Geometry of spaces of split skew-torsion

Ana Cristina Ferreira

(Work in progress with I. Agricola and S. Vasilev)
$\bigcirc \rightarrow$ Centre of Mathematics
-
UNIVERSITY OF MINHO

43rd Winter School in Geometry and Physics - 2023
Srní, Czech Republic

Split torsion

$(M=G / H, g)$ Riemannian homogeneous space of $\operatorname{dim} n$
\rightarrow reductive decomposition $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$ such that

$$
\mathfrak{m}=\mathfrak{m}_{1} \oplus \mathfrak{m}_{2} \oplus \mathfrak{m}_{3}
$$

is a splitting of \mathfrak{m} into 3 (not necessarily irreducible) \mathfrak{h}-modules.
$\rightarrow \nabla$ invariant metric connection on M with totally skew symmetric torsion tensor T.

Definition (split torsion)
T is said to be of split type if $T\left(X_{i}, X_{j}\right)=0$, with $X_{i} \in \mathfrak{m}_{i}, X_{j} \in \mathfrak{m}_{j}, i \neq j$.
T is said to be non-degenerate if for every $X_{1} \in \mathfrak{m}_{1}$ the map
$\Gamma_{X_{1}}: \mathfrak{m}_{2} \longrightarrow \mathfrak{m}_{3}$ s.t. $\Gamma_{X_{1}}\left(X_{2}\right)=T\left(X_{1}, X_{2}\right)$ is a linear isomorphism.

Naturally reductive homogeneous spaces

$(M=G / H, g)$ Riemannian homogeneous space of $\operatorname{dim} n$
\rightarrow reductive decomposition: $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$ with $[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}$.
g induces a scalar product on \mathfrak{m} which is $\operatorname{ad}(\mathfrak{h})$-invariant, i.e. for $Z \in \mathfrak{h}$

$$
\left\langle[Z, X]_{\mathfrak{m}}, Y\right\rangle+\left\langle[Z, Y]_{\mathfrak{m}}, X\right\rangle=0 .
$$

If, moreover, the scalar product is $\operatorname{ad}(\mathfrak{g})$-invariant, i.e. or $Z \in \mathfrak{g}$

$$
\left\langle[Z, X]_{\mathfrak{m}}, Y\right\rangle+\left\langle[Z, Y]_{\mathfrak{m}}, X\right\rangle=0 .
$$

($M=G / H, g$) is said to be a naturally reductive homogeneous space.

Naturally reductive homogeneous spaces

- $T(X, Y)=-[X, Y]_{\mathrm{m}}$ is totally skew symmetric
\rightarrow Levi-Civita connection: $\nabla_{X}^{g} Y=\frac{1}{2}[X, Y]_{\mathrm{m}}$
\rightarrow One-parameter family of connections with skew torsion

$$
\nabla^{s}:=\nabla^{g}+2 s T, s \in \mathbb{R} .
$$

$\rightarrow \nabla^{1 / 4}:=\nabla^{c}$ canonical connection satisfies

$$
\nabla^{c} T^{c}=\nabla^{c} R^{c}=0 .
$$

Classification results

\rightarrow dim 3: Tricerri \& Vanhecke (LNM, 1983)
\rightarrow dims 4 and 5: Kowalski \& Vanhecke $(1983,1985)$
$\rightarrow \operatorname{dim}$ 6: Agricola, F., \& Friedrich (2015)

3-locally-symmmetric spaces

Definition

A reductive homogeneous space $M={ }^{G} / H, \mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$, with three isotropy summands $\mathfrak{m}=\mathfrak{m}_{1} \oplus \mathfrak{m}_{2} \oplus \mathfrak{m}_{3}$, satisfying the condition

$$
\left[\mathfrak{m}_{i}, \mathfrak{m}_{i}\right] \subset \mathfrak{h}
$$

is called a 3-locally-symmetric space or a generalized Wallach space.
\rightarrow Classification (\mathfrak{m}_{i} irreducible \mathfrak{h}-modules) by Y. Nikonorov (2016).

