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Plan o f the Ta lk

This is based on joint work with Michael Sullivan:

Mostly:

• arXiv:2212.09190 [math.SG] [DRS22b]

But also:

• arXiv:2201.04579 [math.SG] [DRS22a]

• arXiv:2111.11975 [math.SG] [DRS21]
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1. Bas ics o f Contac t Geomet r y

DEFINITION 1.1
A contact manifold is an 2n + 1-dimensional smooth manifold Y equipped with a
maximally non-integrable distribution of tangent hyperplanes ξ ⊂ TY .

We will assume that ξ is cooriented so that ξ = kerα for some auxiliary α ∈ Ω1(Y )

such that α ∧ dα∧n is a volume form.

The contactomorphism group consists of

Cont(Y , ξ) := {Φ ∈ Diff(Y ); DΦ(ξ) = ξ}

i.e. Φ∗α = efα for some f : Y → R.
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1. Bas ics o f Contac t Geomet r y

Figure 1: The contact planes on R3
q,p,z for α = dz − p dq. (Source: Wikipedia.)
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1. Bas ics o f Contac t Geomet r y

DEFINITION 1.2

Let Mk ⊂ Y 2n+1 be a smooth k -dimensional submanifold.

• M is Legendrian if k = n and TM ⊂ ξ;
• M is non-Legendrian if either

• k < n; or
• k = n, M is connected, and TM ̸⊂ ξ.

z

q

Λstd

Figure 2: Front projection of the standard Legendrian unknot p = ∂qz.
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Examples

1. J1M = T ∗M × Rz is a contact manifold with α = dz − p dq;

2. The section j1f ⊂ (J1M, kerα) is Legendrian for any smooth f : M → R;

3. Any Legendrian Λ has a neighbourhood contactomorphic to J1Λ, in which Λ

becomes j10;

4. Germs of non-Legendrians of dimension n can be modeled by non-vanishing
sections of T ∗M × {0} → M.
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1. Bas ics o f Contac t Geomet r y

PROOF.
Infinitesimal classification of germs: Consider an n-dimensional submanifold
M ⊂ (Y 2n+1, ξ = kerα). The goal is to extend the contact form preserving
embedding

M ↪→ T ∗M × {0} ⊂ J1M

given by the graph of −α|TM to a smooth embedding of a neighborhood that
preserves the contact form on M (not just along TM).

Main point: This is possible since, by dimensional reasons, any vector field V
along M which is transverse to ξ can be perturbed to become normal to M (while
remaining transverse to ξ).
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2. The Main App l i ca t ion

THEOREM 2.1 ([DRS22B])
Let Λ ⊂ (Y , ξ = kerα) be a properly embedded Legendrian submanifold, and
Ψi ∈ Cont(Y , ξ) a sequence of contactomorphisms, all supported in some fixed
compact subset, such that

• Ψi →C0 Ψ∞ where Ψ∞ is a homeomorphism of Y ;

• Ψ∞(Λ) is a smooth submanifold;

Then Ψ∞(Λ) is Legendrian as well.
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2. The Main App l i ca t ion

REMARK 2.2 (THE SYMPLECTIC CASE)
The analogous problem is well-studied:

• Laudenbach–Sikorav established it for Lagrangians [LS94];

• Opshtein established it for certain coisotropics [Ops09]; and

• Humilière–Leclercq–Seyfaddini [HLS15] have established the general
coisotropic case.
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2. The Main App l i ca t ion

REMARK 2.3
This result implies Eliashberg’s Theorem [Eli87]; Namely, if the limit Ψ∞ is smooth,
then Ψ∞ ∈ Cont(Y , ξ).

PROOF.
For any Lagrangian plane Lpt ⊂ (ξpt, dα), there exists a closed Legendrian that is
tangent to Lpt.
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2. The Main App l i ca t ion

Previous results:

• [Ush20] Usher proved it under assumption on the behaviour of the conformal
factors fi , where Ψ∗

i α = efiα.

• [Nak20] Nakamura proved it under assumptions on the length of Reeb chords
on Ψi(Λ).

