Sam Blit

Motivation Setup Definition Main Resu Future

(A Step) Toward a Classification of Conformal Hypersurface Invariants

S. Blitz

Masaryk University

Srní, 43rd Winter School, January 2023

Sam Blitz

Motivation

Setup

Definitions

Main Result

Future Work

Story:

 Ph.D. work on extrinsic Paneitz operator, tractor holography, conformal geometry

Sam Blit

Motivation

Setup

Definitions

Main Result

Future Work Story:

- Ph.D. work on extrinsic Paneitz operator, tractor holography, conformal geometry
- Insufficient machinery \Rightarrow new invariants?

Sam Blit

Motivation

Setup

Definitions

Main Result

Future Work Story:

- Ph.D. work on extrinsic Paneitz operator, tractor holography, conformal geometry
- Insufficient machinery \Rightarrow new invariants?

 \Rightarrow conformal fundamental forms

Sam Blit

Motivation

Setup

Definitions

Main Result

Future Work Story:

- Ph.D. work on extrinsic Paneitz operator, tractor holography, conformal geometry
- Insufficient machinery \Rightarrow new invariants?

 \Rightarrow conformal fundamental forms

Ubiquitous appearances:

- Asymptotically Poincaré–Einstein structures
- Anomalies of renormalized volume
- Willmore invariants
- Dirichlet–Neumann maps

Sam Blit

Motivation

Setup

Definitions

Main Result

Future Work Story:

- Ph.D. work on extrinsic Paneitz operator, tractor holography, conformal geometry
- Insufficient machinery \Rightarrow new invariants?

 \Rightarrow conformal fundamental forms

Ubiquitous appearances:

- Asymptotically Poincaré–Einstein structures
- Anomalies of renormalized volume
- Willmore invariants
- Dirichlet–Neumann maps

Q: Do conformal fundamental forms locally characterize extrinsic conformal hypersurface data?

・ロト ・四ト ・ヨト ・ヨト - ヨ

Setup Riemannian manifolds

Sam Blit

Setup

Definitions

Main Result

Future Work

(M,g) smooth

<ロト < 回 > < 目 > < 目 > 目 の Q (C 3 / 20

Setup Riemannian manifolds

Sam Blitz Motivation Setup Definitions Main Resul

Future Work

(M,g) smooth

3/20

Weyl's classical invariant theory \Rightarrow "natural" invariants built from $\{g, g^{-1}, \nabla, R\}$

Setup Riemannian manifolds

Sam Blitz Motivation Setup Definitions Main Result Future Work (M,g) smooth

Weyl's classical invariant theory \Rightarrow "natural" invariants built from $\{g, g^{-1}, \nabla, R\}$ (Broader notions of natural not used here, but maybe later!)

Sam Blit

Motivation

Setup

Definition

Main Result

Future Work

$\Sigma \hookrightarrow (M,g)$ smooth

Sam Blit

Motivatio

Setup

Definitions

Main Result

Future Work

$\Sigma \hookrightarrow (M,g)$ smooth

Natural invariants built from:

Sam Blit

 $\Sigma \hookrightarrow (M,g)$ smooth

Natural invariants built from:

 \blacksquare Unit conormal \hat{n}

Sam Blit

Setup

$\Sigma \hookrightarrow (M,g)$ smooth

4/20

Natural invariants built from:

- \blacksquare Unit conormal \hat{n}
- \blacksquare Second fundamental form Π

Sam Blit

Setup

Definitions Main Resul

Future Work

$\Sigma \hookrightarrow (M,g)$ smooth

Natural invariants built from:

- \blacksquare Unit conormal \hat{n}
- \blacksquare Second fundamental form \amalg
- "Bulk" invariants $|_{\Sigma}$

Sam Blit

Setup

 $\Sigma \hookrightarrow (M,g)$ smooth

Natural invariants built from:

- Unit conormal \hat{n}
- \blacksquare Second fundamental form Π
- "Bulk" invariants $|_{\Sigma}$

 $\Rightarrow \{\bar{g}, \bar{g}^{-1}, \hat{n}, (\bar{\nabla}^{\ell} \Pi), (\nabla^m R)|_{\Sigma}\} \ (\text{Gover-Waldron})$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Sam Blitz Motivation Setup Definitions Main Result Future

(M, c) smooth: $g, g' \in c \quad \Leftrightarrow \quad \exists \Omega \in C^{\infty}_{+}M \text{ s.t. } g' = \Omega^{2}g$

Sam Blit Motivatio

 Setup

Definitions

Future Work

(M, c) smooth: $g, g' \in c \quad \Leftrightarrow \quad \exists \Omega \in C^{\infty}_{+}M \text{ s.t. } g' = \Omega^{2}g$

Conformal invariants \subset Riemannian invariants

Sam Blit Motivatio Setup

Definition Main Rest

Future Work

(M, c) smooth: $g, g' \in c \quad \Leftrightarrow \quad \exists \Omega \in C^{\infty}_{+}M \text{ s.t. } g' = \Omega^{2}g$

Conformal invariants \subset Riemannian invariants Which? Invariants = densities: $\phi = [g; f] = [\Omega^2 g; \Omega^w f]$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

5/20

Sam Blitz Motivation Setup Definitions

Future Work

(M, c) smooth: $g, g' \in c \quad \Leftrightarrow \quad \exists \Omega \in C^{\infty}_{+}M \text{ s.t. } g' = \Omega^{2}g$

Conformal invariants \subset Riemannian invariants Which? Invariants = densities: $\phi = [g; f] = [\Omega^2 g; \Omega^w f]$ How to build them? Hard, but solved

イロト (日本 (日本 (日本)) 日 うのの

Sam Blitz Motivation Setup Definitions Main Result

Future Work

(M, c) smooth: $g, g' \in c \quad \Leftrightarrow \quad \exists \Omega \in C^{\infty}_{+}M \text{ s.t. } g' = \Omega^{2}g$

