Algebraic Surgery over simplicial complexes and ball complexes

Serhii Dylda

Comenius University of Bratislava Faculty of Mathematics, Physics and Informatics

January, 2023

S. Dylda (FMFI UK)

Algebraic Surgery over simplicial complexes a 1/24

Motivation

Question: Is X homotopy equivalent to a closed manifold?

One of the tools to help answer this question is algebraic surgery.

Idea: Try to abstract and generify algebraic properties of closed manifolds, for instance - Poincare duality, and test X against these properties.

Result: For high-dimensional (>4) geometric Poincare complexes there exists an algebraic invariant - **total surgery obstruction**, which strictly determines the answer to the question.

Definition: Category with chain duality

A chain duality on additive category \mathbb{A} is a pair (\mathcal{T}, e) , where:

- T is a contravariant functor $T : \mathbb{A} \longrightarrow \mathbb{B}(\mathbb{A})$;
- e is a natural transformation $e: T^2 \Longrightarrow \mathrm{id}$

such that:

• $e_M : T^2(M) \longrightarrow id(M)$ is a chain equivalence in $\mathbb{B}(\mathbb{A})$;

•
$$e_{T(M)} \circ T(e_M) = \mathrm{id}$$

Functor \mathcal{T} is uniquely extended to a functor $\mathcal{T} : \mathbb{B}(\mathbb{A}) \longrightarrow \mathbb{B}(\mathbb{A})$ on a category of bounded chain complexes $\mathbb{B}(\mathbb{A})$ over \mathbb{A} .

Example

A chain duality (T, e) on a category of finitely generated *R*-modules is given by $T(M) := \operatorname{Hom}_R(M, R)$ and $e : T^2 \cong id$.

Definition:

An algebraic bordism category $\Lambda = (\mathbb{A}, \mathbb{B}, \mathbb{C})$ consists of:

- A an additive category with chain duality (T, e);
- \mathbb{B} a full subcategory of $\mathbb{B}(\mathbb{A})$;
- $\bullet \ \mathbb{C}$ a full subcategory of \mathbb{B} closed under taking cones;

法国际法国际

Given an algebraic bordism category $\Lambda=(\mathbb{A},\mathbb{B},\mathbb{C})$ we have

Structured complexes in Λ

An n-dim.
$$\begin{cases} \text{symmetric} \\ \text{quadratic} \end{cases} \text{algebraic complex in } \Lambda \text{ is a pair } \begin{cases} (C, \varphi) \\ (C, \psi) \end{cases} \text{ where} \\ \\ C, C^{-*} \in \mathbb{B} \text{ and } \begin{cases} \varphi \in (W^{\%}(C))_n \\ \psi \in (W_{\%}(C))_n \end{cases} \text{ an n-cycle such that the boundary} \\ \\ \psi \in (W_{\%}(C))_n \end{cases} \text{ an n-cycle such that the boundary} \\ \\ \text{complex } \partial C = \begin{cases} \Sigma^{-1} \text{cone}(\varphi_0) \\ \Sigma^{-1} \text{cone}((\text{id} + T)(\psi_0)) \end{cases} \text{ is in } \mathbb{C} \end{cases}$$

We say that complexes in Λ are \mathbb{B} -contractible and \mathbb{C} -Poincare.

Structured pairs in Λ An (n+1)-dim. $\begin{cases} \text{symmetric} \\ \text{quadratic} \end{cases}$ algebraic pair in Λ is a chain map $f: C \longrightarrow D$ in \mathbb{B} together with an (n+1)-cycle $\begin{cases} (\varphi, \delta\varphi) \in \operatorname{cone}(f^{\%})_n \\ (\psi, \delta\psi) \in \operatorname{cone}(f_{\%})_n \end{cases}$ such that $\begin{cases} \operatorname{cone}(\varphi, \delta\varphi) \\ \operatorname{cone}(\psi, \delta\psi) \end{cases}$ is in \mathbb{C}

We say that n-dim. symmetric (quadratic) complexes (C, φ) and (C', φ') are **cobordant** if there exists an (n+1)-dim. symmetric (quadratic) pair

$$(f \oplus f' : C \oplus C' \to D, (\varphi \oplus -\varphi', \delta \varphi))$$

▲圖▶ ▲ 圖卜 ★ 圖卜 二 圖

Definition: L-groups of Λ

The symmetric L-groups of Λ are defined as

 $L^{n}(\Lambda) := \{n \text{-dimensional SACs in } \Lambda\} / \text{cobordisms}$

The quadratic L-groups of Λ are defined as

 $L_n(\Lambda) := \{n - dimensional QACs in \Lambda\} / cobordisms$

The group operation is the direct sum. Inverse of (C, φ) is $(C, -\varphi)$.