Proposition

A naturally reductive generalized Wallach space is a space of split torsion.
Idea of proof: The relations $\left[\mathfrak{m}_{i}, \mathfrak{m}_{j}\right] \subset \mathfrak{m}_{k}$ are satisfied.

Wallach spaces revisited

Theorem

Compact, simply connected, homogeneous manifold of even dimension with metric of positive sectional curvature:

- Compact, rank one, symmetric spaces (CROSS)
- Three exceptional examples:

$$
\begin{aligned}
& \rightarrow W^{6}=\mathrm{U}(3) / \mathrm{U}(1)^{3} \\
& \rightarrow W^{12}=\mathrm{Sp}(3) / \mathrm{Sp}(1)^{3} \\
& \rightarrow W^{24}=\mathrm{F}_{4} / \operatorname{Spin}(8)
\end{aligned}
$$

Classification in odd dimensions: B. Bergery (1976)
Modern account with some corrections: B. Wilking and W. Ziller (2015)

Wallach spaces revisited

Theorem

Compact, simply connected, homogeneous manifold of even dimension with metric of positive sectional curvature:

- Compact, rank one, symmetric spaces (CROSS)
- Three exceptional examples:

$$
\begin{aligned}
& \rightarrow W^{6}=\mathrm{U}(3) / \mathrm{U}(1)^{3} \\
& \rightarrow W^{12}=\mathrm{Sp}(3) / \mathrm{Sp}(1)^{3} \\
& \rightarrow W^{24}=\mathrm{F}_{4} / \operatorname{Spin}(8)
\end{aligned}
$$

$$
\begin{gathered}
\operatorname{dim}=9-3=6 \\
\operatorname{dim}=21-9=12 \\
\operatorname{dim}=52-28=24
\end{gathered}
$$

Classification in odd dimensions: B. Bérgery (1976)
Modern account with some corrections: B. Wilking and W. Ziller (2015)

6-dimensional Wallach space

$$
W^{6}=\mathrm{U}(3) / \mathrm{U}(1)^{3}
$$

\rightarrow flag manifold, twistor space of $\mathbb{C} P^{2}$
\rightarrow carries two almost Hermitian structures

- one is Kähler-Einstein
- one is nearly-Kähler (therefore Einstein)
$\mathfrak{g}=\mathfrak{u}(3)=\left\{A \in M_{3}(\mathbb{C}): A+\bar{A}^{t}=0\right\}$
$\mathfrak{h}=\mathfrak{u}(1)^{3}=\left\{A \in M_{3}(\mathbb{C}): A=\operatorname{diag}\left(h_{1}, h_{2}, h_{3}\right), h_{i} \in \operatorname{Im}(\mathbb{C})\right\}$
$\mathfrak{m}=\mathfrak{h}^{\perp}=\left\{\left(\begin{array}{ccc}0 & a & b \\ -\bar{a} & 0 & c \\ -\bar{b} & -\bar{c} & 0\end{array}\right): a, b, c \in \mathbb{C}\right\}$
$\rightarrow \mathfrak{m}$ splits as $\mathfrak{m}_{1} \oplus \mathfrak{m}_{2} \oplus \mathfrak{m}_{3}$ with $\left[\mathfrak{m}_{i}, \mathfrak{m}_{j}\right] \subset \mathfrak{m}_{k}$.

12-dimensional Wallach space

$$
\begin{aligned}
& W^{12}=\operatorname{Sp}(3) / \operatorname{Sp}(1)^{3} \\
& \mathfrak{g}=\mathfrak{s p}(3)=\left\{A \in M_{3}(\mathbb{H}): A+\bar{A}^{t}=0\right\} \\
& \mathfrak{h}=\mathfrak{s p}(1)^{3}=\left\{A \in M_{3}(\mathbb{H}): A=\operatorname{diag}\left(h_{1}, h_{2}, h_{3}\right), h_{i} \in \operatorname{Im}(\mathbb{H})\right\}
\end{aligned}
$$

$\mathfrak{m}=\mathfrak{h}^{\perp}$ splits as $\mathfrak{m}_{1} \oplus \mathfrak{m}_{2} \oplus \mathfrak{m}_{3}$ with $\left[\mathfrak{m}_{i}, \mathfrak{m}_{j}\right] \subset \mathfrak{m}_{k}$.