Conformal invariants \subset Riemannian invariants **Which?** Invariants = densities: $\phi = [g; f] = [\Omega^2 g; \Omega^w f]$ How to build them? **Hard, but solved** \Rightarrow tractors, **BGGs**

イロト (日本 (日本 (日本)) 日 うのの

Sam Blitz

Motivation

Setup

Definition

Main Result

Future Work

$\Sigma \hookrightarrow (M, \boldsymbol{c})$ smooth

<ロト < 回 > < 言 > < 言 > こ き < う へ C 6 / 20

Sam Blit

 $\Sigma \hookrightarrow (M, \boldsymbol{c})$ smooth

Conf. hyp. invariants: $\{\bar{g}, \bar{g}^{-1}, \hat{n}, (\bar{\nabla}^{\ell} \mathrm{II}), (\nabla^m R)|_{\Sigma}\}$

Sam Blit

Setup

 $\Sigma \hookrightarrow (M, \boldsymbol{c})$ smooth

Conf. hyp. invariants: $\{\bar{g}, \bar{g}^{-1}, \hat{n}, (\bar{\nabla}^{\ell} \mathrm{II}), (\nabla^m R)|_{\Sigma}\} \leftarrow \text{too big}$

Sam Blit

Setup

 $\Sigma \hookrightarrow (M, \boldsymbol{c})$ smooth

Conf. hyp. invariants: $\{\bar{g}, \bar{g}^{-1}, \hat{n}, (\bar{\nabla}^{\ell} \Pi), (\nabla^m R)|_{\Sigma}\} \leftarrow \text{too big}$ Observation: $\{\bar{g}, \bar{g}^{-1}, \bar{\nabla}, \bar{R}, \hat{n}, \mathring{\Pi}, \dots, \underline{\overset{\circ}{\mathrm{d}-1}}\} \leftarrow \text{often works}$

Sam Blit

Setup

 $\Sigma \hookrightarrow (M, \boldsymbol{c})$ smooth

Conf. hyp. invariants: $\{\bar{g}, \bar{g}^{-1}, \hat{n}, (\bar{\nabla}^{\ell} \Pi), (\nabla^m R)|_{\Sigma}\} \leftarrow \text{too big}$ Observation: $\{\bar{g}, \bar{g}^{-1}, \bar{\nabla}, \bar{R}, \hat{n}, \overset{\circ}{\Pi}, \dots, \underbrace{\overset{\circ}{\overline{d-1}}\}}_{=} \leftarrow \text{often works}$ $\overset{\circ}{\underline{\mathbf{m}}} = [g; \overset{\circ}{\underline{\mathbf{m}}}] = [\Omega^2 g; \Omega^{3-m} \overset{\circ}{\underline{\mathbf{m}}}] = \mathrm{m^{th} \ conf.}$ fundamental form

Sam Blit

Setup

 $\Sigma \hookrightarrow (M, \boldsymbol{c})$ smooth

Conf. hyp. invariants: $\{\bar{g}, \bar{g}^{-1}, \hat{n}, (\bar{\nabla}^{\ell} \Pi), (\nabla^m R)|_{\Sigma}\} \leftarrow \text{too big}$ Observation: $\{\bar{g}, \bar{g}^{-1}, \bar{\nabla}, \bar{R}, \hat{n}, \overset{\circ}{\Pi}, \dots, \underbrace{\overline{d-1}}^{\circ}\} \leftarrow \text{often works}$ $\overset{\circ}{\underline{m}} = [g; \overset{\circ}{\underline{m}}] = [\Omega^2 g; \Omega^{3-m} \overset{\circ}{\underline{m}}] = \text{m}^{\text{th}} \text{ conf. fundamental form}$ $\overset{\circ}{\underline{m}} := \text{"higher order" trace-free II}$

Definition

Sam Blitz

Motivatio

Setup

Definitions

Main Result

Future Work Let s be any defining function for $\Sigma \hookrightarrow (M, g)$. Let I[g, s] be the restriction to Σ of a (partial) contraction polynomial in the set $\{s, |ds|_g^{-1}, g, g^{-1}, \nabla, R\}$. Then I[g, s] is a *natural* hypersurface invariant (NHI) when $I[g, s] = I[g, \tilde{s}]$ for any defining functions s, \tilde{s} for Σ .

Definition

Sam Blitz

Motivatio

Setup

Definitions

Main Result

Future Work Let s be any defining function for $\Sigma \hookrightarrow (M,g)$. Let I[g,s] be the restriction to Σ of a (partial) contraction polynomial in the set $\{s, |ds|_g^{-1}, g, g^{-1}, \nabla, R\}$. Then I[g, s] is a *natural* hypersurface invariant (NHI) when $I[g, s] = I[g, \tilde{s}]$ for any defining functions s, \tilde{s} for Σ .

Can drop s dependence if embedding is clear!

Definition

Sam Blitz

Motivatio

Setup

Definitions

Future

Let s be any defining function for $\Sigma \hookrightarrow (M, g)$. Let I[g, s] be the restriction to Σ of a (partial) contraction polynomial in the set $\{s, |ds|_g^{-1}, g, g^{-1}, \nabla, R\}$. Then I[g, s] is a *natural* hypersurface invariant (NHI) when $I[g, s] = I[g, \tilde{s}]$ for any defining functions s, \tilde{s} for Σ .

Can drop s dependence if embedding is clear!

Defining function: $\forall p \in M$, $p \in \Sigma \Leftrightarrow s(p) = 0 \neq ds(p)$

Sam Blit

Motivatior

Setup

Definitions Main Resul

Future Work

Definition

Let s be any defining function for $\Sigma \hookrightarrow (M, g)$. Let I[g, s] be the restriction to Σ of a (partial) contraction polynomial in the set $\{s, |ds|_g^{-1}, g, g^{-1}, \nabla, R\}$. Then I[g, s] is a *natural* hypersurface invariant (NHI) when $I[g, s] = I[g, \tilde{s}]$ for any defining functions s, \tilde{s} for Σ .

Can drop s dependence if embedding is clear!