Note:

Standard textbook L-groups of a ring $L_n(R)$ are the special case of these for $\Lambda(R) = (R \operatorname{Mod}, \operatorname{CH}_b(R), \operatorname{CH}_{cb}(R))$ a category of R-modules, bounded complexes and contractible bounded complexes.

ヘロマ 全部 マネヨマ ション

3

Given an additive category \mathbb{A} and locally finite simplicial complex K we define two additive categories $\mathbb{A}^*(K)$ and $\mathbb{A}_*(K)$ as follows:

- Objects of both categories are $\left\{ \bigoplus_{\sigma \in K} M_{\sigma} \mid M_{\sigma} \in \mathbb{A} \right\}$
- Morphisms of $\mathbb{A}^*(K)$ are:

$$\left\{\left\{f_{\sigma,\tau}\right\}_{\sigma\geq\tau}:\bigoplus_{\sigma\in K}M_{\sigma}\longrightarrow\bigoplus_{\tau\in K}N_{\tau}\mid (f_{\sigma,\tau}:M_{\sigma}\longrightarrow N_{\tau})\in\mathbb{A}\right\}$$

• Morphisms of $\mathbb{A}_*(K)$ are:

$$\left\{\left\{f_{\sigma,\tau}\right\}_{\sigma\leq\tau}:\bigoplus_{\sigma\in K}M_{\sigma}\longrightarrow\bigoplus_{\tau\in K}N_{\tau}\mid (f_{\sigma,\tau}:M_{\sigma}\longrightarrow N_{\tau})\in\mathbb{A}\right\}$$

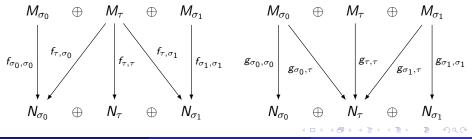
where ordering $\sigma \geq \tau$ is understood as an ordering on a dimension.

Example: For A some additive category and $K = \Delta^1 = \{\sigma_0, \tau, \sigma_1\}$ a simplicial complex of an interval:

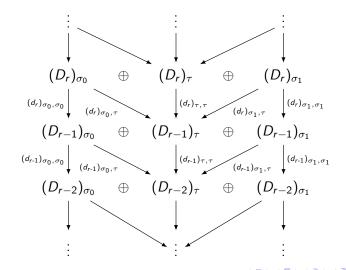
Objects are all triples of objects of \mathbb{A} , labeled by Δ^1 :

 $\{M_{\sigma_0} \oplus M_{\tau} \oplus M_{\sigma_1} \mid M_i \in \mathbb{A}\}$

Morphisms $f \in \mathbb{A}^*(\Delta^1)$ and $g \in \mathbb{A}_*(\Delta^1)$ consist of the following collection of maps:



Chain complex in $\mathbb{A}_*(\Delta^1)$ is then depicted in the diagram:



S. Dylda (FMFI UK)

The categories $\mathbb{A}^*(K)$ and $\mathbb{A}_*(K)$ have induced chain dualities:

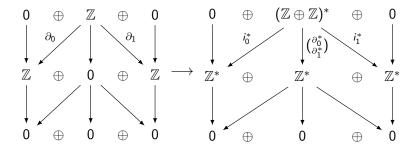
$$(T^*(\bigoplus_{\sigma\in K}M_{\sigma})_{\bullet})_{\tau}:=(T(\bigoplus_{\tau\geq \overline{\tau}}M_{\overline{\tau}}))_{\bullet-|\tau|}$$

and

$$(T_*(\bigoplus_{\sigma\in K}M_\sigma)_{\bullet})_{\tau}:=(T(\bigoplus_{\tau\leq \overline{\tau}}M_{\overline{\tau}}))_{\bullet+|\tau|}$$

