ lower order

Main Result

Better basis!

Sam Blitz

Motivation
Setup
Definitions
Main Result

Future

Work

Can write NHIs $(\mathrm{TO} \leq d-2)$:

$$
\left\{\bar{g}, \bar{g}^{-1}, \bar{\nabla}, \bar{R}, \stackrel{\circ}{\Pi}, \ldots, \underline{\circ} \underline{\overline{\mathrm{~d}-1}}, T_{1}^{g}, \ldots, T_{d-2}^{g}\right\}
$$

Main Result

Better basis!

Sam Blitz

Motivation
Setup
Definitions
Main Result
Future Work

Can write NHIs $(\mathrm{TO} \leq d-2)$:

$$
\left\{\bar{g}, \bar{g}^{-1}, \bar{\nabla}, \bar{R}, \stackrel{\circ}{\Pi}, \ldots, \underline{\circ} \underline{\overline{\mathrm{~d}-1}}, T_{1}^{g}, \ldots, T_{d-2}^{g}\right\}
$$

Want to eliminate T_{i}^{g} for NCHIs.

Main Result

Better basis!

Sam Blitz

Motivation
Setup
Definitions
Main Result
Future
Work

Can write NHIs $(\mathrm{TO} \leq d-2)$:

$$
\left\{\bar{g}, \bar{g}^{-1}, \bar{\nabla}, \bar{R}, \stackrel{\circ}{\Pi}, \ldots, \underline{\circ} \underline{\overline{\mathrm{~d}-1}}, T_{1}^{g}, \ldots, T_{d-2}^{g}\right\}
$$

Want to eliminate T_{i}^{g} for NCHIs.
How? Contradiction:

Main Result

Better basis!

Sam Blitz

Motivation
Setup
Definitions
Main Result
Future
Work

Can write NHIs $(\mathrm{TO} \leq d-2)$:

$$
\left\{\bar{g}, \bar{g}^{-1}, \bar{\nabla}, \bar{R}, \stackrel{\circ}{\Pi}, \ldots, \underline{\circ} \underline{\overline{\mathrm{~d}-1}}, T_{1}^{g}, \ldots, T_{d-2}^{g}\right\}
$$

Want to eliminate T_{i}^{g} for NCHIs.
How? Contradiction:

- suppose $\exists m \geq 1$ maximal s.t. $T_{m}^{g} \in I[g]$ and $I[g]=\Omega^{w} I\left[\Omega^{2} g\right]$

Main Result

Better basis!

Sam Blitz

Motivation
Setup
Definitions
Main Result
Future
Work

Can write NHIs $(\mathrm{TO} \leq d-2)$:

$$
\left\{\bar{g}, \bar{g}^{-1}, \bar{\nabla}, \bar{R}, \stackrel{\circ}{\Pi}, \ldots, \underline{\circ} \underline{\overline{\mathrm{~d}-1}}, T_{1}^{g}, \ldots, T_{d-2}^{g}\right\}
$$

Want to eliminate T_{i}^{g} for NCHIs.
How? Contradiction:
■ suppose $\exists m \geq 1$ maximal s.t. $T_{m}^{g} \in I[g]$ and $I[g]=\Omega^{w} I\left[\Omega^{2} g\right]$
■ $I\left[\Omega^{2} g\right] \ni($ coefficient $) \delta_{m} \log \Omega$

Main Result

Better basis!

Sam Blitz

Motivation
Setup
Definitions
Main Result
Future Work

Can write NHIs $(\mathrm{TO} \leq d-2)$:

$$
\left\{\bar{g}, \bar{g}^{-1}, \bar{\nabla}, \bar{R}, \stackrel{\circ}{\Pi}, \ldots, \underline{\circ} \underline{\overline{\mathrm{~d}-1}}, T_{1}^{g}, \ldots, T_{d-2}^{g}\right\}
$$

Want to eliminate T_{i}^{g} for NCHIs.
How? Contradiction:
■ suppose $\exists m \geq 1$ maximal s.t. $T_{m}^{g} \in I[g]$ and $I[g]=\Omega^{w} I\left[\Omega^{2} g\right]$
■ $I\left[\Omega^{2} g\right] \ni($ coefficient $) \delta_{m} \log \Omega$
■ Conformal invariance \Rightarrow coefficient $=0$

Main Result

Better basis!