Defining function: $\forall p \in M$, $p \in \Sigma \Leftrightarrow s(p) = 0 \neq ds(p)$ **Contraction polynomial** in $\{g_{ab}, g^{ab}, X_a, Y_{ab}, Z_{abc}\}$: *e.g.* $g^{ab}X_aX_b + g^{aa'}X_{a'}g^{bb'}g^{cc'}Y_{b'c'}Z_{abc}$

Sam Blit

Motivatior

Setup

Definitions Main Resul

Future Work

Definition

Let s be any defining function for $\Sigma \hookrightarrow (M, g)$. Let I[g, s] be the restriction to Σ of a (partial) contraction polynomial in the set $\{s, |ds|_g^{-1}, g, g^{-1}, \nabla, R\}$. Then I[g, s] is a *natural* hypersurface invariant (NHI) when $I[g, s] = I[g, \tilde{s}]$ for any defining functions s, \tilde{s} for Σ .

Can drop s dependence if embedding is clear!

Defining function: $\forall p \in M$, $p \in \Sigma \Leftrightarrow s(p) = 0 \neq ds(p)$

Contraction polynomial in $\{g_{ab}, g^{ab}, X_a, Y_{ab}, Z_{abc}\}$: e.g. $g^{ab}X_aX_b + g^{aa'}X_{a'}g^{bb'}g^{cc'}Y_{b'c'}Z_{abc}$

Partial contraction polynomial: *e.g.* $X_a X_b + Y_{ab} + Z_{abc} g^{cc'} X_{c'}$

Definitions Conformal hypersurface invariant

Definition

Sam Blit

Motivatio

Setup

Definitions

Main Result

Future Work Let $\Sigma \hookrightarrow (M, \mathbf{c})$ be a conformal hypersurface embedding, and for some $g \in \mathbf{c}$, let I[g] be an NHI for $\Sigma \hookrightarrow (M, g)$. Then $I[\mathbf{c}, \sigma]$ is a *natural conformal hypersurface invariant* (NCHI) of weight w when, for any $\Omega \in C^{\infty}_{+}M$,

$$I[\Omega^2 g] = \Omega^w I[g] \,.$$

Definitions Conformal hypersurface invariant

Sam Blit

Motivatio

Setup

Definitions

Main Result

Future Work Let $\Sigma \hookrightarrow (M, \mathbf{c})$ be a conformal hypersurface embedding, and for some $g \in \mathbf{c}$, let I[g] be an NHI for $\Sigma \hookrightarrow (M, g)$. Then $I[\mathbf{c}, \sigma]$ is a *natural conformal hypersurface invariant* (NCHI) of weight w when, for any $\Omega \in C^{\infty}_{+}M$,

$$I[\Omega^2 g] = \Omega^w I[g] \,.$$

Examples:

Definition

•
$$w(\hat{n}_a) = 1$$

• $w(\mathring{\Pi}_{ab}) = 1 \leftarrow \text{trace-free part of } \Pi$
• $w(W_{abcd}|_{\Sigma}) = 2$

Definitions

Transverse order

Definition

Sam Blitz

Motivatio

Setup

Definitions

Main Result

Future Work

Let I[g] be an NHI for $\Sigma \hookrightarrow (M,g)$ with g generic and s a defining function, and suppose that

$$I[g+s^kh] \neq I[g] = I[g+s^{k+1}h']$$

for some h and any h' such that $g + s^k h$ and $g + s^{k+1}h'$ are metrics on M. Then I[g] has transverse order k, and write TO(I[g]) = k.

Definitions

Transverse order

Definition

Sam Blitz

Motivatio

Setup

Definitions

Main Result

Future Work

Let I[g] be an NHI for $\Sigma \hookrightarrow (M,g)$ with g generic and s a defining function, and suppose that

$$I[g+s^kh] \neq I[g] = I[g+s^{k+1}h']$$

for some h and any h' such that $g + s^k h$ and $g + s^{k+1}h'$ are metrics on M. Then I[g] has transverse order k, and write TO(I[g]) = k.

Examples:

•
$$\operatorname{TO}(\hat{n}) = 0$$

•
$$TO(II) = 1$$

• $\operatorname{TO}(R|_{\Sigma}) = 2$

Definitions

Transverse order

Definition

Sam Blitz

Motivatio

Setup

Definitions

Main Result

Future Work

Let I[g] be an NHI for $\Sigma \hookrightarrow (M,g)$ with g generic and s a defining function, and suppose that

$$I[g+s^kh] \neq I[g] = I[g+s^{k+1}h']$$

for some h and any h' such that $g + s^k h$ and $g + s^{k+1}h'$ are metrics on M. Then I[g] has transverse order k, and write TO(I[g]) = k.

Examples:

•
$$\operatorname{TO}(\hat{n}) = 0$$

•
$$TO(II) = 1$$

•
$$\operatorname{TO}(R|_{\Sigma}) = 2$$

Definitions

Definition

Transverse order equivalence

Sam Blitz

Motivatio

Setup

Definitions

Main Result

Future Work Let I[g], L[g] be NHIs for $\Sigma \hookrightarrow (M, g)$ with g generic of the same tensor type. Then for $k \in \mathbb{N}$ we say that

 $I[g] \stackrel{k}{\sim} L[g]$

when I[g] - L[g] has transverse order at most k - 1.

Definitions

Definition

Transverse order equivalence

Sam Blitz

Motivatio

Setup

Definitions

Main Result

Future Work Let I[g], L[g] be NHIs for $\Sigma \hookrightarrow (M, g)$ with g generic of the same tensor type. Then for $k \in \mathbb{N}$ we say that

$I[g] \stackrel{k}{\sim} L[g]$

when I[g] - L[g] has transverse order at most k - 1.

Allows us to work "modulo lower order"

Definitions

Definition

Transverse order equivalence

Sam Blitz

Motivatio

Setup

Definitions

Main Result

Future Work Let I[g], L[g] be NHIs for $\Sigma \hookrightarrow (M, g)$ with g generic of the same tensor type. Then for $k \in \mathbb{N}$ we say that

 $I[g] \stackrel{k}{\sim} L[g]$

when I[g] - L[g] has transverse order at most k - 1.