• [DRS22a] We proved it when dimY = 3 using the Thurston–Bennequin
inequality.

• [Sto22] Stokić excluded the existence of an “almost Reeb invariant”
neighbourhood of Ψ∞(Λ).
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2. The Main App l i ca t ion

PROOF (1/2).
We modify Stokić’s argument by showing that Ψ∞(Λ) cannot admit arbitrarily small
positive contact loops;

i.e. a non-trivial loop induced by Φt satisfying

• Φ1 = Id in some small neighbourhood of Ψ∞(Λ) and

• α(Φ̇t) ≥ 0;

Indeed, if this was the case, then we could produce such a positive loop of ΨN(Λ)

for N ≫ 0 in an arbitrarily small standard jet-neighbourhood.

Note that, since Ψ∞ is a homeomorphism, a one-jet neighborhood U of Λ has an
image ΨN(U) that contains Ψ∞(Λ) for all N ≫ 0.
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2. The Main App l i ca t ion

PROOF (2/2).
This contradicts Chernov–Nemirovski’s result from [CN10]
(Colin–Ferrand–Pushkar [CFP17]) in the closed case; j10 ⊂ J1M does not admit a
non-trivial non-negative (positive) loop.

What now remains is to show that Ψ∞(Λ) admits a small non-trivial negative loop
whenever it is non-Legendrian!

REMARK 2.4
Some Legendrian submanifolds (e.g. the standard unknot) admit positive loops.
However, by Chernov–Nemirovski, such an isotopy must leave the standard
neighbourhood of the original Legendrian.
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3. Contac t I so top ies

The contact isotopies are the identity component of Cont(Y , ξ), i.e.

Cont0(Y , ξ) := Cont(Y , ξ) ∩ Diff0(Y ).

Let Vt ∈ Γ(TY ) be the infinitesimal generator of a contact isotopy Φt , where
(Φt)

∗α = eftα.

CARTAN’S FORMULA:

ḟteftα =
d
dt

(Φt)
∗α = Φ∗

t (d(ιVα) + ιV dα).

Ht := ιVα = α(Φ̇t ◦ Φ−1
t ) : Y → R is called the Contact Hamiltonian (depends on

the choice of α!).
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3. Contac t I so top ies

The contact Hamiltonian vanishes precisely where the infinitesimal generator is
tangent to the contact distribution ξ; it is positive (resp. negative) where it is
positively (resp. negatively) transverse to ξ.
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3. Contac t I so top ies

Conversely, any smooth Ht : Y → R gives rise to a contact isotopy Φt by solvingιVt (α) = Ht ,

ιVt dα|ξ = −dHt |ξ.

Facts:

1. Any path of embeddings ϕt : M ↪→ Y such that ϕ∗
t α = eftϕ∗

0α is generated by a
global contact isotopy;

2. If ϕ∗
0α ≡ 0, i.e. ϕ0 is a Legendrian embedding, then the contactomorphisms

vanishing along M are precisely those which are induced by reparametrisation.
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3. Contac t I so top ies

PROOF OF FACTS:

1. Extend the function HM := ιV0α : M → R to a smooth function H : Y → R that
satisfies

dH = ḟ0α− ιV dα

along the normal bundle of M.

2. If M ⊂ (Y , α) is Legendrian, there is a bijection between vector fields V that are
tangent to M and one-forms ιV dα that vanish along M. The latter one-form can
be extended to the differential of a function H : Y → R that vanishes on M.
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THEOREM 4.1

If M ⊂ (Y , ξ) is a properly embedded, connected, non-Legendrian, and Φt is a
compactly supported contact isotopy, then there exists a compactly supported
contact isotopy Φ̃t that satisfies:

• Φ̃1|M = Φ1|M (can be extended to hold in a nbhd.)