Sam Blitz

Motivation
Setup
Definitions
Main Result
Future Work

Can write NHIs $(\mathrm{TO} \leq d-2)$:

$$
\left\{\bar{g}, \bar{g}^{-1}, \bar{\nabla}, \bar{R}, \stackrel{\circ}{\Pi}, \ldots, \underline{\circ} \underline{\overline{\mathrm{~d}-1}}, T_{1}^{g}, \ldots, T_{d-2}^{g}\right\}
$$

Want to eliminate T_{i}^{g} for NCHIs.
How? Contradiction:

- suppose $\exists m \geq 1$ maximal s.t. $T_{m}^{g} \in I[g]$ and $I[g]=\Omega^{w} I\left[\Omega^{2} g\right]$
■ $I\left[\Omega^{2} g\right] \ni($ coefficient $) \delta_{m} \log \Omega$
■ Conformal invariance \Rightarrow coefficient $=0$

Proof done!

Future Work

Tractor classification
(Still in d even.)

Motivation
Setup
Definitions
Main Result
Future
Work
Fact: Most $\bar{\nabla}^{\ell} \underline{\underline{m}}$ not conf. invariant.

Future Work

Tractor classification
(Still in d even.)

Motivation
Setup
Definitions
Main Result
Future
Work
Fact: Most $\bar{\nabla} \ell \underline{\stackrel{\circ}{\mathrm{m}}}$ not conf. invariant. Which are?

Future Work

Tractor classification

Sam Blitz

Motivation
Setup
Definitions
Main Result
Future Work
(Still in d even.)
Fact: Most $\bar{\nabla}^{\ell} \underline{\frac{\circ}{\mathrm{m}}}$ not conf. invariant. Which are?

Tractor methods:

Conf. inv. linear operators (with known exceptions) \Leftrightarrow tractor operators [Šilhan '06]

Future Work

Tractor classification

Sam Blitz

Motivation
Setup
Definitions
Main Result
Future Work
(Still in d even.)
Fact: Most $\bar{\nabla}^{\ell} \underline{\dot{m}}$ not conf. invariant. Which are?
Tractor methods:
Conf. inv. linear operators (with known exceptions) \Leftrightarrow tractor operators [Šilhan '06]

Open question: Conf. inv. multi-linear operators?

Future Work

(Still in d even.)
Fact: Most $\bar{\nabla}^{\ell} \underline{\circ}$ not conf. invariant. Which are?

Tractor methods:

Conf. inv. linear operators (with known exceptions) \Leftrightarrow tractor operators [Silhan '06]

Open question: Conf. inv. multi-linear operators?
■ Bilinear operators: some known results [Šilhan '09, Čap-Šilhan '09, Michel '11]

Future Work

(Still in d even.)
Fact: Most $\bar{\nabla}^{\ell} \underline{\circ}$ not conf. invariant. Which are?
Tractor methods:
Conf. inv. linear operators (with known exceptions) \Leftrightarrow tractor operators [Silhan '06]

Open question: Conf. inv. multi-linear operators?

- Bilinear operators: some known results [Šilhan '09, Čap-Šilhan '09, Michel '11]
- Tri- or multi-linear operators: here be dragons.

Future Work

(Still in d even.)
Fact: Most $\bar{\nabla}^{\ell} \underline{\dot{m}}$ not conf. invariant. Which are?

Tractor methods:

Conf. inv. linear operators (with known exceptions) \Leftrightarrow tractor operators [Šilhan '06]

Open question: Conf. inv. multi-linear operators?
■ Bilinear operators: some known results [Šilhan '09, Čap-Šilhan '09, Michel '11]

- Tri- or multi-linear operators: here be dragons.