Allows us to work "modulo lower order" **Example:** *Theorema egregium*

$$Sc - Ric_{\hat{n}\hat{n}} \stackrel{\Sigma}{=} \bar{S}c + \mathrm{II}^2 - (\mathrm{tr}\,\mathrm{II})^2$$
$$\Rightarrow Sc \stackrel{2}{\sim} Ric_{\hat{n}\hat{n}}$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Definitions Conformal fundamental forms

Definition

Sam Blitz

Motivation

Setup

Definitions

Main Result

Future Work Let $\Sigma \hookrightarrow (M, \mathbf{c})$, let $2 \leq m \in \mathbb{N}$, and let $g \in \mathbf{c}$. For an NCHI $I[\mathbf{c}]$ represented by $I[g] \in \Gamma(\odot^2_{\circ}T^*\Sigma)$, if

$$TO(I[c]) = m - 1$$
 and $w(I[c]) = 3 - m$,

then $I[\mathbf{c}]$ is an m^{th} conformal fundamental form.

Definitions Conformal fundamental forms

Definition

Sam Blitz

Motivation

Setup

Definitions

Main Result

Future Work Let $\Sigma \hookrightarrow (M, \mathbf{c})$, let $2 \leq m \in \mathbb{N}$, and let $g \in \mathbf{c}$. For an NCHI $I[\mathbf{c}]$ represented by $I[g] \in \Gamma(\odot_{\circ}^{2}T^{*}\Sigma)$, if

$$TO(I[c]) = m - 1$$
 and $w(I[c]) = 3 - m$

then $I[\mathbf{c}]$ is an m^{th} conformal fundamental form.

Canonical construction exists! \Rightarrow the mth fundamental form =: $\underline{\tilde{m}}$.

Definitions Conformal fundamental forms

Definition

Sam Blitz

Motivation

Setup

Definitions

Main Result

Future Work

Let $\Sigma \hookrightarrow (M, \mathbf{c})$, let $2 \leq m \in \mathbb{N}$, and let $g \in \mathbf{c}$. For an NCHI $I[\mathbf{c}]$ represented by $I[g] \in \Gamma(\odot^2_{\circ}T^*\Sigma)$, if

$$TO(I[c]) = m - 1$$
 and $w(I[c]) = 3 - m$.

then $I[\mathbf{c}]$ is an m^{th} conformal fundamental form.

Canonical construction exists! \Rightarrow the mth fundamental form =: $\underline{\tilde{m}}$.

(Caveat: canonical construction only exists for M even dimensional and for $m \leq d-1$.)

Statement

Sam Blitz	Can we specify NCHIs entirely with tensors on Σ ?
Motivation	
Setup	
Definitions	
Main Result	
Future Work	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで $12 \, / \, 20$

Statement

Sam Blitz

Motivation

Setup

Definition

Main Result

Future Work Can we specify NCHIs entirely with tensors on Σ ? Yes (to a certain order):

Theorem

Let $\Sigma \hookrightarrow (M^d, \mathbf{c})$ with d even and let $I[\mathbf{c}]$ be an NCHI with $\operatorname{TO}(I[\mathbf{c}]) = k$ for $k \in \{0, 1, \ldots, d-2\}$. Then, for any $g \in \mathbf{c}$, I[g] can be expressed as a (partial) contraction polynomial in elements of the set

 $\{\bar{g}, \bar{g}^{-1}, \bar{\nabla}, \bar{R}, \hat{n}, \overset{\circ}{\mathrm{II}}, \ldots, \underbrace{\overline{\mathrm{k}+1}}^{\circ}\}.$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

12/20

Statement

Sam Blitz

Motivation

Setup

Definition

Main Result

Future Work Can we specify NCHIs entirely with tensors on Σ ? Yes (to a certain order):

Theorem

Let $\Sigma \hookrightarrow (M^d, \mathbf{c})$ with d even and let $I[\mathbf{c}]$ be an NCHI with $\operatorname{TO}(I[\mathbf{c}]) = k$ for $k \in \{0, 1, \dots, d-2\}$. Then, for any $g \in \mathbf{c}$, I[g] can be expressed as a (partial) contraction polynomial in elements of the set

$$\{\bar{g},\bar{g}^{-1},\bar{\nabla},\bar{R},\hat{n},\,\mathring{\mathrm{II}},\ldots,\stackrel{\circ}{\overline{\mathrm{k}+1}}\}.$$

Proof idea: Relies on decomposition of tensors in Riemannian setting to projections and then eliminates all but the remaining tensors from the list of possible terms.

Theorema egregium:

Setup

Definitions

Main Result

Future Work

$Sc - Ric_{\hat{n}\hat{n}} \stackrel{\Sigma}{=} \bar{S}c + \Pi^2 - (\operatorname{tr}\Pi)^2$

Theorema egregium:

Motivation

Setup

Definitions

Main Result

Future Work

$Sc - Ric_{\hat{n}\hat{n}} \stackrel{\Sigma}{=} \bar{S}c + \Pi^2 - (\operatorname{tr}\Pi)^2$

Gauß equation:

$$R_{abcd}^{\top} \stackrel{\Sigma}{=} \bar{R}_{abcd} - \Pi_{ac} \Pi_{bd} + \Pi_{ad} \Pi_{bc}$$

Theorema egregium:

Sam Blitz

Motivation

Setup

Definitions

Main Result

Future Work

$Sc - Ric_{\hat{n}\hat{n}} \stackrel{\Sigma}{=} \bar{S}c + \Pi^2 - (\operatorname{tr}\Pi)^2$

Gauß equation:

$$\boldsymbol{R}_{abcd}^{\top} \stackrel{\Sigma}{=} \bar{\boldsymbol{R}}_{abcd} - \boldsymbol{\Pi}_{ac}\boldsymbol{\Pi}_{bd} + \boldsymbol{\Pi}_{ad}\boldsymbol{\Pi}_{bc}$$

