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Motivation

Question: Is X homotopy equivalent to a closed manifold?

One of the tools to help answer this question is algebraic surgery.

Idea: Try to abstract and generify algebraic properties of closed manifolds,
for instance - Poincare duality, and test X against these properties.

Result: For high-dimensional (>4) geometric Poincare complexes there
exists an algebraic invariant - total surgery obstruction, which strictly
determines the answer to the question.
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Algebraic Surgery Theory

Definition: Category with chain duality

A chain duality on additive category A is a pair (T , e), where:

T is a contravariant functor T : A −→ B(A);
e is a natural transformation e : T 2 =⇒ id

such that:

eM : T 2(M) −→ id(M) is a chain equivalence in B(A);
eT (M) ◦ T (eM) = id

Functor T is uniquely extended to a functor T : B(A) −→ B(A) on a
category of bounded chain complexes B(A) over A.

Example

A chain duality (T , e) on a category of finitely generated R-modules is
given by T (M) := HomR(M,R) and e : T 2 ∼= id .
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Algebraic Surgery Theory

Definition:

An algebraic bordism category Λ = (A,B,C) consists of:
A an additive category with chain duality (T , e);

B a full subcategory of B(A);
C a full subcategory of B closed under taking cones;
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Algebraic Surgery Theory

Given an algebraic bordism category Λ = (A,B,C) we have

Structured complexes in Λ

An n-dim.

{
symmetric
quadratic

algebraic complex in Λ is a pair

{
(C , φ)

(C , ψ)
where

C ,C−∗ ∈ B and

{
φ ∈ (W%(C ))n

ψ ∈ (W%(C ))n
an n-cycle such that the boundary

complex ∂C =

{
Σ−1cone(φ0)

Σ−1cone((id+ T )(ψ0))
is in C

We say that complexes in Λ are B-contractible and C-Poincare.
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Algebraic Surgery Theory

Structured pairs in Λ

An (n+1)-dim.

{
symmetric
quadratic

algebraic pair in Λ is a chain map

f : C −→ D in B together with an (n+1)-cycle

{
(φ, δφ) ∈ cone(f %)n

(ψ, δψ) ∈ cone(f%)n

such that

{
cone(φ, δφ)

cone(ψ, δψ)
is in C

We say that n-dim. symmetric (quadratic) complexes (C , φ) and (C ′, φ′)
are cobordant if there exists an (n+1)-dim. symmetric (quadratic) pair

(f ⊕ f ′ : C ⊕ C ′ → D, (φ⊕−φ′, δφ))
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Algebraic Surgery Theory

Definition: L-groups of Λ

The symmetric L-groups of Λ are defined as

Ln(Λ) := {n-dimensional SACs in Λ} / cobordisms

The quadratic L-groups of Λ are defined as

Ln(Λ) := {n-dimensional QACs in Λ} / cobordisms

The group operation is the direct sum. Inverse of (C , φ) is (C ,−φ).

Note:

Standard textbook L-groups of a ring Ln(R) are the special case of these
for Λ(R) = (RMod,CHb(R),CHcb(R)) a category of R-modules, bounded
complexes and contractible bounded complexes.
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Algebraic Surgery Theory

Given an additive category A and locally finite simplicial complex K we
define two additive categories A∗(K ) and A∗(K ) as follows:

Objects of both categories are
{⊕

σ∈K Mσ | Mσ ∈ A
}

Morphisms of A∗(K ) are:{
{fσ,τ}σ≥τ :

⊕
σ∈K

Mσ −→
⊕
τ∈K

Nτ | (fσ,τ : Mσ −→ Nτ ) ∈ A

}

Morphisms of A∗(K ) are:{
{fσ,τ}σ≤τ :

⊕
σ∈K

Mσ −→
⊕
τ∈K

Nτ | (fσ,τ : Mσ −→ Nτ ) ∈ A

}

where ordering σ ≥ τ is understood as an ordering on a dimension.
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Algebraic Surgery Theory

Example: For A some additive category and K = ∆1 = {σ0, τ, σ1} a
simplicial complex of an interval:

σ0• σ1•τ

Objects are all triples of objects of A, labeled by ∆1:

{Mσ0 ⊕Mτ ⊕Mσ1 | Mi ∈ A}

Morphisms f ∈ A∗(∆1) and g ∈ A∗(∆
1) consist of the following collection

of maps:

Mσ0 ⊕ Mτ ⊕ Mσ1

Nσ0 ⊕ Nτ ⊕ Nσ1

fσ0,σ0 fτ,τ
fτ,σ1fτ,σ0

fσ1,σ1

Mσ0 ⊕ Mτ ⊕ Mσ1

Nσ0 ⊕ Nτ ⊕ Nσ1

gσ0,σ0 gσ0,τ
gτ,τ gσ1,σ1gσ1,τ
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Algebraic Surgery Theory

Chain complex in A∗(∆
1) is then depicted in the diagram:

...
...

...

(Dr )σ0 ⊕ (Dr )τ ⊕ (Dr )σ1

(Dr−1)σ0 ⊕ (Dr−1)τ ⊕ (Dr−1)σ1

(Dr−2)σ0 ⊕ (Dr−2)τ ⊕ (Dr−2)σ1

...
...

...

(dr )σ0,σ0
(dr )σ0,τ

(dr )τ,τ (dr )σ1,σ1
(dr )σ1,τ

(dr -1)σ0,σ0
(dr -1)σ0,τ

(dr -1)τ,τ (dr -1)σ1,σ1
(dr -1)σ1,τ
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Algebraic surgery Theory

The categories A∗(K ) and A∗(K ) have induced chain
dualities:

(T ∗(
⊕
σ∈K

Mσ)•)τ : = (T (
⊕
τ≥τ̄

Mτ̄))•−|τ |

and

(T∗(
⊕
σ∈K

Mσ)•)τ : = (T (
⊕
τ≤τ̄

Mτ̄))•+|τ |

S. Dylda (FMFI UK) Algebraic Surgery over simplicial complexes and ball complexes
Winter School GEOMETRY AND PHYSICS, Srni
11 / 24



Example of a chain dual complex over ZMod∗(∆1):

0 ⊕ Z ⊕ 0

Z ⊕ 0 ⊕ Z

0 ⊕ 0 ⊕ 0

∂1∂0

−→

0 ⊕ (Z⊕ Z)∗ ⊕ 0

Z∗ ⊕ Z∗ ⊕ Z∗

0 ⊕ 0 ⊕ 0

(∂
∗
0

∂∗
1
)

i∗1i∗0
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Algebraic Surgery Theory

Example: Z-modules over K

Categories of finitely generated Z-modules over K are denoted as:

Z∗(K ) := ZMod∗(K ) Z∗(K ) := ZMod∗(K )

Note that, for K = {∗}, we have just Z∗({∗}) = Z∗({∗}) := ZModfg

Assembly

There is a well-defined assembly functor:

A : Z∗(K ) −→ Z[π]Mod

M 7−→
⊕
σ̃∈K̃

Mp(σ̃)

which induces a functor: A : Λ(Z)∗(K ) −→ Λ(Z[π])
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The additive categories with chain duality A∗(K ) and A∗(K ) can be made
into algebraic bordism categories in various ways yielding chain complexes
with various types of Poincare duality:

Global and local Poincare dualities

For X a finite simplicial complex and A = Z∗(X ) we define categories:

B = B(Z∗(X )) = ZChb∗;
C = {C ∈ B |A(C ) ≃ ∗} (global);

D = {C ∈ B |C (σ) ≃ ∗, ∀σ ∈ X} (local);

We then have the following algebraic bordism categories

Λ(X ) := (A,B,C) ≡ Λ(Z)(X )

Λ∗(X ) := (A,B,D) ≡ Λ(Z)∗(X )

Λc
∗(X ) := (A,C,D)
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Algebraic Surgery Theory

For be a finite simplicial complex X we then have the following long exact
sequence

globally contractible,
locally Poincare

locally
Poincare

globally
Poincare

· · · Ln(Λ
c
∗(X )) Ln(Λ∗(X )) Ln(Λ(X )) · · ·

· · · Sn+1(X ) Hn(X ,L) Ln(Z[π(X )]) · · ·

∂̄

∼= ∼=

∂̄

∼=

∂̄ ∂̄

which is called an algebraic surgery exact sequence for X .
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Algebraic Surgery Theory