Conjecture: Besides the known exceptions, all NCHIs with $\mathrm{TO} \leq d-2$ can be formed from a tractor basis

$$
\left\{\bar{h}_{A B}, X_{A}, \bar{D}_{A}, \bar{W}_{A B C D}, \stackrel{\circ}{\Pi}_{A B}, \ldots, \underline{\left.\stackrel{\circ}{\mathrm{~d}-1}_{A B}\right\}}\right.
$$

Future Work

(Still in d even.)
Fact: Most $\bar{\nabla}^{\ell} \underline{\dot{m}}$ not conf. invariant. Which are?

Tractor methods:

Conf. inv. linear operators (with known exceptions) \Leftrightarrow tractor operators [Šilhan '06]

Open question: Conf. inv. multi-linear operators?
■ Bilinear operators: some known results [Šilhan '09, Čap-Šilhan '09, Michel '11]

- Tri- or multi-linear operators: here be dragons.

Conjecture: Besides the known exceptions, all NCHIs with TO $\leq d-2$ can be formed from a tractor basis

$$
\left\{\bar{h}_{A B}, X_{A}, \bar{D}_{A}, \bar{W}_{A B C D}, \stackrel{\circ}{\Pi}_{A B}, \ldots, \underline{\left.\stackrel{\circ}{\mathrm{~d}-1}_{A B}\right\}}\right.
$$

Experimental evidence: yes?

Future Work

Higher transverse order

Sam Blitz
 Main result: $\mathrm{TO} \leq d-2$

Motivation
Setup
Definitions
Main Result
Future
Work

Future Work

Higher transverse order

Sam Blitz

Motivation Setup

Definitions
Main Result
Future Work

Main result: $\mathrm{TO} \leq d-2$
Interesting: $\mathrm{TO}\left(\right.$ "Willmore invariants") $=d-1 \Rightarrow$ need $\underline{\frac{\circ}{\mathrm{d}}}$

Future Work

Higher transverse order

Sam Blitz

Motivation
Setup
Definitions
Main Result
Future Work

Main result: $\mathrm{TO} \leq d-2$
Interesting: $\mathrm{TO}($ "Willmore invariants" $)=d-1 \Rightarrow$ need $\underline{\frac{\square}{\mathrm{d}}}$
Known [B.-Gover-Waldron '21]:

Future Work

Higher transverse order

Sam Blitz

Motivation
Setup
Definitions
Main Result
Future Work

Main result: $\mathrm{TO} \leq d-2$
Interesting: TO ("Willmore invariants") $=d-1 \Rightarrow$ need $\underline{\frac{\circ}{\mathrm{d}}}$
Known [B.-Gover-Waldron '21]:
■ $d=4: \mathrm{I}_{a b}=C_{\hat{n}(a b)}^{\top}+H W_{\hat{n} a b \hat{n}}-\bar{\nabla}^{c} W_{c(a b) \hat{n}}^{\top}$

Future Work

Higher transverse order

Sam Blitz

Motivation
Setup
Definitions
Main Result
Future Work

Main result: $\mathrm{TO} \leq d-2$
Interesting: TO ("Willmore invariants") $=d-1 \Rightarrow$ need $\underline{\frac{\circ}{\mathrm{d}}}$
Known [B.-Gover-Waldron '21]:
■ $d=4: \mathrm{I}_{a b}=C_{\hat{n}(a b)}^{\top}+H W_{\hat{n} a b \hat{n}}-\bar{\nabla}^{c} W_{c(a b) \hat{n}}^{\top}$

- $d=6$, Poincaré-Einstein:

$$
\stackrel{\circ}{\mathrm{V}}_{a b}=\left(\left(\nabla_{\hat{n}}+2 H\right) B_{a b}\right)_{\circ}^{\top}-4 \bar{C}_{c(a b)} \bar{\nabla}^{c} H
$$

Future Work

Higher transverse order

Sam Blitz

Motivation
Setup
Definitions
Main Result
Future Work

Main result: $\mathrm{TO} \leq d-2$
Interesting: TO ("Willmore invariants") $=d-1 \Rightarrow$ need $\underline{\overline{\mathrm{d}}}$
Known [B.-Gover-Waldron '21]:
■ $d=4: \mathrm{I}_{a b}=C_{\hat{n}(a b)}^{\top}+H W_{\hat{n} a b \hat{n}}-\bar{\nabla}^{c} W_{c(a b) \hat{n}}^{\top}$

- $d=6$, Poincaré-Einstein:
$\mathrm{V}_{a b}=\left(\left(\nabla_{\hat{n}}+2 H\right) B_{a b}\right)_{\circ}^{\top}-4 \bar{C}_{c(a b)} \bar{\nabla}^{c} H$
- $d \geq 8$ even, Poincaré-Einstein: $\underline{\frac{\circ}{\mathrm{d}}}$ provably exists.