Codazzi-Mainardi equation:

$$R_{abc\hat{n}}^{\top} \stackrel{\Sigma}{=} \bar{\nabla}_a \Pi_{bc} - \bar{\nabla}_b \Pi_{ac}$$

Theorema egregium:

Sam Blit

Motivation

Setup

Definitions

Main Result

Future Work

$Sc - Ric_{\hat{n}\hat{n}} \stackrel{\Sigma}{=} \bar{S}c + \Pi^2 - (\operatorname{tr}\Pi)^2$

Gauß equation:

$$R_{abcd}^{\top} \stackrel{\Sigma}{=} \bar{R}_{abcd} - \Pi_{ac} \Pi_{bd} + \Pi_{ad} \Pi_{bc}$$

Codazzi-Mainardi equation:

$$R_{abc\hat{n}}^{\top} \stackrel{\Sigma}{=} \bar{\nabla}_{a} \mathrm{II}_{bc} - \bar{\nabla}_{b} \mathrm{II}_{ac}$$

Fialkow–Gauss equation:

 $W_{\hat{n}ab\hat{n}} + (d-3)P_{ab}^{\top} \stackrel{\simeq}{=} \mathring{\mathrm{II}}_{ab}^{2} - \frac{1}{2(d-2)}\mathring{\mathrm{II}}^{2}\bar{g}_{ab} + (d-3)\left(\bar{P}_{ab} - H\,\mathring{\mathrm{II}}_{ab} - \frac{1}{2}H^{2}g_{ab}\right)$ $(\Box \models \langle \mathcal{O} \models \langle \mathcal{O} \models \langle \mathcal{O} \models \langle \mathcal{O} \models \rangle \rangle \langle \mathcal{O} \models \rangle \langle \mathcal{O} \models \rangle \langle \mathcal{O} \models \rangle \rangle \langle \mathcal{O} \models \rangle \langle \mathcal{O} \models \rangle \rangle \langle \mathcal{O}$

Main Result Key Observation

Sam Blitz

Motivation

Setup

Definitions

Main Result

Future Work

Expected:

$$\operatorname{TO}(R_{\hat{n}ab\hat{n}}) = \operatorname{TO}(Ric_{ab}^{\top}) = \operatorname{TO}(Ric_{\hat{n}\hat{n}}) = 2$$

イロト イロト イヨト イヨト

Main Result Key Observation

Sam Blitz

Motivation

Setup

Definitions

Main Result

Future Work

Expected:

$$\operatorname{TO}(R_{\hat{n}ab\hat{n}}) = \operatorname{TO}(Ric_{ab}^{\top}) = \operatorname{TO}(Ric_{\hat{n}\hat{n}}) = 2$$

"Unexpected" (lower):

$$\operatorname{TO}(R_{abcd}^{\top}) = \operatorname{TO}(R_{abc\hat{n}}^{\top}) = \operatorname{TO}(Ric_{a\hat{n}}^{\top}) = 1$$

Main Result Key Observation

Sam Blit

Motivation

Setup

Definitions

Main Result

Future Work

Expected:

$$\operatorname{TO}(R_{\hat{n}ab\hat{n}}) = \operatorname{TO}(Ric_{ab}^{\top}) = \operatorname{TO}(Ric_{\hat{n}\hat{n}}) = 2$$

"Unexpected" (lower):

 $\operatorname{TO}(R_{abcd}^{\top}) = \operatorname{TO}(R_{abc\hat{n}}^{\top}) = \operatorname{TO}(Ric_{a\hat{n}}^{\top}) = 1$

Generalize to higher derivatives?

Calculations

Sam Blitz Motivation Setup Definitions Main Result Future Work Compute modulo lower order:

 $(:\nabla_{\hat{a}}^m:R_{abcd})^\top \overset{m+2}{\sim} 0$ $(\hat{n}^d: \nabla^m_{\hat{n}}: R_{dabc})^{\top} \overset{m+2}{\sim} 0$ $(\hat{n}^c \hat{n}^d : \nabla^m_{\hat{n}} : R_{cabd})^\top \overset{m+2}{\sim} (d-2) (: \nabla^m_{\hat{n}} : P_{ab})^\top_{\hat{n}} + \bar{q}_{ab} : \nabla^m_{\hat{n}} : J|_{\Sigma}$ $(:\nabla^m_{\hat{a}}: Ric_{ab})^{\top} \overset{m+2}{\sim} (d-2)(:\nabla^m_{\hat{a}}: P_{ab})^{\top}_{\hat{a}} + \bar{a}_{ab}:\nabla^m_{\hat{a}}: J|_{\Sigma}$ $(\hat{n}^b:\nabla^m_{\hat{n}}:Ric_{ab})^{\top} \overset{m+2}{\sim} 0$ $(\hat{n}^a \hat{n}^b : \nabla^m_{\hat{a}} : Ric_{ab})^{\top} \overset{m+2}{\sim} (d-1) : \nabla^m_{\hat{a}} : J|_{\Sigma}$ $:\nabla^m_{\hat{\alpha}}: Sc|_{\Sigma} \overset{m+2}{\sim} 2(d-1):\nabla^m_{\hat{\alpha}}: J|_{\Sigma}.$ $(:\nabla_{\hat{n}}^{m}:=\hat{n}^{a_{1}}\cdots\hat{n}^{a_{m}}\nabla_{a_{1}}\cdots\nabla_{a_{m}})$

Calculations

Sam Blitz Motivation Setup Definitions **Main Result** Future Work Compute modulo lower order:

 $(:\nabla^m_{\hat{a}}: R_{abad})^{\top} \overset{m+2}{\sim} 0$ $(\hat{n}^d: \nabla^m_{\hat{n}}: R_{dabc})^{\top} \overset{m+2}{\sim} 0$ $(\hat{n}^c \hat{n}^d : \nabla^m_{\hat{n}} : R_{cabd})^\top \overset{m+2}{\sim} (d-2) (: \nabla^m_{\hat{n}} : P_{ab})^\top_{\hat{n}} + \bar{q}_{ab} : \nabla^m_{\hat{n}} : J|_{\Sigma}$ $(:\nabla^m_{\hat{a}}: Ric_{ab})^{\top} \overset{m+2}{\sim} (d-2)(:\nabla^m_{\hat{a}}: P_{ab})^{\top}_{\hat{a}} + \bar{a}_{ab}:\nabla^m_{\hat{a}}: J|_{\Sigma}$ $(\hat{n}^b:\nabla^m_{\hat{a}}:Ric_{ab})^{\top} \overset{m+2}{\sim} 0$ $(\hat{n}^a \hat{n}^b : \nabla^m_{\hat{a}} : Ric_{ab})^{\top} \overset{m+2}{\sim} (d-1) : \nabla^m_{\hat{a}} : J|_{\Sigma}$ $:\nabla^m_{\hat{\alpha}}: Sc|_{\Sigma} \overset{m+2}{\sim} 2(d-1):\nabla^m_{\hat{\alpha}}: J|_{\Sigma}.$ $(:\nabla^m_{\hat{a}}:=\hat{n}^{a_1}\cdots\hat{n}^{a_m}\nabla_{a_1}\cdots\nabla_{a_n})$ (Slightly) better basis! 4 D N 4 D N 4 D N 4 D N 1 D 1

Main Result Conformal fundamental forms, *T*-curvature

Sam Blitz

Motivation

Setup

Definitions

Main Result

Future Work

Canonical conf. FFs [B. '21]: For d even, $2 \le m \le d-2$

$$(:\nabla_{\hat{n}}^{m-2}:P_{ab})_{\circ}^{\top} \stackrel{m}{\sim} \alpha \underline{\overrightarrow{\mathbf{m}+1}}_{ab}$$

Main Result Conformal fundamental forms, *T*-curvature

Sam Blit

Setup

Definitions

Main Result

Future Work Canonical conf. FFs [B. '21]: For d even, $2 \le m \le d-2$

$$(:\nabla_{\hat{n}}^{m-2}:P_{ab})_{\circ}^{\top} \stackrel{m}{\sim} \alpha \, \underline{\overrightarrow{\mathbf{m}+1}}_{ab}$$

T-curvatures [Gover–Peterson '21]: For $2 \le m \le d-2$: : $\nabla_{\hat{n}}^m : J|_{\Sigma} \stackrel{m}{\sim} \beta T_m^g$

 $T_m^g = m^{\text{th}}$ order generalization of mean curvature

Main Result Conformal fundamental forms, *T*-curvature

Motivation

Definition

Main Result

Future Work Canonical conf. FFs [B. '21]: For d even, $2 \le m \le d-2$

$$(:\nabla_{\hat{n}}^{m-2}:P_{ab})_{\circ}^{\top} \stackrel{m}{\sim} \alpha \underline{\overrightarrow{\mathbf{m}+1}}_{ab}$$

T-curvatures [Gover–Peterson '21]: For $2 \le m \le d-2$: : $\nabla_{\hat{\pi}}^m : J|_{\Sigma} \stackrel{m}{\sim} \beta T_m^g$

 $T_m^g = m^{\text{th}}$ order generalization of mean curvature

Important feature:

$$T_m^{\Omega^2 g} = \Omega^{-m} (T_m^g + \delta_m \log \Omega)$$

where $\delta_m = \gamma : \nabla_{\hat{n}}^m : + \text{lower order}$

イロト 不同 トイヨト イヨト ヨー ろくつ

Sam Blit

Motivati

Setup

Definitions

Main Result

Future Work

Can write NHIs (TO $\leq d - 2$):

$$\{\bar{g}, \bar{g}^{-1}, \bar{\nabla}, \bar{R}, \mathring{\mathrm{II}}, \dots, \overbrace{\overline{\mathrm{d}-1}}^{\circ}, T_1^g, \dots, T_{d-2}^g\}$$

Sam Blit

Setup

Definitions

Main Result

Future Work

Can write NHIs (TO $\leq d - 2$):

$$\{\bar{g}, \bar{g}^{-1}, \bar{\nabla}, \bar{R}, \mathring{\mathrm{II}}, \dots, \overline{\underline{\mathrm{d}-1}}, T_1^g, \dots, T_{d-2}^g\}$$

Want to eliminate T_i^g for NCHIs.

Sam Blitz Motivation Setup Definitions Main Result

Future Work

Can write NHIs (TO
$$\leq d - 2$$
):

$$\{\bar{g}, \bar{g}^{-1}, \bar{\nabla}, \bar{R}, \mathring{\mathrm{II}}, \dots, \overbrace{\mathrm{d-1}}^{\circ}, T_1^g, \dots, T_{d-2}^g\}$$

Want to eliminate T_i^g for NCHIs.

How? Contradiction:

Sam Blitz Motivation Setup Definitions Main Result

Future Work

Can write NHIs (TO $\leq d - 2$):

$$\{\bar{g}, \bar{g}^{-1}, \bar{\nabla}, \bar{R}, \mathring{\mathrm{II}}, \dots, \overbrace{\overline{\mathrm{d}-1}}^{\circ}, T_1^g, \dots, T_{d-2}^g\}$$

Want to eliminate T_i^g for NCHIs.

How? Contradiction:

• suppose $\exists m \geq 1$ maximal s.t. $T_m^g \in I[g]$ and $I[g] = \Omega^w I[\Omega^2 g]$

Sam Blitz Motivation Setup Definitions Main Result Future Can write NHIs (TO $\leq d - 2$):

$$\{\bar{g}, \bar{g}^{-1}, \bar{\nabla}, \bar{R}, \mathring{\mathrm{II}}, \dots, \overbrace{\mathrm{d}-1}^{\circ}, T_1^g, \dots, T_{d-2}^g\}$$

Want to eliminate T_i^g for NCHIs.

