On non-geometric augmentations of Legendrian submanifolds

Roman Golovko

Charles University

January 17, 2023

Golovko (Charles University)

January 17, 2023 1 / 19

 Given a Legendrian submanifold of (R²ⁿ⁺¹, dz - ydx), Chekanov-Eliashberg algebra A(Λ) gives a powerful Legendrian invariant. Linearizations of this algebra (called augmentations) are important in order to define the computable Legendrian invariants called linearized Legendrian contact (co-)homology groups.

- Given a Legendrian submanifold of (R²ⁿ⁺¹, dz ydx), Chekanov-Eliashberg algebra A(Λ) gives a powerful Legendrian invariant. Linearizations of this algebra (called augmentations) are important in order to define the computable Legendrian invariants called linearized Legendrian contact (co-)homology groups.
- These linearizations are very often geometric, i.e. they are induced by Maslov 0 embedded exact Lagrangian fillings.

- Given a Legendrian submanifold of (R²ⁿ⁺¹, dz ydx), Chekanov-Eliashberg algebra A(Λ) gives a powerful Legendrian invariant. Linearizations of this algebra (called augmentations) are important in order to define the computable Legendrian invariants called linearized Legendrian contact (co-)homology groups.
- These linearizations are very often geometric, i.e. they are induced by Maslov 0 embedded exact Lagrangian fillings.
- We are interested in finding non-geometric augmentations in high dimensions.

If Λ admits an exact Lagrangian filling L_Λ of Maslov number 0, then

- $tb(\Lambda) = (-1)^{\frac{(n-1)(n-2)}{2}+1}\chi(L)$,
- Obstruction A: there is an isomorphism of Seidel-Ekholm-Dimitroglou Rizell LCHⁱ_ε(Λ; ℤ₂) ≃ H_{n-i}(L; ℤ₂),
- the result of Ekholm-Lekili comparing the higher structures holds,
- Obstruction B: the resut of Gao-Rutherford showing the existence of injective algebraic map f^{*}_L : Aug(L, 𝔅) → Aug(Λ, 𝔅) holds.

If Λ admits an exact Lagrangian filling L_Λ of Maslov number 0, then

- $tb(\Lambda) = (-1)^{\frac{(n-1)(n-2)}{2}+1}\chi(L)$,
- Obstruction A: there is an isomorphism of Seidel-Ekholm-Dimitroglou Rizell $LCH^{i}_{\varepsilon}(\Lambda; \mathbb{Z}_{2}) \simeq H_{n-i}(L; \mathbb{Z}_{2})$,
- the result of Ekholm-Lekili comparing the higher structures holds,
- Obstruction B: the resut of Gao-Rutherford showing the existence of injective algebraic map f^{*}_L : Aug(L, 𝔅) → Aug(Λ, 𝔅) holds.

We will use Obstruction A and Obstruction B in order to find non-geometric augmentations.

Contact preliminaries

A contact manifold (M; ξ) is a (2n + 1)-dimensional manifold M equipped with a smooth maximally nonintegrable hyperplane field ξ ⊂ TM, i.e., ξ = ker α, where α is a 1-form which satisfies α ∧ (dα)ⁿ ≠ 0. ξ is a contact structure and α is a contact 1-form which defines ξ.

Contact preliminaries

- A contact manifold $(M; \xi)$ is a (2n + 1)-dimensional manifold Mequipped with a smooth maximally nonintegrable hyperplane field $\xi \subset TM$, i.e., $\xi = \ker \alpha$, where α is a 1-form which satisfies $\alpha \wedge (d\alpha)^n \neq 0$. ξ is a contact structure and α is a contact 1-form which defines ξ .
- The Reeb vector field R_α of (M; α) is a vector field uniquely defined by α(R_α) = 1 and i_{R_α}dα = 0.

