Curvature in almost-complex and complex geometry

Gabriella Clemente

Masaryk University

January 27, 2023

Plan

1 Motivating open problems (Yau's Challenge and S^{6} problem)
$\square S^{6}$ progress: (conformal) almost-hermitian version due to LeBrun, Salamon, and others
2 Intrinsic torsions vs. "obstructures"
3 Question A: What is the effect of constraining the (various) curvatures of a Riemannian metric in the almost-hermitian case?

1. Motivating open problems

- Yau's Challenge (YC): Determine if there are any (compact) almost-complex, but not complex manifolds of real dimension at least 6 .
- S^{6} problem: Is the 6-dimensional sphere S^{6} a complex manifold?
- S^{6} is a YC solution candidate...

1. Motivating open problems, S^{6} progress

Let g be the round metric on the unit 6 -sphere S^{6},

$$
\begin{gathered}
A C\left(S^{6}\right):=\left\{\text { a-cx structures on } S^{6}\right\}, \text { and } \\
A C\left(S^{6}\right)_{g}:=\left\{J \in A C\left(S^{6}\right) \mid g(J X, J Y)=g(X, Y), \forall X, Y \in \mathfrak{X}\left(S^{6}\right)\right\} \\
=\left\{g \text { - orthogonal a-cx structures on } S^{6}\right\} .
\end{gathered}
$$

- LeBrun (1987): There is no integrable $A \in A C\left(S^{6}\right)_{g}$.
- Salamon, and others (\gtrsim 1992): For any conformal to g Riemannian metric $g^{\prime}, A \in A C\left(S^{6}\right)_{g^{\prime}}$ cannot be integrable.

1. Motivating open problems, S^{6} progress

The proofs of both results are extrinsic.

- LeBrun (1987): For any $A \in A C\left(S^{6}\right)$, there is a smooth embedding $\mathcal{R}_{A}: S^{6} \hookrightarrow \operatorname{Gr}_{3}^{\mathbb{C}}\left(\mathbb{C}^{7}\right)$ that is holomorphic when $A \in A C\left(S^{6}\right)_{g}$ is integrable. So if S^{6} had a complex structure $A \in A C\left(S^{6}\right)_{g}, \mathcal{R}_{A}$ would embed S^{6} as a complex manifold into the Kähler manifold $\operatorname{Gr}_{3}^{\mathbb{C}}\left(\mathbb{C}^{7}\right)$. Then, S^{6} would be Kähler too, which is impossible because $H^{2}\left(S^{6}, \mathbb{R}\right)=0$.

1. Motivating open problems, S^{6} progress

The proofs of both results are extrinsic.
\square Salamon, and others (\gtrsim 1992): Suppose that S^{6} carried an integrable $A \in A C\left(S^{6}\right)_{g^{\prime}}$, where g^{\prime} is conformal to g. As in LeBrun's proof, there exists a holomorphic embedding \mathcal{S}_{A} of S^{6} into a hermitian symmetric space $\left(H, J_{H}\right)$ (twistor bundle of $\left.S^{6}\right)$. But H is Kähler, forcing $S^{6} \simeq \mathcal{S}_{A}\left(S^{6}\right)$ to be Kähler too, which again, is false.

2. Intrinsic torsions vs. "obstructures"

- Intrinsic torsions are a cohomological measurement of the non-integrability of a G-structure (they are given by Spencer cohomology classes). As their name suggest, they allow for an intrinsic study of (non-)integrability.
- Indeed, almost-complex structures are $G L_{n}(\mathbb{C})$-structures, and almost-hermitian structures (i.e. pairs (g, A), where A is a g-orthogonal a-cx structure) are $U(n)$-structures.
- The 1st intrinsic torsion of a linear connection ∇^{J} that is compatible with an a-cx structure $J\left(\nabla^{J} J=0\right)$ coincides with the Nijenhuis tensor.

2. Intrinsic torsions vs. "obstructures"

- It's not clear how to use the classical obstruction theory of G-structures to study the interfacing between the almost-complex and (bounded curvature) Riemannian geometries of a manifold. Almost-hermitian structures for metrics of some prescribed curvature aren'† a usual kind of G-structure. This is why the standard theory cannot be readily applied. Anyhow,
- if ∇ is a linear connection compatible with a G-structure P, then the 1st 2 intrinsic torsions have the following geometric interpretation:
- $T_{i n t r}^{1}(P)=\left[T^{\nabla}\right]$, and
- $T_{\text {intr }}^{2}(P)=\left[R^{\nabla}\right]$,
where T^{∇} and R^{∇} are the torsion, respectively the curvature of the connection.

2. Intrinsic torsions vs. "obstructures"

- We will obtain curvature obstruction equations to the integrability of almost-complex structures that allow us to probe the almost-complex geometry with Riemannian metrics of prescribed curvature. We will covariantly differentiate the Nijenhuis tensor. Observe that $D^{k} N_{J}=0$ - the vanishing of any order $k \geq 1$ covariant derivative of the Nijenhuis tensor of an a-cx structure J - can be viewed as an obstruction equation.
- Let's call the left-hand-side of such an obstruction equation an "obstructure;" e.g. if $J \in A C(M)$, the differential form $D^{k} N_{J} \in \Omega^{k+2}\left(M, T_{M}\right)$ is an obstructure.