• Φ̃t(M) is contained in an ϵ-nbhd. of Φt(M);

• Ht ◦ Φ̃t = α
(
˙̃Φt

)
vanishes along M;

See Usher’s work [Ush14] for the symplectic case (also previous relevant work
[LS94] by Laudenbach–Sikorav).
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4. Quant i ta t i ve F lex ib i l i t y o f non-Legendr ians

The result we need is an easy consequence:

COROLLARY 4.2
Any properly embedded, connected, non-Legendrian submanifold M ⊂ (Y , ξ)

admits a compactly supported non-negative loop Ψt such that:

• Φ1|M = IdM (can be extended to hold in a nbhd.)

• Φt(M) is contained in an ϵ-nbhd. of M;

• Ht ◦ Φt = α
(
Φ̇t

)
≥ 0 and is positive for some t and pt ∈ M.
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4. Quant i ta t i ve F lex ib i l i t y o f non-Legendr ians

COROLLARY 4.3
The parametrised Chekanov–Hofer–Shelukhin pseudo-metric

δα(ϕ,Φ1 ◦ ϕ) = inf{
Ht ;Φ̃

Ht
1 ◦ϕ=Φ1◦ϕ

}
∫ 1

0
max

Y
|Ht |dt

vanishes completely on any parametrised contact isotopy class of a
non-Legendrian ϕ : M ↪→ Y.

Rosen–Zhang have proved that the unparametrised Chekanov–Hofer–Shelukhin
pseudo-metric is completely vanishing on the non-Legendrians [RZ20].
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4. Quant i ta t i ve F lex ib i l i t y o f non-Legendr ians

PROOF OF THEOREM 4.1 (1/4).
The main step consists of constructing a contact displacement Φt of pt ∈ M from
M with a vanishing contact Hamiltonian.

More precisely: We want a contact isotopy Φt such that Φ1(pt) ∩ M = ∅ and with
Ht ◦ Φt = α(Φ̇t) vanishing on M.
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4. Quant i ta t i ve F lex ib i l i t y o f non-Legendr ians

PROOF OF THEOREM 4.1 (2/4).
We consider the Legendrian locus of M:

L(M) := {pt ∈ M; TptM ∩ ξ ⊂ (ξpt,dα) is Lagrangian}

(a closed proper subset of M).

We consider these three separate cases of pt ∈ M:

1. pt ∈ M \ L(M);

2. pt ∈ intL(M); and

3. pt ∈ bd(M \ L(M)) ⊂ L(M).
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4. Quant i ta t i ve F lex ib i l i t y o f non-Legendr ians

PROOF OF THEOREM 4.1 (3/4).
1. The case pt ∈ M \ L(M):

I.e. TptM ∩ ξpt is either of dimension < n, or TptM ⊂ ξpt is non-Lagrangian. Hence,
we can find a vector

0 ̸= Vpt ∈ (TptM ∩ ξpt)
dα \ TptM ⊂ ξpt

normal to M, and thus a function H : Y → R satisfying

• H|M ≡ 0

• dHpt = −ιVpt
dα
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4. Quant i ta t i ve F lex ib i l i t y o f non-Legendr ians

PROOF OF THEOREM 4.1 (4/4).
2. The case pt ∈ intL(M):

Move pt close to bd(M \ L(M)) by a reparametrisation of intL(M).

3. The case pt ∈ bd(M \ L(M)) ⊂ L(M):

Show that there are contact isotopies that vanish on M, but which do not induce
local reparametrisations of M near pt.
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4. Quant i ta t i ve F lex ib i l i t y o f non-Legendr ians

On the rigid side, we have

THEOREM 4.4 ([DRS21])
The unparametrised Chekanov–Hofer–Shelukhin pseudo-metric

δα(Λ,Φ1(Λ)) = inf{
Ht ;Φ̃

Ht
1 (Λ)=Φ1(Λ)

}
∫ 1

0
max

Y
|Ht |dt

is non-degenerate on any Legendrian isotopy class of a closed Legendrian
Λ ⊂ (Y , ξ) in a closed contact manifold.

PROOF.
Continuous dependence of the spectral invariants / barcode of the Rabinowitz
Floer homology of a Legendrian and its push-off; this complex is well-defined in a
small action window. Then we use the dichotomy proven in [RZ20]; this
pseduo-metric is either non-degenerate or vanishes completely.26
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