Contact preliminaries

- A contact manifold $(M; \xi)$ is a (2n + 1)-dimensional manifold Mequipped with a smooth maximally nonintegrable hyperplane field $\xi \subset TM$, i.e., $\xi = \ker \alpha$, where α is a 1-form which satisfies $\alpha \wedge (d\alpha)^n \neq 0$. ξ is a contact structure and α is a contact 1-form which defines ξ .
- The Reeb vector field R_α of (M; α) is a vector field uniquely defined by α(R_α) = 1 and i_{R_α} dα = 0.

Example

Figure:
$$(\mathbb{R}^{2n+1}, \xi_{st} = \ker(dz - \sum_i y_i dx_i))$$
, where $n = 1$.

• A Legendrian submanifold Λ of $(\mathbb{R}^{2n+1}, \xi_{st})$ is an n-dimensional submanifold which is everywhere tangent to ξ_{st} .

- A Legendrian submanifold Λ of $(\mathbb{R}^{2n+1}, \xi_{st})$ is an n-dimensional submanifold which is everywhere tangent to ξ_{st} .
- A Reeb chord of Λ is a trajectory of ∂_z which starts and ends on Λ. The set of Reeb chords of Λ is denoted by Q(Λ).

 The Chekanov-Eliashberg algebra A(Λ) is a non-commutative unital differential graded algebra over a field F freely generated by Q(Λ).

Chekanov-Eliashberg algebra

- The Chekanov-Eliashberg algebra A(Λ) is a non-commutative unital differential graded algebra over a field F freely generated by Q(Λ).
- The differential on Reeb chords is defined in the following way:

$$\partial(c^+) = \sum_{\dim \mathcal{M}^J(c^+; c_1^-, ..., c_k^-) = 1} \# \frac{\mathcal{M}^J(c^+; c_1^-, ..., c_k^-)}{\mathbb{R}} c_1^- ... c_k^-,$$

where J is an almost complex structure on $(\mathbb{R} \times \mathbb{R}^{2n+1}, d(e^s \alpha_{st}))$ such that $J : \xi \to \xi$, $d\alpha_{st}(v, Jv) > 0$ for $v \in \xi$, J is \mathbb{R} -invariant, $J(\partial_s) = \partial_z$ and $M^J(c^+; c_1^-, \ldots, c_k^-)$ is a moduli space of punctured i-J holomorphic disks in $(\mathbb{R} \times \mathbb{R}^{2n+1}, J)$

Chekanov-Eliashberg algebra

- The Chekanov-Eliashberg algebra A(Λ) is a non-commutative unital differential graded algebra over a field F freely generated by Q(Λ).
- The differential on Reeb chords is defined in the following way:

$$\partial(c^+) = \sum_{\dim \mathcal{M}^J(c^+; c_1^-, ..., c_k^-) = 1} \# \frac{M^J(c^+; c_1^-, ..., c_k^-)}{\mathbb{R}} c_1^- ... c_k^-,$$

where J is an almost complex structure on $(\mathbb{R} \times \mathbb{R}^{2n+1}, d(e^s \alpha_{st}))$ such that $J : \xi \to \xi$, $d\alpha_{st}(v, Jv) > 0$ for $v \in \xi$, J is \mathbb{R} -invariant, $J(\partial_s) = \partial_z$ and $M^J(c^+; c_1^-, \ldots, c_k^-)$ is a moduli space of punctured i-J holomorphic disks in $(\mathbb{R} \times \mathbb{R}^{2n+1}, J)_{c_+}$

$$\mathbb{C} \supset \bigcup_{y_1 \cdots y_k}^{\times} \longrightarrow \left| \bigcup_{c_1^- \cdots c_k^-}^{\leftarrow} \mathbb{R} \times \Lambda \subset \mathbb{R} \times \mathbb{R}^{2n+1} \right|$$

We say that Λ^- is exact Lagrangian cobordant to Λ^+ if there is a smooth cobordism $(L; \Lambda^-, \Lambda^+)$ and an exact Lagrangian embedding $L \hookrightarrow S(\mathbb{R}^{2n+1}_{st})$, where $S(\mathbb{R}^{2n+1}_{st}) := (\mathbb{R} \times \mathbb{R}^{2n+1}, d(e^t \alpha_{st}))$ and t is the coordinate on the first \mathbb{R} -factor, satisfying the following conditions:

