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Plan of the Talk

This is based on joint work with Michael Sullivan:

Mostly:
+ arXiv:2212.09190 [math.SG] [DRS22b]
But also:

* arXiv:2201.04579 [math.SG] [DRS223]
+ arXiv:2111.11975 [math.SG] [DRS21]
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1. Basics of Contact Geometry

DEFINITION 1.1
A contact manifold is an 2n + 1-dimensional smooth manifold Y equipped with a

maximally non-integrable distribution of tangent hyperplanes ¢ C TY.

We will assume that ¢ is cooriented so that ¢ = ker a for some auxiliary a € Q'(Y)
such that a A da”\" is a volume form.

The contactomorphism group consists of
Cont(Y,&) = {P € Diff(Y); D®(&) = ¢}

i.e. d*a = efa forsome f: Y — R.
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1. Basics of Contact Geometry

Figure 1: The contact planes on Rf’l’p’z for « = dz — pdg. (Source: Wikipedia.)
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1. Basics of Contact Geometry

DEFINITION 1.2
Let Mk c Y21 pbe a smooth k-dimensional submanifold.

* Mis Legendrianif k = nand TM C &;
* M is non-Legendrian if either

e k< n;or
* k=n, Mis connected, and TM ¢ &.

V4

/\std
q

Figure 2: Front projection of the standard Legendrian unknot p = J4Z.
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Examples

1. J'M = T*M x R; is a contact manifold with o = dz — p dg;
2. The section j'f C (J'M, ker «) is Legendrian for any smooth f: M — R;

3. Any Legendrian A has a neighbourhood contactomorphic to J'A, in which A
becomes j10;

4. Germs of non-Legendrians of dimension n can be modeled by non-vanishing
sections of T*M x {0} — M.

UPPSALA
6 UNIVERSITET



1. Basics of Contact Geometry

PROOF.
Infinitesimal classification of germs: Consider an n-dimensional submanifold
M c (Y21 ¢ = ker ). The goal is to extend the contact form preserving
embedding

M— T*M x {0} c J'M

given by the graph of —«|ry to a smooth embedding of a neighborhood that
preserves the contact form on M (not just along TM).

Main point: This is possible since, by dimensional reasons, any vector field V
along M which is transverse to £ can be perturbed to become normal to M (while
remaining transverse to ¢&). O
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2. The Main Application

THEOREM 2.1 ([DRS228B])

Let\ C (Y, & = ker ) be a properly embedded Legendrian submanifold, and
V; € Cont(Y,&) a sequence of contactomorphisms, all supported in some fixed
compact subset, such that

* U, =0 Vo Where Vo, is @ homeomorphism of Y';
* W (A) is a smooth submanifold;

Then W (N) is Legendrian as well.
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2. The Main Application

REMARK 2.2 (THE SYMPLECTIC CASE)
The analogous problem is well-studied:

» Laudenbach-Sikorav established it for Lagrangians [LS94];

» Opshtein established it for certain coisotropics [Ops09]; and

» Humiliere—Leclercg—Seyfaddini [HLS15] have established the general
coisotropic case.
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REMARK 2.3
This result implies Eliashberg’s Theorem [EIli87]; Namely, if the limit W, is smooth,

then W, € Cont(Y,¢).

PROOF.
For any Lagrangian plane L, C (&, da), there exists a closed Legendrian that is

tangent to L. O
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2. The Main Application
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Previous results:

* [Ush20] Usher proved it under assumption on the behaviour of the conformal
factors f;, where Via = efa.

» [Nak20] Nakamura proved it under assumptions on the length of Reeb chords
on \U,(/\)

+ [DRS22a] We proved it when dim Y = 3 using the Thurston—-Bennequin
inequality.

* [Sto22] Stoki¢ excluded the existence of an “almost Reeb invariant”
neighbourhood of W (A).
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2. The Main Application
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PROOF (1/2).
We modify Stoki¢’s argument by showing that W,(A) cannot admit arbitrarily small
positive contact loops;

i.e. a non-trivial loop induced by ®; satisfying

* ®1 = Id in some small neighbourhood of ¥, (A) and

« a(d) > 0;
Indeed, if this was the case, then we could produce such a positive loop of Wy (A)
for N > 0 in an arbitrarily small standard jet-neighbourhood.

Note that, since V., is a homeomorphism, a one-jet neighborhood U of A has an
image Vy(U) that contains W, (A) for all N > 0.
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2. The Main Application

14

PROOF (2/2).

This contradicts Chernov—Nemirovski’s result from [CN10]
(Colin—Ferrand—Pushkar [CFP17]) in the closed case; j'0 c J'M does not admit a
non-trivial non-negative (positive) loop.

What now remains is to show that ¥, (A) admits a small non-trivial negative loop
whenever it is non-Legendrian! O

REMARK 2.4

Some Legendrian submanifolds (e.g. the standard unknot) admit positive loops.
However, by Chernov—Nemirovski, such an isotopy must leave the standard
neighbourhood of the original Legendrian.
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3. Contact Isotopies
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The contact isotopies are the identity component of Cont(Y,¢), i.e.

Contp(Y, &) == Cont(Y, &) N Diffp(Y).