Symmetric construction: Given an identiy map on simplicial
complex f : X −→ X one can construct SAC complex over Z∗(X ) via
the following (naive) reasoning:

We start by dissecting X into it’s dual cells;

SAC (C (X [σ]), φσ(µσ)) constructed on each such small piece
using Alexander-Whitney diagonal approximation;

Finally we gather all such SACs into one big complex in Z∗(X )
(indexed by simplexes of X ) with appropriate compatibility
properties;
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Algebraic Surgery Theory

Visible symmetric signature

Given a finite n-dim. Poincare simplicial complex X we define the visible
symmetric signature of X over X as the algebraic cobordism class of
symmetric constructions on X

vssignX (X ) := [(C (X ), φ([X ]))]cobordism ∈ Ln(Λ⟨1/2⟩(X ))

Note:

Originally, visible symmetric signature, lives inside a so-called 1/2-visible
symmetric L-group VLn(X ), but there is a convenient isomorphism
VLn(X ) ∼= Ln(Λ⟨1/2⟩(X )).
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Algebraic Surgery Theory

Total surgery obstruction

Then, the total surgery obstruction of n-dim. finite Poincare simplicial
complex X is an element s(X ) ∈ Sn(X ) defined by

s(X ) := ∂(vssignX (X )) ∈ Sn(X ) ∼= Ln−1(Λ
c
∗(X ))

where the map ∂ is the boundary homomorphism.

Theorem: Ranicki

For X an n ≥ 5-dimensional finite geometric Poincare complex there exists
homotopy equivalence of X to manifold M iff s(X∆) = 0 (here X∆ is an
n-dimensional finite geometric Poincare simplicial complex, such that
X ≃ X∆).
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Algebraic Surgery Theory

Theorem: Product formula

For X ,Y two finite Poincare complexes of dimensions n and m we have:

1 X × Y is an (n+m)-dimensional finite Poincare simplicial complex;

2 With visible signature over K given as

vssignX×Y (X × Y ) = vssignX (X )⊗(X ,Y ) vssignY (Y )

Problem: At the moment there is no general proof to this statement.
Ranicki has proved this for the special case of K , L = {∗}, but not in
general.
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Algebraic Surgery Theory

Proposed solution: Ball complexes
Intuitive analogy for understanding the idea:

simplicial complex ⇐⇒ space split into triangles

ball complex ⇐⇒ space split into general polyhedra

Definition: Ball complex

A ball complex K is a finite set of PL balls in Rn, for given n ∈ N, such
that:

1 all balls in K have disjoint interiors;

2 the boundary of a ball in K is a union of balls of K ;

The product of two ball complexes is canonically a ball complex:

K × L :=
⋃

σ∈K ,τ∈L
σ × τ
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The current roadmap, for K a ball complex:

1 Define categories A∗(K ), A∗(K ) (Macko, Spiros)

2 Define chain dualities (T , e) on those (Davis, Rovi)

3 Construct L-homology theory (Macko, Spiros)

4 Prove (simply connected) assembly (WIP)

5 Prove π-π theorem (TODO, hard)

6 Prove product formula (?)
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Thank You for your attention!
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Algebraic Surgery Theory

Chain duality (T , e) allows us to define tensor products over A:

C ⊗A D := HomB(A)(T (C ),D)

Hence we can define W -complexes:

Definition: W-complexes

For bounded chain complex C ∈ B(A) we have:

W%(C ) := W ⊗Z[Z2] (C ⊗A C ) W%(C ) := HomZ[Z2](W ,C ⊗A C )

where W is the canonical free Z[Z2]-resolution.
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Connectivity

For Λ = (A,B,C) and an integer q ∈ Z we define an algebraic bordism
categories

Λ⟨q⟩ := (A,B⟨q⟩,C⟨q⟩) Λ⟨1/2⟩ := (A,B⟨0⟩,C⟨1⟩)

where:

B⟨q⟩ := {C ∈ B |C ≃ q-connected chain complex}
C⟨q⟩ := B⟨q⟩ ∩ C
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