•
$$L|_{(-\infty,-T)\times\mathbb{R}^{2n+1}_{st}} = (-\infty,-T)\times\Lambda^{-}$$
 and
 $L|_{(T,\infty)\times\mathbb{R}^{2n+1}_{st}} = (T,\infty)\times\Lambda^{+}$ for some $T\gg0$,

•
$$L^c := L|_{[-T,T] \times \mathbb{R}^{2n+1}_{st}}$$
 is compact.

• There exists $f: L \to \mathbb{R}$ such that $e^t \alpha_{st}|_L = df$ and $f|_{(-\infty, -T) \times \Lambda^-}$, $f|_{(T,\infty) \times \Lambda^+}$ are constant functions.

We say that Λ^- is exact Lagrangian cobordant to Λ^+ if there is a smooth cobordism $(L; \Lambda^-, \Lambda^+)$ and an exact Lagrangian embedding $L \hookrightarrow S(\mathbb{R}^{2n+1}_{st})$, where $S(\mathbb{R}^{2n+1}_{st}) := (\mathbb{R} \times \mathbb{R}^{2n+1}, d(e^t \alpha_{st}))$ and t is the coordinate on the first \mathbb{R} -factor, satisfying the following conditions:

•
$$L|_{(-\infty,-T)\times\mathbb{R}^{2n+1}_{st}} = (-\infty,-T)\times\Lambda^{-}$$
 and
 $L|_{(T,\infty)\times\mathbb{R}^{2n+1}_{st}} = (T,\infty)\times\Lambda^{+}$ for some $T\gg0$,

•
$$L^c := L|_{[-T,T] \times \mathbb{R}^{2n+1}_{st}}$$
 is compact.

• There exists $f: L \to \mathbb{R}$ such that $e^t \alpha_{st}|_L = df$ and $f|_{(-\infty, -T) \times \Lambda^-}$, $f|_{(T,\infty) \times \Lambda^+}$ are constant functions.

If L is an exact Lagrangian cobordism with empty negative end and whose positive end is equal to Λ , then we say that L is an exact Lagrangian filling of Λ .

Exact Lagrangian fillings and augmentations

In general (by Ekholm-Honda-Kalman), having an exact Lagrangian cobordism L from Λ^- to Λ^+ , there is a DGA homomorphism

$$\mathcal{A}(\Lambda^+) \to \mathcal{A}(\Lambda^-).$$

In particular, if $\Lambda^-=\emptyset,$ then there is a DGA homomorphism that we call augmentation

$$\varepsilon_L: \mathcal{A}(\Lambda^+) \to (\mathbb{F}, 0).$$

Exact Lagrangian fillings and augmentations

For $c \in \mathcal{Q}(\Lambda)$, it is defined by

$$\varepsilon_L(c) = \# \mathcal{M}_L^J(c).$$

Isomorphism of Seidel–Ekholm–Dimitroglou Rizell, Obstruction A

Theorem (Seidel-Ekholm-Dimitroglou Rizell)

Let Λ be a Legendrian submanifold of Maslov number 0 of \mathbb{R}^{2n+1}_{st} , which admits an exact Lagrangian filling L of Maslov number 0. Then

 $LCH^{i}_{\varepsilon}(\Lambda;\mathbb{Z}_{2})\simeq H_{n-i}(L_{\Lambda};\mathbb{Z}_{2})$

where ε is the augmentation induced by L.

Isomorphism of Seidel–Ekholm–Dimitroglou Rizell, Obstruction A

Theorem (Seidel-Ekholm-Dimitroglou Rizell)

Let Λ be a Legendrian submanifold of Maslov number 0 of \mathbb{R}^{2n+1}_{st} , which admits an exact Lagrangian filling L of Maslov number 0. Then

 $LCH^{i}_{\varepsilon}(\Lambda;\mathbb{Z}_{2})\simeq H_{n-i}(L_{\Lambda};\mathbb{Z}_{2})$

where ε is the augmentation induced by L.