How? Contradiction:

- suppose $\exists m \geq 1$ maximal s.t. $T_m^g \in I[g]$ and $I[g] = \Omega^w I[\Omega^2 g]$
- $I[\Omega^2 g] \ni (\text{coefficient})\delta_m \log \Omega$

Sam Bitz Motivation Setup Definitions Main Result

Future Work Can write NHIs (TO $\leq d - 2$):

$$\{\bar{g}, \bar{g}^{-1}, \bar{\nabla}, \bar{R}, \mathring{\mathrm{II}}, \dots, \overbrace{\mathrm{d-1}}^{\circ}, T_1^g, \dots, T_{d-2}^g\}$$

Want to eliminate T_i^g for NCHIs.

How? Contradiction:

- suppose $\exists m \geq 1$ maximal s.t. $T_m^g \in I[g]$ and $I[g] = \Omega^w I[\Omega^2 g]$
- $I[\Omega^2 g] \ni (\text{coefficient})\delta_m \log \Omega$
- Conformal invariance \Rightarrow coefficient = 0

Motivation Setup Definitions Main Result Future

Can write NHIs (TO
$$\leq d - 2$$
):

$$\{\bar{g}, \bar{g}^{-1}, \bar{\nabla}, \bar{R}, \mathring{\mathrm{II}}, \dots, \overbrace{\overline{\mathrm{d}-1}}^{\circ}, T_1^g, \dots, T_{d-2}^g\}$$

Want to eliminate T_i^g for NCHIs.

How? Contradiction:

- suppose $\exists m \geq 1$ maximal s.t. $T_m^g \in I[g]$ and $I[g] = \Omega^w I[\Omega^2 g]$
- $I[\Omega^2 g] \ni (\text{coefficient})\delta_m \log \Omega$
- Conformal invariance \Rightarrow coefficient = 0

Proof done!

Tractor classification

	(\mathcal{L})
Future Work	

(Still in d even.) **Fact:** Most $\overline{\nabla}^{\ell} \underline{\tilde{m}}$ not conf. invariant.

Tractor classification

(Still in d even.) **Fact:** Most $\overline{\nabla}^{\ell} \underline{\tilde{m}}$ not conf. invariant. Which are?

<□ ト < □ ト < 直 ト < 直 ト < 直 ト 目 の Q (~ 18 / 20

Tractor classification

Sam Blit

Motivation

Setup

Definitions

Main Result

Future Work (Still in d even.) **Fact:** Most $\overline{\nabla}^{\ell} \underline{\underline{m}}$ not conf. invariant. Which are?

Tractor methods:

Conf. inv. linear operators (with known exceptions) \Leftrightarrow tractor operators [Šilhan '06]

Tractor classification

Sam Blit

Motivatior

Setup

Definition

Main Result

Future Work (Still in d even.) **Fact:** Most $\overline{\nabla}^{\ell} \underline{\tilde{m}}$ not conf. invariant. Which are?

Tractor methods:

Conf. inv. linear operators (with known exceptions) \Leftrightarrow tractor operators [Šilhan '06]

Open question: Conf. inv. multi-linear operators?

Tractor classification

Sam Blit

Motivatio

Setup

Definitions

Main Result

Future Work (Still in d even.) **Fact:** Most $\overline{\nabla}^{\ell} \underline{\tilde{m}}$ not conf. invariant. Which are?

Tractor methods:

Conf. inv. linear operators (with known exceptions) \Leftrightarrow tractor operators [Šilhan '06]

Open question: Conf. inv. multi-linear operators?

 Bilinear operators: some known results [Šilhan '09, Čap–Šilhan '09, Michel '11]

Tractor classification

Sam Blit

Motivatio

Setup

Definition

Main Result

Future Work (Still in d even.) **Fact:** Most $\overline{\nabla}^{\ell} \underline{\tilde{m}}$ not conf. invariant. Which are?

Tractor methods:

Conf. inv. linear operators (with known exceptions) \Leftrightarrow tractor operators [Šilhan '06]

Open question: Conf. inv. multi-linear operators?

- Bilinear operators: some known results [Šilhan '09, Čap–Šilhan '09, Michel '11]
- Tri- or multi-linear operators: here be dragons.

Tractor classification

Sam Blit

Motivatio: Setup

Definitions

Main Result

Future Work (Still in d even.) **Fact:** Most $\overline{\nabla}^{\ell} \underline{\tilde{m}}$ not conf. invariant. Which are?

Tractor methods:

Conf. in v. linear operators (with known exceptions) \Leftrightarrow tractor operators [Šilhan '06]

Open question: Conf. inv. multi-linear operators?

 Bilinear operators: some known results [Šilhan '09, Čap–Šilhan '09, Michel '11]

Tri- or multi-linear operators: here be dragons.

Conjecture: Besides the known exceptions, all NCHIs with $TO \le d - 2$ can be formed from a tractor basis

$$\{\bar{h}_{AB}, X_A, \bar{D}_A, \overline{W}_{ABCD}, \mathring{\Pi}_{AB}, \dots, \overbrace{\overline{d-1}}^{\circ}_{AB}\}.$$

Tractor classification

Sam Blit

Motivatio: Setup

Definitions

Main Result

Future Work (Still in d even.) **Fact:** Most $\overline{\nabla}^{\ell} \underline{\tilde{m}}$ not conf. invariant. Which are?

Tractor methods:

Conf. in v. linear operators (with known exceptions) \Leftrightarrow tractor operators [Šilhan '06]

Open question: Conf. inv. multi-linear operators?

 Bilinear operators: some known results [Šilhan '09, Čap–Šilhan '09, Michel '11]

Tri- or multi-linear operators: here be dragons.

Conjecture: Besides the known exceptions, all NCHIs with $TO \le d - 2$ can be formed from a tractor basis

$$\{\bar{h}_{AB}, X_A, \bar{D}_A, \overline{W}_{ABCD}, \mathring{\Pi}_{AB}, \dots, \overline{\underline{d-1}}_{AB}\}.$$

Experimental evidence: yes?

