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Godbillon-Vey class (1971). (M3,F2), normal bundle is
oriented; F is the kernel of a 1-form ω.

dω = η ∧ ω

GV := [η ∧ dη] ∈ H3(M).

The geometric meaning is still unclear (Thurston, Sullivan,
Duminy, Hurder,.....)

S. Hurder, Dynamics and the Godbillon-Vey classes: a history and
survay. In Foliations: Geometry and Dynamics (Warsaw, 2000)
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Berstein, Rozenfeld; Bott, Haefliger: GV class comes from the
Gel’fand-Fuchs cohomology

H3(W1,O1) ∼= R

��
H3(M)
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H3(W1,O1) ∼= R

��
H3(S(M/F)/O1 × Z)

��
H3(S(M/F)/O1)

��
Ȟ3(M/F) = H3(BGT )

��
H3(M)
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H3(W1,O1) ∼= R

��

H2(W1,GL1) ∼= R

��
H3(S(M/F)/O1 × Z)

��

oo // H2(S(M/F)/GL1)

H3(S(M/F)/O1)

��
H3(M)

Anton Galaev Losik classes and Reeb foliations



Foliation. (Mm,F), codimF = n

M is a union of submanifolds (leaves) of dimension m − n such
that locally

φ = (g , f ) : V →W × U ⊂ Rn−m × Rn

and for any leaf L the connected components of L∩V are given by
f = const.

.
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Foliation atlas: ϕi : Vi →Wi × Ui ⊂ Rn−m × Rn

Coordinate change: ϕij(x , y) = (gij(x , y), fij(y))

Holonomy transformations: fij : Ui → Uj

Complete transversal: N = ∪Ui

Holonomy pseudogroup: (N,G ), G = 〈fij〉

Leaf space:
M/F = N/G
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Leaf holonomy.

L ⊂ M is a leaf, x ∈ L, γ : [0, 1]→ L is a closed curve at x

hol(γ) ∈ Diffx(D)

hol : π1(L, x)→ Diffx(D)

The image is the holonomy group of the leaf L
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A Reeb foliation on T = S1 × D2 is defined by a function

f : (−1, 1)→ R, f (−x) = f (x),

f (k)(x)→ +∞, (1/f ′)(k)(x)→ 0 as x → ±1

ϕ(t) = f −1(f (t) + 1)

ϕ(1) = 1, ϕ′(1) = 1, ϕ′′(1) = · · · = 0
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https://commons.wikimedia.org/wiki/File:

Reeb_foliation_half-torus_POV-Ray.png
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Rf , Rg two such foliations Rf ,g is a Reeb foliation on

S3 = T ∪S1×S1 T
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Leaf holonomy

Hol(L) = Z⊕ Z, L = S1 × S1

Hol(L) = 0, L 6= S1 × S1

ϕ(x) = f −1(f (x) + 1), x < 1, ϕ(x) = x , x ≥ 1

ϕ(1) = 1, ϕ′(1) = 1, ϕ′′(1) = · · · = 0
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Theorem (Morita, Tsuboi) (M,F) is without holonomy =>
GV(F) = 0.

Theorem (Mizutani, Morita, Tsuboi) (M,F) is almost without
holonomy => GV(F) = 0.

Cor. GV(Rf ,g ) = 0
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L is a resilient leaf: ∃ x ∈ L, U through x , y ∈ L ∩ U, f such that
f n(y)→ x as n→ +∞

Theorem (Duminy, Sergiescu) (M,F) has no resilient leaf =>
GV(F) = 0.
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U ⊂ R a transversal to F

S2(U)/O1 = U × R× R with coordinates x0, x1, x2

m : U → V holonomy transformation

m̃ : S2(U)/O1 → S2(V )/O1

α0 = m̃(x0),

α1 = x1 + ln |m′(x0)|,

α2 = x2
m′(x0) + m′′(x0)

(m′(x0))2

Important: m̃∗(dα0 ∧ dα1 ∧ dα2) = dx0 ∧ dx1 ∧ dx2
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Leaf space M/F

∪Uα a complete transversal, Uα ⊂ R

M/F = (∪Uα)/{holonomy transformations}

S2(M/F)/O1 = (∪S2(Uα)/O1)/{holonomy transformations}

ω ∈ Ωk(S2(M/F)/O1) ←→ ∀α ωα ∈ Ωk(S2(Uα)/O1),
m̃∗ωβ = ωα

De Rham cohomology Hk(S2(M/F)/O1)
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Godbillon-Vey-Losik class

GVL(M/F) = [−dx0 ∧ dx1 ∧ dx2] ∈ H3(S2(M/F)/O1)

H3(S2(M/F))→ H3(M)

GVL(M/F) 7→ GV(F)
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Remark
pt1 = R/{all local diffeomorphisms}

H∗(S2(pt1)/O1) ∼= H∗(W1,O1)

The projection
M/F → pt1

induces

R = H3(S2(pt1)/O1)→ H3(S2(M/F)/O1)
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S ′2(U) = S2(U)/GL1 with coordinates x0, x2

the first Chern-Losik class

CL1(M/F) = [dx2 ∧ dx0] ∈ H2(S2(M/F)/GL1)

H2(S2(M/F)/GL1)→ H2(M)

CL1(M/F) 7→ 0

Theorem. CL1(M/F) = 0 ⇒ GVL(M/F) = 0
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Foliations without holonomy. (M,F)

∃ (E , F̃) such that E/F̃ = R/Im(q),

q : π1(M)→ Diff+(R)

∃ σ : M → E inducing M/F → E/F̃

Im(q) = 〈ϕ1, . . . ϕp〉 is commutative and its elements have no
fixed points in R

Theorem If ρ(ϕi , ϕj) is Diophantine for some i 6= j then Im(q) is
conjugated to a group of shifts, and CL1(M/F) = 0.
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Reeb foliation

M/F = R/ < ϕ >

ϕ : R→ R, ϕ(0) = 0, ϕ′(0) = 1, ϕ′′(0) = ϕ′′′(0) = · · · = 0

GVL(M/F) = 0 ⇐⇒ ∃ ω ∈ Ω2(R3)

ϕ̃∗ω = ω, dω = −dx0 ∧ dx1 ∧ dx2
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Theorem. For all Reeb foliations CL1(M/F) 6= 0.

CL1 detects the compact leaf with non-trivial holonomy!

Theorem. (generalization) If a holonomy diffeomorphism of a
foliation has a non-hyperbolic fixed point, then CL1(M/F) 6= 0.
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Let a Reeb foliation be given by a local diffeomorphism ϕ

∃ ϕt , ϕ1 = ϕ

ϕt defines V called the Szekeres vector field

GVL(M/F) = 0 ⇐⇒ ∃ ω ∈ Ω2(R3)

LṼω = ω, dω = −dx0 ∧ dx1 ∧ dx2

Ṽ = (V ,V ′,−x2V
′ + V ′′)
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Vα(x) =

{
e
− 1

|x|α , for x 6= 0,
0, for x = 0.

Theorem. α 6∈ N ⇒ GVL(M/Rα) 6= 0

Theorem. α ∈ N ⇒ GVL(M/Rα) = 0

Corollary. If α 6∈ N is and β ∈ N, then the foliations Rα and Rβ
are not diffeomorphic.
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