The homology and cohomology groups in the above result are defined over \mathbb{Z}_2 , but following the modern techniques due to Karlsson and Ekholm–Lekili, one can generalize the isomorphism of Seidel–Ekholm–Dimitroglou Rizell to an arbitrary field and \mathbb{Z} -coefficients, i.e.

$$LCH^{i}_{\varepsilon}(\Lambda;\mathbb{Z})\simeq H_{n-i}(L_{\Lambda};\mathbb{Z}).$$

(4) (日本)

Class A

In this class we consider Legendrian knots Λ in \mathbb{R}^3_{st} such that the Chekanov–Eliashberg algebra admits an augmentation

 $\varepsilon:\mathcal{A}(\Lambda)\to(\mathbb{Z}_2,0)$

satisfying that for some $i \in \mathbb{Z}$, $LCH_{\varepsilon}^{i}(\Lambda; \mathbb{Z}_{2})$ is not isomorphic to $H_{1-i}(L_{\Lambda}; \mathbb{Z}_{2})$ for all exact Lagrangian fillings L_{Λ} of Maslov number 0, i.e. $H_{1-i}(L_{\Lambda}; \mathbb{Z}_{2})$ is different from 0 for 1 - i < 0 or 1 - i > 1.

Figure: The grid diagram of the Legendrian representative of $m(8_{21})$.

We rely on the work of Chongchitmate–Ng. Legendrian representative of $m(8_{21})$ has a vanishing rotation number, and hence Maslov number 0, and two Poincaré polynomials, one of which is of the form

$$P_{m(8_{21})}(t) = t^{-1} + 4 + 2t,$$

The augmentation $\varepsilon_{m(8_{21})}$ which corresponds to this polynomial has the property that

$$LCH_{-1}^{\varepsilon_{m(8_{21})}}(\Lambda;\mathbb{Z}_{2})\simeq LCH_{\varepsilon_{m(8_{21})}}^{-1}(\Lambda;\mathbb{Z}_{2})\simeq\mathbb{Z}_{2}.$$

From Seidel's isomorphism it follows that $\varepsilon_{m(8_{21})}$ is not induced by a Maslov number 0 exact Lagrangian filling *L*, since otherwise $H_2(L; \mathbb{Z}_2) \simeq \mathbb{Z}_2$, which is impossible from the topological point of view.

< ロ > < 同 > < 三 > < 三 > 、

Result of Gao-Rutherford, Obstruction B

Let *L* be an exact Lagrangian filling of a Legendrian submanifold Λ , then $H_1(L; \mathbb{Z}) \simeq \mathbb{Z}^k \oplus \mathbb{Z}/k_1 \oplus \cdots \oplus \mathbb{Z}/k_s$. We define

 $Aug(L;\mathbb{F})\simeq (\mathbb{F}^*)^k\oplus C_{k_1}(\mathbb{F})\oplus\cdots\oplus C_{k_r}(\mathbb{F}),$

where $C_{k_i}(\mathbb{F})$ is the group of k_i -th roots of unity in \mathbb{F} .

Result of Gao-Rutherford, Obstruction B

Let *L* be an exact Lagrangian filling of a Legendrian submanifold Λ , then $H_1(L; \mathbb{Z}) \simeq \mathbb{Z}^k \oplus \mathbb{Z}/k_1 \oplus \cdots \oplus \mathbb{Z}/k_s$. We define

 $Aug(L; \mathbb{F}) \simeq (\mathbb{F}^*)^k \oplus C_{k_1}(\mathbb{F}) \oplus \cdots \oplus C_{k_r}(\mathbb{F}),$

where $C_{k_i}(\mathbb{F})$ is the group of k_i -th roots of unity in \mathbb{F} .