4 ヨト 4 ヨト

Example of a chain dual complex over $\mathbb{Z}Mod^*(\Delta^1)$:



Example: \mathbb{Z} -modules over K

Categories of finitely generated \mathbb{Z} -modules over K are denoted as:

$$\mathbb{Z}_*(\mathsf{K}) := \mathbb{Z}\mathrm{Mod}_*(\mathsf{K}) \qquad \mathbb{Z}^*(\mathsf{K}) := \mathbb{Z}\mathrm{Mod}^*(\mathsf{K})$$

Note that, for $K = \{*\}$, we have just $\mathbb{Z}_*(\{*\}) = \mathbb{Z}^*(\{*\}) := \mathbb{Z}Mod_{fg}$

Assembly

There is a well-defined assembly functor:

$$egin{aligned} A:\mathbb{Z}_*(K)\longrightarrow\mathbb{Z}[\pi]\mathrm{Mod}\ &M\longmapstoigoplus_{ ilde{\sigma}\in ilde{K}}M_{p(ilde{\sigma})} \end{aligned}$$

which induces a functor: $A : \Lambda(\mathbb{Z})_*(K) \longrightarrow \Lambda(\mathbb{Z}[\pi])$

The additive categories with chain duality $A^*(K)$ and $A^*(K)$ can be made into algebraic bordism categories in various ways yielding chain complexes with various types of Poincare duality:

Global and local Poincare dualities

For X a finite simplicial complex and $\mathbb{A} = \mathbb{Z}_*(X)$ we define categories:

•
$$\mathbb{B} = \mathbb{B}(\mathbb{Z}_*(X)) = \mathbb{Z}\mathrm{Ch}_{b*};$$

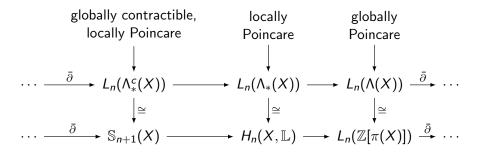
•
$$\mathbb{C} = \{ C \in \mathbb{B} \, | \, A(C) \simeq * \}$$
 (global);

•
$$\mathbb{D} = \{ C \in \mathbb{B} \, | \, C(\sigma) \simeq *, \, \forall \sigma \in X \}$$
 (local);

We then have the following algebraic bordism categories

$$\Lambda(X) := (\mathbb{A}, \mathbb{B}, \mathbb{C}) \equiv \Lambda(\mathbb{Z})(X)$$
$$\Lambda_*(X) := (\mathbb{A}, \mathbb{B}, \mathbb{D}) \equiv \Lambda(\mathbb{Z})_*(X)$$
$$\Lambda^c_*(X) := (\mathbb{A}, \mathbb{C}, \mathbb{D})$$

For be a finite simplicial complex X we then have the following long exact sequence



which is called an algebraic surgery exact sequence for X.

Symmetric construction: Given an identity map on simplicial complex $f : X \longrightarrow X$ one can construct SAC complex over $\mathbb{Z}_*(X)$ via the following (naive) reasoning:

- We start by dissecting X into it's dual cells;
- SAC (C(X[σ]), φ_σ(μ_σ)) constructed on each such small piece using Alexander-Whitney diagonal approximation;
- Finally we gather all such SACs into one big complex in Z_{*}(X) (indexed by simplexes of X) with appropriate compatibility properties;

Visible symmetric signature

Given a finite n-dim. Poincare simplicial complex X we define **the visible** symmetric signature of X over X as the algebraic cobordism class of symmetric constructions on X

$$\operatorname{vssign}_X(X) := [(C(X), \varphi([X]))]_{\operatorname{cobordism}} \in L^n(\Lambda \langle 1/2 \rangle(X))$$

Note:

Originally, visible symmetric signature, lives inside a so-called 1/2-visible symmetric L-group $VL^n(X)$, but there is a convenient isomorphism $VL^n(X) \cong L^n(\Lambda\langle 1/2\rangle(X))$.

