Interpreting the standard cotractor connection associated to a（generalized）path geometry

Zhangwen Guo
University of Vienna
Faculty of Mathematics

$$
\text { Srní, } 01.2023
$$

Definition

A path geometry on a manifold N is a collection of unparametrized smooth curves such that in each point $x \in N$ for each direction $\mathbb{R} X, 0 \neq X \in T_{x} N$, there is exactly one curve in the collection passing through the point x with a velocity tangent to the direction $\mathbb{R} X$.

Definition

A path geometry on a manifold N is a collection of unparametrized smooth curves such that in each point $x \in N$ for each direction $\mathbb{R} X, 0 \neq X \in T_{x} N$, there is exactly one curve in the collection passing through the point x with a velocity tangent to the direction $\mathbb{R} X$.

Example

Let $[\nabla]$ be a projective structure on N. Then each connection in the projective class gives rise to the same collection of unparametrized geodesics.

Path geometry \longleftrightarrow generalized path geometry

A path geometry on $N \Leftrightarrow$ a rank 1 distribution $E \subseteq T P T N$ on

$$
P T N:=\bigcup_{x \in N}\left\{1 \text {-dim'l subspaces of } T_{x} N\right\}
$$

such that
(the tautological bundle H of $P T N$)
$\cong E \oplus$ (the vertical bundle V of $P T N \rightarrow N$)

Path geometry \longleftrightarrow generalized path geometry

A path geometry on $N \Leftrightarrow$ a rank 1 distribution $E \subseteq T P T N$ on

$$
P T N:=\bigcup_{x \in N}\left\{1 \text {-dim'l subspaces of } T_{x} N\right\}
$$

such that
(the tautological bundle H of $P T N$)
$\cong E \oplus$ (the vertical bundle V of $P T N \rightarrow N$)
The decomposed distribution $E \oplus V \subseteq$ TPTN is a generalized path geometry on the manifold PTN.
Conversely, any generalized path geometry $E \oplus V \subseteq T M$ on a manifold M (with $\operatorname{dim}(M) \neq 5$) is locally a path geometry on some manifold N restricted to an open subset of directions \subseteq PTN.

The corresponding parabolic geometries

A parabolic geometry is a Cartan geometry whose type (G, P) comes from a graded semisimple Lie algebra, in our case

$\Rightarrow \mathfrak{p}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$.
$G:=S L(n+2, \mathbb{R}), P:=\{$ block upper triangular matrices $\in G\}$.

The corresponding parabolic geometries

A parabolic geometry is a Cartan geometry whose type (G, P) comes from a graded semisimple Lie algebra, in our case

$\Rightarrow \mathfrak{p}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$.
$G:=S L(n+2, \mathbb{R}), P:=\{$ block upper triangular matrices $\in G\}$.
A Cartan geometry of type (G, P) is
(i) a principal P-bundle $\mathcal{G} \rightarrow M$ together with
(ii) an equivariant (principal, Adjoint) global trivialisation
$\omega \in \Omega^{1}(\mathcal{G}, \mathfrak{g})^{P}$ on $T \mathcal{G}$ which maps fundamental vector fields to their generators.
Then $T M \cong \mathcal{G} \times_{P} \mathfrak{g} / \mathfrak{p}$ has subbundles
$E:=\mathcal{G} \times{ }_{P} \mathfrak{g}_{-1}^{E} / \mathfrak{p}, V:=\mathcal{G} \times{ }_{P} \mathfrak{g}_{-1}^{V} / \mathfrak{p}$.

A path geometry on $N^{n+1} \rightsquigarrow$ a unique regular normal parabolic geometry of type (G, P) on $P T N=: M$

Via each Weyl structure (reduction to the frame bundle), the Cartan connection is encoded as the following:

- $Q \subseteq T M$: a complement of H
- ∇ : a Weyl connection on all natural bundles (e.g.
$T M, E, V, T M / H \ldots)$ on M
- $P \in \Gamma\left(\otimes^{2} T^{*} M\right)$: Rho tensor

Which we use to describe the tractor calculus on the standard cotractor bundle.

Tractor calculus

The pair (\mathcal{G}, ω) can be equivalently encoded as a vector bundle endowed with a linear connection.

- $\mathcal{G} \hookrightarrow \mathcal{G} \times_{P} \mathcal{G}$ to structure group \mathcal{G}, the latter has a principal connection induced by ω.
- Any associated vector bundle of $\mathcal{G} \times{ }_{P} G$ comes with a linear connection (tractor bundle, tractor connection).

Tractor calculus

The pair (\mathcal{G}, ω) can be equivalently encoded as a vector bundle endowed with a linear connection.

- $\mathcal{G} \hookrightarrow \mathcal{G} \times{ }_{P} \mathcal{G}$ to structure group G, the latter has a principal connection induced by ω.
- Any associated vector bundle of $\mathcal{G} \times{ }_{P}$ G comes with a linear connection (tractor bundle, tractor connection).
- Consider the standard cotractor bundle \mathcal{T}^{*} w.r.t. the standard representation of $G=S L(n+2, \mathbb{R})$ on $\left(\mathbb{R}^{n+2}\right)^{*}$.
(Remark: \mathcal{T}^{*} is closely related to the projective standard cotractor bundle in the case of a projective structure on N, whose tractor calculus is well understood.)
- The canonical reduction of $\mathcal{G} \times_{P} G$ to structure group P induces a ($n \leq n+1 \leq n+2$) filtration on \mathcal{T}^{*}.
- A choice of Weyl structure gives rise to a direct sum decomposition into bundles of rank $(1,1, n)$ inducing the filtration as
- The canonical reduction of $\mathcal{G} \times_{P} G$ to structure group P induces a ($n \leq n+1 \leq n+2$) filtration on \mathcal{T}^{*}.
- A choice of Weyl structure gives rise to a direct sum decomposition into bundles of rank $(1,1, n)$ inducing the filtration as

$$
\mathcal{T}^{*} \cong \mathcal{E}(1,0) \oplus E^{*} \otimes \mathcal{E}(1,0) \oplus Q^{*} \otimes \mathcal{E}(1,0)
$$