Theorem (Gao-Rutherford)

Let L be an exact Lagrangian filling of a Legendrian submanifold $\Lambda \subset (\mathbb{R}^{2n+1}, \alpha_{st})$ such that the Maslov number of L vanishes. If \mathbb{F} has a characteristic different from 2, assume that L is equipped with a choice of spin structure. Then, the map $f_L^* : Aug(L, \mathbb{F}) \to Aug(\Lambda, \mathbb{F})$ is an injective, algebraic map, where $f_L : \mathcal{A}(\Lambda, \mathbb{F}[\pi_1(\Lambda, x_0)]) \to \mathbb{F}[\pi_1(L, x_0)].$

Result of Gao-Rutherford, Obstruction B

Let *L* be an exact Lagrangian filling of a Legendrian submanifold Λ , then $H_1(L; \mathbb{Z}) \simeq \mathbb{Z}^k \oplus \mathbb{Z}/k_1 \oplus \cdots \oplus \mathbb{Z}/k_s$. We define

 $Aug(L; \mathbb{F}) \simeq (\mathbb{F}^*)^k \oplus C_{k_1}(\mathbb{F}) \oplus \cdots \oplus C_{k_r}(\mathbb{F}),$

where $C_{k_i}(\mathbb{F})$ is the group of k_i -th roots of unity in \mathbb{F} .

Theorem (Gao-Rutherford)

Let L be an exact Lagrangian filling of a Legendrian submanifold $\Lambda \subset (\mathbb{R}^{2n+1}, \alpha_{st})$ such that the Maslov number of L vanishes. If \mathbb{F} has a characteristic different from 2, assume that L is equipped with a choice of spin structure. Then, the map $f_L^* : Aug(L, \mathbb{F}) \to Aug(\Lambda, \mathbb{F})$ is an injective, algebraic map, where $f_L : \mathcal{A}(\Lambda, \mathbb{F}[\pi_1(\Lambda, x_0)]) \to \mathbb{F}[\pi_1(L, x_0)].$

For Λ_n and a certain algebraically closed \mathbb{F} , one gets an injective algebraic map $\mathbb{F}^2 \to \{(a, b) \ ab \neq -1\}$ with (0, 0) in its image which is impossible (Gao-Rutherford).

Class B

Consider the following Legendrian representatives of twist knots Λ_n , n is odd and n > 3, investigated by Gao–Rutherford.

Figure: The front projection of Λ_7 .

As proven by Gao–Rutherford, there is an augmentation ε_{Λ_n} to \mathbb{Z}_2 defined by $\varepsilon_{\Lambda_n}(a) = 0, \varepsilon_{\Lambda_n}(b) = 0, \varepsilon_{\Lambda_n}(c_i) = 1, \varepsilon_{\Lambda_n}(e_j) = 0$ that is not induced by any Maslov 0 exact Lagrangian filling.

Spherical spinning

Let Λ be a closed, orientable Legendrian submanifold of \mathbb{R}^{2n+1}_{st} parameterized by $f_{\Lambda} : \Lambda \to \mathbb{R}^{2n+1}$ with

$$f_{\Lambda}(p) = (x_1(p), y_1(p), \dots, x_n(p), y_n(p), z(p))$$

for $p \in \Lambda$. Without loss of generality assume that $x_1(p) > 0$ for all p. We define the S^m -spun $\Sigma_{S^m}\Lambda$ to be the Legendrian submanifold of $\mathbb{R}^{2(m+n)+1}$ whose *xz*-projection is parametrized by $\Phi : \Lambda \times S^m \to \mathbb{R}^{n+m+1}$ with

$$\Phi(p,\theta,\overline{\phi}) = (\tilde{x}_{-m+1}(p,\theta,\overline{\phi}), \dots, \tilde{x}_1(p,\theta,\overline{\phi}), x_2(p), \dots, z(p)),$$