Let V; € T(TY) be the infinitesimal generator of a contact isotopy ¢, where
(d4)*a = ea.

CARTAN’S FORMULA:

fieta = g;(th)*oz = &7 (d(Lya) + tyda).

Hi = tya = a(d; 0 d;1): Y — Ris called the Contact Hamiltonian (depends on
the choice of a!).

UPPSALA
UNIVERSITET



16

. Contact Isotopies

The contact Hamiltonian vanishes precisely where the infinitesimal generator is
tangent to the contact distribution &; it is positive (resp. negative) where it is
positively (resp. negatively) transverse to €.
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3. Contact Isotopies

Conversely, any smooth H;: Y — R gives rise to a contact isotopy ®; by solving
LV[(a) = Ht?
vy, dale = —dHye.

Facts:

1. Any path of embeddings ¢:: M — Y such that ¢ja = eff¢6a is generated by a
global contact isotopy;

2. If gy =0, i.e. ¢g is a Legendrian embedding, then the contactomorphisms
vanishing along M are precisely those which are induced by reparametrisation
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3. Contact Isotopies

PROOF OF FACTS:
1. Extend the function Hy = vy,a: M — R to a smooth function H: Y — R that

satisfies
aH = foa —yda

along the normal bundle of M.

2. If M C (Y, «) is Legendrian, there is a bijection between vector fields V that are
tangent to M and one-forms «\,da that vanish along M. The latter one-form can
be extended to the differential of a function H: Y — R that vanishes on M.

UPPSALA
18 UNIVERSITET



4. Quantitative Flexibility of
non-Legendrians

UPPSALA
UNIVERSITET



4. Quantitative Flexibility of non-Legendrians

19

THEOREM 4.1

IftM C (Y,&) is a properly embedded, connected, non-Legendrian, and $; is a
compactly supported contact isotopy, then there exists a compactly supported
contact isotopy ®; that satisfies:

« ®4|y = ®4|y (can be extended to hold in a nbhd.)
« &4(M) is contained in an e-nbhd. of ®4(M);
e Hio®; =« (cﬁt) vanishes along M;

See Usher’s work [Ush14] for the symplectic case (also previous relevant work
[LS94] by Laudenbach-Sikorav).
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The result we need is an easy consequence:

COROLLARY 4.2
Any properly embedded, connected, non-Legendrian submanifold M C (Y, &)
admits a compactly supported non-negative loop V; such that:

* &q|y = Idy (can be extended to hold in a nbhd.)
* ®4(M) is contained in an e-nbhd. of M;
e Hiod; =« <d>t> > 0 and is positive for some t and pt € M.
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COROLLARY 4.3
The parametrised Chekanov—Hofer—Shelukhin pseudo-metric

;
(¢, P10 9) = inf / max |H;|dt
{Hﬁ&?toqﬁ:d)m({)} 0 Y

vanishes completely on any parametrised contact isotopy class of a
non-Legendrian ¢: M — Y.

Rosen—Zhang have proved that the unparametrised Chekanov—Hofer—Shelukhin
pseudo-metric is completely vanishing on the non-Legendrians [RZ20].
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PROOF OF THEOREM 4.1 (1/4).
The main step consists of constructing a contact displacement ®; of pt € M from
M with a vanishing contact Hamiltonian.

More precisely: We want a contact isotopy $; such that ®4(pt) " M = () and with
H; o & = a(d;) vanishing on M. O
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4. Quantitative Flexibility of non-Legendrians

PROOF OF THEOREM 4.1 (2/4).
We consider the Legendrian locus of M:

L(M) = {pt e M; T,yM N ¢ C (&, da) is Lagrangian}
(a closed proper subset of M).
We consider these three separate cases of pt € M:

1. pt € M\ L(M);
2. pt € int L(M); and
3. pt € bd(M\ L(M)) C L(M).
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4. Quantitative Flexibility of non-Legendrians

PROOF OF THEOREM 4.1 (3/4).
1. The case pt € M\ L(M):

l.e. T,:MN &y is either of dimension < n, or T,:M C &, is non-Lagrangian. Hence,
we can find a vector

0 7é th E (TptMﬂ fpt)da \ TptM C fpt
normal to M, and thus a function H: Y — R satisfying

° H|MEO
o dHpe = —1y,, dar
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PROOF OF THEOREM 4.1 (4/4).
2. The case pt € int L(M):

Move pt close to bd(M \ £(M)) by a reparametrisation of int L(M).
3. The case pt € bd(M \ L(M)) c L(M):

Show that there are contact isotopies that vanish on M, but which do not induce
local reparametrisations of M near pt. Ol
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On the rigid side, we have
THEOREM 4.4 ([DRS21])
The unparametrised Chekanov—Hofer—Shelukhin pseudo-metric

]
0N, P1(N)) = inf /max|Ht|dt
{Hedt M=)} SO Y

is non-degenerate on any Legendrian isotopy class of a closed Legendrian
N C (Y,€) in a closed contact manifold.

PROOF.

Continuous dependence of the spectral invariants / barcode of the Rabinowitz
Floer homology of a Legendrian and its push-off; this complex is well-defined in a
small action window. Then we use the dichotomy proven in [RZ20]; this

>SALA
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