Total surgery obstruction

Then, the total surgery obstruction of n-dim. finite Poincare simplicial complex X is an element $s(X) \in S_n(X)$ defined by

$$s(X) := \partial(\operatorname{vssign}_X(X)) \in \mathbb{S}_n(X) \cong L_{n-1}(\Lambda^c_*(X))$$

where the map ∂ is the boundary homomorphism.

Theorem: Ranicki

For X an $n \ge 5$ -dimensional finite geometric Poincare complex there exists homotopy equivalence of X to manifold M iff $s(X_{\Delta}) = 0$ (here X_{Δ} is an n-dimensional finite geometric Poincare **simplicial** complex, such that $X \simeq X_{\Delta}$).

Theorem: Product formula

For X, Y two finite Poincare complexes of dimensions n and m we have:

- **Q** $X \times Y$ is an (n+m)-dimensional finite Poincare simplicial complex;
- 2 With visible signature over K given as

$$\operatorname{vssign}_{X \times Y}(X \times Y) = \operatorname{vssign}_X(X) \otimes_{(X,Y)} \operatorname{vssign}_Y(Y)$$

Problem: At the moment there is no general proof to this statement. Ranicki has proved this for the special case of $K, L = \{*\}$, but not in general.

Proposed solution: Ball complexes

Intuitive analogy for understanding the idea:

- simplicial complex \iff space split into triangles
 - ball complex \iff space split into general polyhedra

Definition: Ball complex

A ball complex K is a finite set of PL balls in \mathbb{R}^n , for given $n \in \mathbb{N}$, such that:

- all balls in K have disjoint interiors;
- 2 the boundary of a ball in K is a union of balls of K;

The product of two ball complexes is canonically a ball complex:

$$K \times L := \bigcup_{\sigma \in K, \tau \in L} \sigma \times \tau$$

The current roadmap, for K a ball complex:

- Define categories $\mathbb{A}^*(K)$, $\mathbb{A}_*(K)$ (Macko, Spiros)
- Of Define chain dualities (T, e) on those (Davis, Rovi)
- Sconstruct L-homology theory (Macko, Spiros)
- Prove (simply connected) assembly (WIP)
- Prove π - π theorem (TODO, hard)
- Prove product formula (?)

Thank You for your attention!

S. Dylda (FMFI UK)

Algebraic Surgery over simplicial complexes a 22 / 24

▲ 臣 ト 老 臣 ト

Chain duality (T, e) allows us to define tensor products over \mathbb{A} :

$$\mathcal{C}\otimes_{\mathbb{A}} D := \operatorname{Hom}_{\mathbb{B}(\mathbb{A})}(\mathcal{T}(\mathcal{C}), D)$$

Hence we can define *W*-complexes:

Definition: W-complexes

For bounded chain complex $C \in \mathbb{B}(\mathbb{A})$ we have:

 $W_{\%}(C) := W \otimes_{\mathbb{Z}[\mathbb{Z}_2]} (C \otimes_{\mathbb{A}} C) \qquad W^{\%}(C) := \operatorname{Hom}_{\mathbb{Z}[\mathbb{Z}_2]}(W, C \otimes_{\mathbb{A}} C)$

where W is the canonical free $\mathbb{Z}[\mathbb{Z}_2]$ -resolution.

トメヨトメヨト

Connectivity

For $\Lambda = (\mathbb{A}, \mathbb{B}, \mathbb{C})$ and an integer $q \in \mathbb{Z}$ we define an algebraic bordism categories

$$\Lambda\langle q
angle:=(\mathbb{A},\mathbb{B}\langle q
angle,\mathbb{C}\langle q
angle) \qquad \Lambda\langle 1/2
angle:=(\mathbb{A},\mathbb{B}\langle 0
angle,\mathbb{C}\langle 1
angle)$$

where:

 $\mathbb{B}\langle q \rangle := \{ C \in \mathbb{B} \mid C \simeq q \text{-connected chain complex} \}$ $\mathbb{C}\langle q \rangle := \mathbb{B}\langle q \rangle \cap \mathbb{C}$

通す キヨト キヨト

3