2. Intrinsic torsions vs. "obstructures"

Lemma

Let ∇ be any torsion-free connection on T_{M}, and d^{∇} be its associated covariant exterior derivative. Then, $A \in A C(M)$ is integrable iff $d^{\nabla} A$ is A-invariant; i.e.

$$
I_{A}^{\nabla}(\zeta, \eta):=d^{\nabla} A(A(\zeta), A(\eta))-d^{\nabla} A(\zeta, \eta)=0
$$

2. Intrinsic torsions vs. "obstructures"

- The spaces $\Omega^{\bullet}\left(M, \operatorname{End}_{\mathbb{R}}\left(T_{M}\right)\right)=\bigoplus_{k \geq 0} \Omega^{k}\left(M, \operatorname{End}_{\mathbb{R}}\left(T_{M}\right)\right)$, and $\Omega^{\bullet}\left(M, \Lambda^{\bullet} T_{M}\right)=\oplus_{k \geq 0} \oplus_{p+q=k} \Omega^{p}\left(M, \Lambda^{q} T_{M}\right)$ are graded algebras, and

$$
\Omega^{\bullet}\left(M, T_{M}\right)=\bigoplus_{k \geq 0} \Omega^{k}\left(M, T_{M}\right)
$$

can be viewed as both a left $\Omega^{\bullet}\left(M, \operatorname{End}_{\mathbb{R}}\left(T_{M}\right)\right)$-module and a right $\Omega^{\bullet}\left(M, \Lambda^{\bullet} T_{M}\right)$-module. One can unambiguously denote all of the products and actions involved by " \wedge."

2. Intrinsic torsions vs. "obstructures"

- The correct notion of covariant differentiation of the integrability form $I_{A}^{\nabla} \in \Omega^{2}\left(M, T_{M}\right)$ is supplied by d^{∇}. Since I_{A}^{∇} is a function of A and $d^{\nabla} A$, its first covariant exterior derivative will be a function of $A, d^{\nabla} A$, and $\left(d^{\nabla}\right)^{2} A=R^{\nabla} \wedge A$. The same thinking reveals that the k-th covariant exterior derivative of I_{A}^{∇} will depend on $A, d^{\nabla} A,\left(d^{\nabla}\right)^{2} A=R^{\nabla} \wedge A, \ldots$,

$$
\left(d^{\nabla}\right)^{k+1} A= \begin{cases}\left(R^{\nabla}\right)^{\frac{k+1}{2}} \wedge A & \text { if } k \text { is odd } \\ \left(R^{\nabla}\right)^{\frac{k}{2}} \wedge d^{\nabla} A & \text { if } k \text { is even }\end{cases}
$$

2. Intrinsic torsions vs. "obstructures"

The integrability form can be re-expressed as

Lemma

$I_{A}^{\nabla}=d^{\nabla} A \wedge(A \wedge A)-d^{\nabla} A$

- Once we develop an appropriate calculus of T_{M}-valued forms, this Lemma makes it easier to compute the k th covariant exterior derivative of I_{A}^{∇}.

2. Intrinsic torsions vs. "obstructures"

For example, the 1st 2 obstructures are:

Lemma

$$
d^{\nabla} I_{A}^{\nabla}=\left(R^{\nabla} \wedge A\right) \wedge(A \wedge A)+2 d^{\nabla} A \wedge\left(d^{\nabla} A \wedge A\right)-R^{\nabla} \wedge A
$$

$$
\left(d^{\nabla}\right)^{2} I_{A}^{\nabla}=\left(R^{\nabla} \wedge d^{\nabla} A\right) \wedge(A \wedge A)+4\left(R^{\nabla} \wedge A\right) \wedge\left(d^{\nabla} A \wedge A\right)+
$$

$$
2 d^{\nabla} A \wedge\left(\left(R^{\nabla} \wedge A\right) \wedge A\right)-R^{\nabla} \wedge d^{\nabla} A
$$

3. Question A

Question A: What is the effect of constraining the (various) curvatures of a Riemannian metric in the almost-hermitian case?

- Program to study Question A:
- Recover LeBrun's result via an obstructure refinement to constant curvature $c=1$
- Generalize Lebrun's result via perturbed obstructures corresponding to perturbations of the round metric on S^{6} with controlled curvature

3. Question A

- Without using obstructures, we can already see that constant curvature rules out certain special complex structures.

Theorem

Let (M, g) be a Riemannian manifold of real dimension at least 4. If g has non-zero constant sectional curvature, then M does not admit a complex structure $A \in A C(M)$ satisfying $d^{\nabla} A=0$, where ∇ is the Levi-Civita connection. So in particular, M does not admit a Kähler complex structure.

Thank you.

圊 G. Clemente, A curvature obstruction to integrability, arXiv:2108.03376, to appear in Math. Commun. (2023).
目 C. LeBrun, Orthogonal complex structures on S^{6}, Proc. Amer. Math. Soc., 101(1)(1987), 136 - 138.
S. Salamon, Orthogonal complex structures, in: Differential geometry and applications, Proceedings of the 6th international conference, Brno, Czech Republic, August 28 - September 1, 1995, Brno: Masaryk University (1996), 103 - 117.