Future Work

Higher transverse order

Sam Blitz

Motivation Setup

Definitions
Main Result
Future Work

Main result: $\mathrm{TO} \leq d-2$
Interesting: TO ("Willmore invariants") $=d-1 \Rightarrow$ need $\underline{\frac{\circ}{\mathrm{d}}}$
Known [B.-Gover-Waldron '21]:
■ $d=4: \mathrm{I}_{a b}=C_{\hat{n}(a b)}^{\top}+H W_{\hat{n} a b \hat{n}}-\bar{\nabla}^{c} W_{c(a b) \hat{n}}^{\top}$

- $d=6$, Poincaré-Einstein:

$$
\mathrm{V}_{a b}=\left(\left(\nabla_{\hat{n}}+2 H\right) B_{a b}\right)_{\circ}^{\top}-4 \bar{C}_{c(a b)} \bar{\nabla}^{c} H
$$

- $d \geq 8$ even, Poincaré-Einstein: $\underline{\frac{\circ}{\mathrm{d}}}$ provably exists.

Open question: Does $\underline{\frac{\circ}{\mathrm{d}}}$ exist for all $d=2 n$ (not Poincaré-Einstein)?

Future Work

Higher transverse order

Sam Blitz

Motivation Setup

Definitions
Main Result
Future Work

Main result: $\mathrm{TO} \leq d-2$
Interesting: TO ("Willmore invariants") $=d-1 \Rightarrow$ need $\underline{\frac{\circ}{\mathrm{d}}}$
Known [B.-Gover-Waldron '21]:
■ $d=4: \mathrm{I}_{a b}=C_{\hat{n}(a b)}^{\top}+H W_{\hat{n} a b \hat{n}}-\bar{\nabla}^{c} W_{c(a b) \hat{n}}^{\top}$

- $d=6$, Poincaré-Einstein:

$$
\mathrm{V}_{a b}=\left(\left(\nabla_{\hat{n}}+2 H\right) B_{a b}\right)_{\circ}^{\top}-4 \bar{C}_{c(a b)} \bar{\nabla}^{c} H
$$

- $d \geq 8$ even, Poincaré-Einstein: $\underline{\frac{\circ}{\mathrm{d}}}$ provably exists.

Open question: Does $\underline{\frac{\circ}{\mathrm{d}}}$ exist for all $d=2 n$ (not Poincaré-Einstein)? Probably yes.

Future Work

Higher transverse order

Sam Blitz

Motivation Setup

Definitions
Main Result
Future Work

Main result: $\mathrm{TO} \leq d-2$
Interesting: TO ("Willmore invariants") $=d-1 \Rightarrow$ need $\underline{\frac{\circ}{\mathrm{d}}}$
Known [B.-Gover-Waldron '21]:
■ $d=4: \mathrm{I}_{a b}=C_{\hat{n}(a b)}^{\top}+H W_{\hat{n} a b \hat{n}}-\bar{\nabla}^{c} W_{c(a b) \hat{n}}^{\top}$

- $d=6$, Poincaré-Einstein:

$$
\stackrel{ }{V}_{a b}=\left(\left(\nabla_{\hat{n}}+2 H\right) B_{a b}\right)_{\circ}^{\top}-4 \bar{C}_{c(a b)} \bar{\nabla}^{c} H
$$

- $d \geq 8$ even, Poincaré-Einstein: $\underline{\frac{\circ}{\mathrm{d}}}$ provably exists.

Open question: Does $\underline{\frac{\circ}{\mathrm{d}}}$ exist for all $d=2 n$ (not Poincaré-Einstein)? Probably yes. Hard to prove... multilinear operators!

Thank you

Thank you!