- Geometric structures on W^{12} ?
\rightarrow no almost complex structure
\rightarrow no quaternionic Kähler structure
\rightarrow no quaternionic Kähler with torsion structure
$\rightarrow W^{12}$ carries an $\operatorname{Sp}(1)^{3}$-structure

24-dimensional Wallach space

$$
\begin{aligned}
& W^{24}=\mathrm{F}_{4} / \operatorname{Spin}(8) \\
& \rightarrow M_{3}(\mathbb{O}) \ldots \\
& \rightarrow \mathfrak{f}_{4}=\mathfrak{s o}(8) \oplus \mathbb{O} \oplus \mathbb{O} \oplus \mathbb{O}
\end{aligned}
$$

Baez, 2001:
'This formula emphasizes the close relation between \mathfrak{f}_{4} and triality: the Lie bracket in \mathfrak{f}_{4} is completely built out of maps involving $\mathfrak{s o (8)}$ and its three 8-dimensional irreducible representations!’

Kollross, 2020
Explicit construction of Lie bracket structure on $\mathfrak{f}_{4}=\mathfrak{s o}(8) \oplus \mathbb{O} \oplus \mathbb{O} \oplus \mathbb{O}$.

A unified approach

Wallach spaces via Jordan algebras

- $\mathrm{H}_{3}(\mathbb{K})=\left\{A \in M_{3}(\mathbb{K}): A^{*}=A\right\}$.
- Jordan product $A \circ B=\frac{1}{2}(A B+B A)$
$\rightarrow\left(\mathrm{H}_{3}(\mathbb{K}), \mathrm{o}\right)$ is an algebra with unit Id_{3}.
$\rightarrow\langle A, B\rangle=\operatorname{tr}(A \circ B)$ is a positive definite inner product
- Automorphism group of $\mathrm{H}_{3}(\mathbb{K})$:

$$
\begin{array}{ll}
\rightarrow G_{\mathbb{R}}=\mathrm{O}(3) & \rightarrow G_{\mathbb{H}}=\mathrm{Sp}(3) \\
\rightarrow G_{\mathbb{C}}=\mathrm{U}(3) & \rightarrow G_{\mathbb{O}}=\mathrm{F}_{4}
\end{array}
$$

- $D_{1}=\operatorname{diag}(1,0,0), \quad D_{2}=\operatorname{diag}(0,1,0), \quad \operatorname{diag}(0,0,1)$

Then $\mathrm{H}_{\mathbb{K}}=\cap_{i=3} \operatorname{Stab}\left(D_{i}\right)$ is equal to

$$
\begin{array}{ll}
\rightarrow H_{\mathbb{R}}=\mathbb{Z}_{2}^{3} & \rightarrow H_{\mathbb{H}}=\operatorname{Sp}(1)^{3} \\
\rightarrow H_{\mathbb{C}}=\mathrm{U}(1)^{3} & \rightarrow G_{\mathbb{O}}=\operatorname{Spin}(8)
\end{array}
$$

Dirac operators with skew torsion

M spin manifold and \mathcal{S} spin bundle on M
One-parameter family of metric connections with skew torsion

$$
\nabla_{X}^{s} Y=\nabla_{X}^{g} Y+2 s T(X, Y,-)
$$

Lifts to spin bundle

$$
\left.\nabla_{X}^{s} \psi=\nabla_{X}^{g} \psi+s(X\lrcorner T\right) \psi
$$

Dirac operator \mathcal{D}^{s} on \mathcal{S} :

$$
\mathcal{D}^{s}: \Gamma(\mathcal{S}) \xrightarrow{\nabla^{s}} \Gamma\left(T^{*} M \otimes \mathcal{S}\right) \longrightarrow \Gamma(T M \otimes \mathcal{S}) \xrightarrow{\bullet} \Gamma(\mathcal{S})
$$

