Curvature in almost-complex and complex geometry

Gabriella Clemente

Masaryk University

January 27, 2023

Gabriella Clemente

vlasarvk Universitv

Plan

- Motivating open problems (Yau's Challenge and S⁶ problem)
 - S⁶ **progress:** (conformal) almost-hermitian version due to LeBrun, Salamon, and others
- Intrinsic torsions vs. "obstructures"
- 3 Question A: What is the effect of constraining the (various) curvatures of a Riemannian metric in the almost-hermitian case?

1. Motivating open problems

- Yau's Challenge (YC): Determine if there are any (compact) almost-complex, but not complex manifolds of real dimension at least 6.
- S⁶ **problem:** Is the 6-dimensional sphere S^6 a complex manifold?
 - S⁶ is a YC solution candidate...

1. Motivating open problems, S⁶ progress

Let g be the round metric on the unit 6-sphere S^6 ,

 $AC(S^{6}) := \{ a-cx \text{ structures on } S^{6} \}, and$

 $\begin{aligned} AC(S^{6})_{g} &:= \{J \in AC(S^{6}) \mid g(JX, JY) = g(X, Y), \forall X, Y \in \mathfrak{X}(S^{6})\} \\ &= \{g - \text{orthogonal a-cx structures on } S^{6}\}. \end{aligned}$

- **LeBrun (1987):** There is no integrable $A \in AC(S^{6})_{g}$.
- Salamon, and others (\gtrsim 1992): For any conformal to gRiemannian metric $g', A \in AC(S^6)_{g'}$ cannot be integrable.

1. Motivating open problems, S⁶ progress

The proofs of both results are extrinsic.

LeBrun (1987): For any $A \in AC(S^6)$, there is a smooth embedding $\mathcal{R}_A : S^6 \hookrightarrow \operatorname{Gr}_3^{\mathbb{C}}(\mathbb{C}^7)$ that is holomorphic when $A \in AC(S^6)_g$ is integrable. So if S^6 had a complex structure $A \in AC(S^6)_g$, \mathcal{R}_A would embed S^6 as a complex manifold into the Kähler manifold $\operatorname{Gr}_3^{\mathbb{C}}(\mathbb{C}^7)$. Then, S^6 would be Kähler too, which is impossible because $H^2(S^6, \mathbb{R}) = 0$.

1. Motivating open problems, S⁶ progress

The proofs of both results are extrinsic.

Salamon, and others (\gtrsim 1992): Suppose that S^6 carried an integrable $A \in AC(S^6)_{g'}$, where g' is conformal to g. As in LeBrun's proof, there exists a holomorphic embedding S_A of S^6 into a hermitian symmetric space (H, J_H) (twistor bundle of S^6). But H is Kähler, forcing $S^6 \simeq S_A(S^6)$ to be Kähler too, which again, is false.

- Intrinsic torsions are a cohomological measurement of the non-integrability of a G-structure (they are given by Spencer cohomology classes). As their name suggest, they allow for an intrinsic study of (non-)integrability.
 - Indeed, almost-complex structures are $GL_n(\mathbb{C})$ -structures, and almost-hermitian structures (i.e. pairs (g, A), where A is a g-orthogonal a-cx structure) are U(n)-structures.
- The 1st intrinsic torsion of a linear connection ∇^J that is compatible with an a-cx structure J ($\nabla^J J = 0$) coincides with the Nijenhuis tensor.

- It's not clear how to use the classical obstruction theory of G-structures to study the interfacing between the almost-complex and (bounded curvature) Riemannian geometries of a manifold. Almost-hermitian structures for metrics of some prescribed curvature aren't a usual kind of G-structure. This is why the standard theory cannot be readily applied. Anyhow,
 - If ∇ is a linear connection compatible with a G-structure P, then the 1st 2 intrinsic torsions have the following geometric interpretation:

$$I_{intr}^{1}(P) = [T^{\nabla}], \text{ and }$$

$$T_{intr}^2(\underline{P}) = [R^{\nabla}],$$

where T^{∇} and R^{∇} are the torsion, respectively the curvature of the connection.

Gabriella Clemente

- We will obtain curvature obstruction equations to the integrability of almost-complex structures that allow us to probe the almost-complex geometry with Riemannian metrics of prescribed curvature. We will covariantly differentiate the Nijenhuis tensor. Observe that $D^k N_J = 0$ the vanishing of any order $k \ge 1$ covariant derivative of the Nijenhuis tensor of an a-cx structure J can be viewed as an obstruction equation.
- Let's call the left-hand-side of such an obstruction equation an "obstructure;" e.g. if $J \in AC(M)$, the differential form $D^k N_J \in \Omega^{k+2}(M, T_M)$ is an obstructure.