where $\theta \in [0, 2\pi)$, $\overline{\phi} = (\phi_1, \dots, \phi_{m-1}) \in [0,\pi]^{m-1}$ and
$$\begin{cases} \tilde{x}_{-m+1}(p,\theta,\overline{\phi}) = x_1(p)\sin\theta\sin\phi_1\dots\sin\phi_{m-1},\\ \tilde{x}_{-m+2}(p,\theta,\overline{\phi}) = x_1(p)\cos\theta\sin\phi_1\dots\sin\phi_{m-1},\\ \dots\\ \tilde{x}_1(p,\theta,\overline{\phi}) = x_1(p)\cos\phi_{m-1}. \end{cases}$$

v

Spherical spinning

• From this definition it follows that $\Sigma_{S^m} \Lambda$ is diffeomorphic to $S^m \times \Lambda$.

Spherical spinning

• From this definition it follows that $\Sigma_{S^m} \Lambda$ is diffeomorphic to $S^m \times \Lambda$.

One can apply spherical spinning in a similar way to exact Lagrangian cobordisms and fillings. In particular, given an exact Lagrangian filling *L* of a Legendrian Λ, following the older result of [G], one gets an exact Lagrangian cobordism (filling) Σ_{Sm}L of Σ_{Sm}Λ such that Σ_{Sm}L is diffeomorphic to S^m × L.

Theorem (Dimitroglou Rizell-G)

There are dga maps $i : \mathcal{A}(\Lambda) \hookrightarrow \mathcal{A}(\Sigma_{S^m}\Lambda)$ and its left inverse $\pi : \mathcal{A}(\Sigma_{S^m}\Lambda) \twoheadrightarrow \mathcal{A}(\Lambda)$.

We take Λ from Class A with the corresponding ε and consider $\pi^*(\varepsilon)$. Using the fact that the potential topology of a filling contradicts SEDR isomorphism and the following Kunneth-type formula

Theorem (Dimitroglou Rizell-G)

 $LCH_{i}^{\pi^{*}\varepsilon}(\Sigma_{S}^{1}\Lambda) \simeq LCH_{i}^{\varepsilon}(\Lambda) \oplus LCH_{i-1}^{\varepsilon}(\Lambda).$

we get that $LCH_i^{\pi^*\varepsilon}(\Sigma_S^1\Lambda)$ contradicts the potential topology of a filling, and hence by SEDR $\pi^*\varepsilon$ is non-geometric. We can repeat the same procedure.

イロト 不得下 イヨト イヨト 二日

Class B in high dimensions

Here we take $\Sigma_{S^m} \Lambda_n$, where Λ_n is from Class B, and *m* is high enough.

Proposition (G)

 $Aug(\Lambda, \mathbb{F}) \simeq Aug(\Sigma_{S^m}, \mathbb{F})$ for $m \geq 2$.

Proposition (G)

For a certain m large enough ("out of the grading window") $LCH_i^{\pi^*\varepsilon}(\Sigma_S^m \Lambda, \mathbb{Z}) \simeq LCH_i^{\varepsilon}(\Lambda, \mathbb{Z}) \oplus LCH_{i-m}^{\varepsilon}(\Lambda, \mathbb{Z}).$

Then we need to redo the computations of $LCH^0_{\varepsilon}(\Lambda_n)$ for \mathbb{Z} -coefficients in order to show that $LCH^m_i(\Sigma_{S^m}\Lambda_n,\mathbb{Z})\simeq\mathbb{Z}^2$. This using SEDR isomorphism implies that H_1 (potential filling for $\pi^*\varepsilon)\simeq\mathbb{Z}^2$. Hence the map of Gao-Rutherford must be $\mathbb{F}^2 \to \{ab \neq -1\}$ with (0,0) in the image, where \mathbb{F} is algebraicly closed. Gao-Rutherford proved that it is impossible, and hence $\pi^*\varepsilon$ is non-geometric. Then we can do the same for multiple spuns.

< □ > < □ > < □ > < □ > < □ > < □ >

Thank you for your attention!