- denotes Clifford multiplication

If e_{1}, \cdots, e_{n} is on ON frame then $\mathcal{D}^{s} \psi=\sum_{i=1}^{n} e_{i} \nabla_{e_{i}} \psi$
Remark: $\mathcal{D}^{s / 3}=\mathcal{D}^{g}+s T$

Dirac operators with parallel skew torsion

Recall: estimate for the first eigenvalue of $\left(\mathcal{D}^{g}\right)^{2}$
$\lambda \geq \frac{n}{4(n-1)} \mathrm{Scal}_{\text {min }}^{g}, \quad n=\operatorname{dim} M$
Several estimates for Dirac operators with parallel skew torsion:
If $\nabla^{c} T=0$ then for $\mathcal{D}:=\mathcal{D}^{1 / 3}$ we have $\mathcal{D}^{2} \circ T=T \circ \mathcal{D}^{2}$.
$\rightarrow \mathcal{S}=\bigoplus_{\mu_{i}} \mathcal{S}_{\mu_{i}} \quad$ eigenbundles for the action of $T: \mu_{1}, \cdots, \mu_{k}$
(Agricola, Becker-Bender, Kim, 2013; Agricola, Kim, 2014)
$\beta_{\text {univ }}: \quad \lambda \geq \frac{1}{4}$ scal $_{\text {min }}^{g}+\frac{1}{8}\|T\|^{2}-\frac{1}{4} \max \left(\mu_{1}^{2}, \cdots, \mu_{k}^{2}\right)$
$\beta_{\text {twist }}: \quad \lambda \geq \frac{n}{4(n-1)} \operatorname{scal}_{\text {min }}^{g}+\frac{n(n-5)}{8(n-3)^{2}}\|T\|^{2}-\frac{n(n-4)}{4(n-3)^{2}} \max \left(\mu_{1}^{2}, \cdots, \mu_{k}^{2}\right)$
$\beta_{\text {split }}: \quad \lambda \geq \frac{n_{p}}{4\left(n_{p}-1\right)} \operatorname{scal}_{\text {min }}^{g}+\frac{n_{p}}{8\left(n_{p}-1\right)}\|T\|^{2}-\frac{1+n_{p}}{4\left(n_{p}-1\right)} \max \left(\mu_{1}^{2}, \cdots, \mu_{k}^{2}\right)$
$n_{1} \leq \cdots \leq n_{p}$ dimensions of the modules $\mathfrak{m}_{i}, i=1, \cdots, p$.

Examples

- W^{6}

$$
\begin{align*}
& \mathrm{scal}^{g}=30,\|T\|=2, \mu=4, n=6, n_{p}=2 \tag{8}\\
& \beta_{\text {univ }}=\beta_{t w i s t}=\beta_{\text {split }}=4
\end{align*}
$$

- W^{12}
$n=12, n_{p}=4$, scal $^{g}=168,\|T\|=4, \mu=8$
$\beta_{\text {univ }}=28, \quad \beta_{\text {twist }}=\frac{2864}{99} \simeq 28.9, \quad \beta_{\text {split }}=32$
- W^{24}
$n=24, n_{p}=8, \mathrm{scal}^{g}=768,\|T\|=8, \mu=20$
$\beta_{\text {univ }}=100, \quad \beta_{\text {twist }}=\frac{103616}{1127} \simeq 91.94, \quad \beta_{\text {split }}=100$
[Thanks to M. Panizzut and T. Beuer (Aachen) for the GAP code which computed the minimum polinomial for the action of T on W^{24}]

Many thanks for the attention!