Lemma

Let ∇ be any torsion-free connection on T_M , and d^{∇} be its associated covariant exterior derivative. Then, $A \in AC(M)$ is integrable iff $d^{\nabla}A$ is A-invariant; i.e.

$$l^{
abla}_{\mathcal{A}}(\zeta,\eta) := d^{
abla}\mathcal{A}(\mathcal{A}(\zeta),\mathcal{A}(\eta)) - d^{
abla}\mathcal{A}(\zeta,\eta) = 0.$$

Vlasarvk Universitv

The spaces $\Omega^{\bullet}(M, \operatorname{End}_{\mathbb{R}}(T_M)) = \bigoplus_{k \ge 0} \Omega^k(M, \operatorname{End}_{\mathbb{R}}(T_M))$, and $\Omega^{\bullet}(M, \bigwedge^{\bullet} T_M) = \bigoplus_{k \ge 0} \bigoplus_{p+q=k} \Omega^p(M, \bigwedge^q T_M)$ are graded algebras, and

$$\Omega^{\bullet}(M,T_M) = \bigoplus_{k\geq 0} \Omega^k(M,T_M)$$

can be viewed as both a left $\Omega^{\bullet}(M, \operatorname{End}_{\mathbb{R}}(T_M))$ -module and a right $\Omega^{\bullet}(M, \bigwedge^{\bullet} T_M)$ -module. One can unambiguously denote all of the products and actions involved by " \wedge ."

Gabriella Clemente

The correct notion of covariant differentiation of the integrability form $I_A^{\nabla} \in \Omega^2(M, T_M)$ is supplied by d^{∇} . Since I_A^{∇} is a function of A and $d^{\nabla}A$, its first covariant exterior derivative will be a function of A, $d^{\nabla}A$, and $(d^{\nabla})^2 A = R^{\nabla} \wedge A$. The same thinking reveals that the *k*-th covariant exterior derivative of I_A^{∇} will depend on $A, d^{\nabla}A, (d^{\nabla})^2 A = R^{\nabla} \wedge A, \ldots$,

$$(d^{\nabla})^{k+1}A = egin{cases} (R^{\nabla})^{rac{k+1}{2}} \wedge A & ext{if } k ext{ is odd} \ (R^{\nabla})^{rac{k}{2}} \wedge d^{\nabla}A & ext{if } k ext{ is even.} \end{cases}$$

The integrability form can be re-expressed as

Lemma

$$I^{
abla}_A = d^{
abla} A \wedge (A \wedge A) - d^{
abla} A$$

Once we develop an appropriate calculus of T_M -valued forms, this Lemma makes it easier to compute the *k*th covariant exterior derivative of I_A^{∇} .

For example, the 1st 2 obstructures are:

Lemma

$$d^{\nabla} I^{\nabla}_{A} = (R^{\nabla} \wedge A) \wedge (A \wedge A) + 2d^{\nabla} A \wedge (d^{\nabla} A \wedge A) - R^{\nabla} \wedge A$$

$$(d^{\nabla})^{2}I_{A}^{\nabla} = (R^{\nabla} \wedge d^{\nabla}A) \wedge (A \wedge A) + 4(R^{\nabla} \wedge A) \wedge (d^{\nabla}A \wedge A) + 2d^{\nabla}A \wedge ((R^{\nabla} \wedge A) \wedge A) - R^{\nabla} \wedge d^{\nabla}A$$

Gabriella Clemente

vlasarvk Universitv

3. Question A

- **Question A:** What is the effect of constraining the (various) curvatures of a Riemannian metric in the almost-hermitian case?
 - Program to study Question A:
 - Recover LeBrun's result via an obstructure refinement to constant curvature c = 1
 - Generalize Lebrun's result via perturbed obstructures corresponding to perturbations of the round metric on S⁶ with controlled curvature

3. Question A

Without using obstructures, we can already see that constant curvature rules out certain special complex structures.

Theorem

Let (M, g) be a Riemannian manifold of real dimension at least 4. If g has non-zero constant sectional curvature, then M does not admit a complex structure $A \in AC(M)$ satisfying $d^{\nabla}A = 0$, where ∇ is the Levi-Civita connection. So in particular, M does not admit a Kähler complex structure. Thank you.

Gabriella Clemente

vlasarvk Universitv

- G. Clemente, A curvature obstruction to integrability, arXiv:2108.03376, to appear in Math. Commun. (2023).
- C. LeBrun, Orthogonal complex structures on S⁶, Proc. Amer. Math. Soc., 101(1)(1987), 136 138.
- S. Salamon, Orthogonal complex structures, in: Differential geometry and applications, Proceedings of the 6th international conference, Brno, Czech Republic, August 28 – September 1, 1995, Brno: Masaryk University (1996), 103 – 117.