Sam Blitz Motivation Setup Definitions Main Result Future

Work

Main result: $TO \le d - 2$

< □ ト < □ ト < 巨 ト < 巨 ト < 巨 ト 三 の へ () 19 / 20

Sam Blit Motivatio Setup

Main result: $TO \le d - 2$ Interesting: $TO("Willmore invariants") = d - 1 \Rightarrow need \frac{\mathring{d}}{d}$

Future Work

Sam Bli

Motivatio

Setup

Definition

Main Result

Future Work Main result: $TO \le d - 2$ Interesting: $TO("Willmore invariants") = d - 1 \Rightarrow need \frac{\mathring{d}}{\underline{d}}$ Known [B.–Gover–Waldron '21]:

Motivatio

Definition

Main Result

Future Work Main result: $\text{TO} \leq d - 2$ Interesting: $\text{TO}(\text{``Willmore invariants''}) = d - 1 \Rightarrow \text{need } \frac{\dot{\overline{d}}}{\overline{d}}$ Known [B.-Gover-Waldron '21]: • d = 4: $\mathring{\text{IV}}_{ab} = C_{\hat{n}(ab)}^{\top} + HW_{\hat{n}ab\hat{n}} - \bar{\nabla}^c W_{c(ab)\hat{n}}^{\top}$

Sam Blitz Motivation Setup Definitions Main Resu Future

Future Work Main result: $\text{TO} \leq d - 2$ Interesting: $\text{TO}(\text{``Willmore invariants''}) = d - 1 \Rightarrow \text{need } \frac{\dot{\overline{d}}}{\overline{d}}$ Known [B.-Gover-Waldron '21]: d = 4: $\mathring{\text{N}}_{ab} = C_{\hat{n}(ab)}^{\top} + HW_{\hat{n}ab\hat{n}} - \bar{\nabla}^{c}W_{c(ab)\hat{n}}^{\top}$

•
$$d = 6$$
, Poincaré–Einstein:
 $\mathring{VI}_{ab} = ((\nabla_{\hat{n}} + 2H)B_{ab})_{\circ}^{\top} - 4\bar{C}_{c(ab)}\bar{\nabla}^{c}H$

Sam Blitz Motivation Setup Definitions Main Resul Future Work Main result: $\mathrm{TO} \leq d-2$ Interesting: $\mathrm{TO}(\text{``Willmore invariants''}) = d-1 \Rightarrow \mathrm{need} \ \underline{d}$ Known [B.-Gover-Waldron '21]: • d = 4: $\mathring{\mathrm{N}}_{ab} = C_{\hat{n}(ab)}^{\top} + HW_{\hat{n}ab\hat{n}} - \overline{\nabla}^c W_{c(ab)\hat{n}}^{\top}$ • d = 6, Poincaré-Einstein: $\mathring{\mathrm{VI}}_{ab} = ((\nabla_{\hat{n}} + 2H)B_{ab})_{\circ}^{\top} - 4\overline{C}_{c(ab)}\overline{\nabla}^c H$

• $d \ge 8$ even, Poincaré–Einstein: $\frac{\dot{d}}{d}$ provably exists.

Sam Blitz Motivation Setup Definitions Main Resul Future Work Main result: $TO \le d-2$ Interesting: TO("Willmore invariants") = $d - 1 \Rightarrow \text{need } \overline{\overline{d}}$ Known [B.–Gover–Waldron '21]: • d = 4: $\mathring{W}_{ab} = C_{\hat{n}(ab)}^{\top} + HW_{\hat{n}ab\hat{n}} - \bar{\nabla}^c W_{c(ab)\hat{n}}^{\top}$ ■ d = 6, Poincaré–Einstein: $\mathring{\mathrm{VI}}_{ab} = ((\nabla_{\hat{n}} + 2H)B_{ab})_{\frown}^{\top} - 4\bar{C}_{c(ab)}\bar{\nabla}^{c}H$ • $d \ge 8$ even, Poincaré–Einstein: \overline{d} provably exists. Open question: Does \overline{d} exist for all d = 2n (not Poincaré–Einstein)?

Sam Blitz Motivation Setup Definitions Main Resul Future Work Main result: $TO \le d-2$ Interesting: TO("Willmore invariants") = $d - 1 \Rightarrow \text{need } \overline{\overline{d}}$ Known [B.–Gover–Waldron '21]: • d = 4: $\mathring{W}_{ab} = C_{\hat{n}(ab)}^{\top} + HW_{\hat{n}ab\hat{n}} - \bar{\nabla}^c W_{c(ab)\hat{n}}^{\top}$ ■ d = 6, Poincaré–Einstein: $\mathring{\mathrm{VI}}_{ab} = ((\nabla_{\hat{n}} + 2H)B_{ab})_{\alpha}^{\top} - 4\bar{C}_{c(ab)}\bar{\nabla}^{c}H$ • $d \ge 8$ even, Poincaré–Einstein: \overline{d} provably exists. Open question: Does \overline{d} exist for all d = 2n (not Poincaré–Einstein)? Probably yes.

Sam Blitz Motivation Setup Definitions Main Resul Future Work Main result: $TO \le d-2$ Interesting: TO("Willmore invariants") = $d - 1 \Rightarrow \text{need } \overline{\overline{d}}$ Known [B.–Gover–Waldron '21]: • d = 4: $\mathring{W}_{ab} = C_{\hat{n}(ab)}^{\top} + HW_{\hat{n}ab\hat{n}} - \bar{\nabla}^c W_{c(ab)\hat{n}}^{\top}$ ■ d = 6, Poincaré–Einstein: $\mathring{\mathrm{VI}}_{ab} = ((\nabla_{\hat{n}} + 2H)B_{ab})_{\frown}^{\top} - 4\bar{C}_{c(ab)}\bar{\nabla}^{c}H$ • $d \ge 8$ even, Poincaré–Einstein: \overline{d} provably exists. Open question: Does \overline{d} exist for all d = 2n (not Poincaré-Einstein)? Probably yes. Hard to prove...

multilinear operators!

Thank you

Motivatio

Setup

Definitions

Main Result

Future Work

Thank you!