Let $\pi: P T N \rightarrow N^{n+1} . \mathcal{E}(1,0)=\pi^{*} \mathcal{E}(1)$ where $\mathcal{E}(1)$ is a root of $\wedge^{n+1} T^{*} N$.
In these terms, an explicit formula for the tractor connection looks as follows:

General formula; the splitting operator

$$
\begin{aligned}
& \text { Let } \\
& \Gamma\left(\mathcal{T}^{*}\right) \ni \sigma \cong(s, t, Y) \in \Gamma\left(\mathcal{E}(1,0) \oplus E^{*} \otimes \mathcal{E}(1,0) \oplus Q^{*} \otimes \mathcal{E}(1,0)\right) \text {, } \\
& (\xi, \eta, \zeta) \in \Gamma(E \oplus V \oplus Q)
\end{aligned}
$$

General formula; the splitting operator

Let
$\Gamma\left(\mathcal{T}^{*}\right) \ni \sigma \cong(s, t, Y) \in \Gamma\left(\mathcal{E}(1,0) \oplus E^{*} \otimes \mathcal{E}(1,0) \oplus Q^{*} \otimes \mathcal{E}(1,0)\right)$,
$(\xi, \eta, \zeta) \in \Gamma(E \oplus V \oplus Q)$,
$\nabla_{\xi}^{\tau^{*}}(\sigma) \cong\left(\nabla_{\xi} s-t \xi, \nabla_{\xi} t-s P\left(\xi,\left.\cdot\right|_{E}\right), \nabla_{\xi} Y-s P(\xi, \cdot \mid Q)-t P(\xi, \mid v)\right)$
$\nabla_{\eta}^{\mathcal{T}^{*}}(\sigma) \cong\left(\nabla_{\eta} s, \nabla_{\eta} t-s P\left(\eta,\left.\cdot\right|_{E}\right)-Y_{\eta}, \nabla_{\eta} Y-s P\left(\eta,\left.\cdot\right|_{Q}\right)-t P(\eta, \cdot \mid v)\right)$
$\nabla_{\zeta}^{\mathcal{T}^{*}}(\sigma) \cong\left(\nabla_{\zeta} s-Y \zeta, \nabla_{\zeta} t-s P\left(\zeta,\left.\cdot\right|_{E}\right), \nabla_{\zeta} Y-s P\left(\zeta,\left.\cdot\right|_{Q}\right)-t P(\zeta, \cdot \mid v)\right)$
The spliting operator is $L: s \mapsto\left(s, \nabla^{E} s, \nabla^{Q} s-\frac{1}{2} \nabla^{E} \nabla^{V} s\right)$ in a non-standard form. In this case

Where we read off two invariant (BGG) operators.

Interpreting the two BGG operators

- $\nabla^{V} s=0 \Leftrightarrow s=\pi^{*} \underline{s}$ for some $\underline{s} \in \Gamma(\mathcal{E}(1))$.
- Moreover, $\underline{s} \mapsto L\left(\pi^{*} \underline{s}\right)$ yields $\pi^{*} J^{1}(\mathcal{E}(1) \rightarrow N) \cong \mathcal{T}^{*}$

Interpreting the two BGG operators

- $\nabla^{V} s=0 \Leftrightarrow s=\pi^{*} \underline{s}$ for some $\underline{s} \in \Gamma(\mathcal{E}(1))$.
- Moreover, $\underline{s} \mapsto L\left(\pi^{*} \underline{s}\right)$ yields $\pi^{*} J^{1}(\mathcal{E}(1) \rightarrow N) \cong \mathcal{T}^{*}$
$-\nabla^{E} \nabla^{E} s-P^{E^{*} \otimes E^{*}}$ s: interpretation in terms of a 1-dim'l projective structure on the leaves of the foliation determined by E.
If $s=\pi^{*} \underline{s}$, then one can interpret it via an induced structure on the distinguished paths in N. In particular, this provides the right dimension bound on the joint kernel.

The remaining question is whether a joint solution of the BGG operators already leads to a parallel tractor. Steps towards this:

$$
\begin{array}{lccc}
\nabla^{\mathcal{T}^{*}}(L(s)) \cong & (0, & \nabla^{E} \nabla^{E} s-P^{E^{*} \otimes E^{*}} s, & (*)) \\
\nabla_{V}^{\mathcal{T}^{*}}(L(s)) \cong\left(\nabla^{V} s,\right. & -\frac{1}{2} \nabla^{E} \nabla^{V} s, & (* *)) \\
\nabla_{Q}^{\mathcal{T}^{*}}(L(s)) \cong & (0, & \nabla^{Q} \nabla^{E_{s}}-P^{Q^{*} \otimes E^{*}} s, & (* * *))
\end{array}
$$

Denote by κ the curvature of the parabolic geometry.

- If $s=\pi^{*} \underline{s}$, i.e. $\nabla^{V} s=0$, then $(* *)$ equals the term $\kappa \mid V^{*} \wedge Q^{*} \otimes E n d_{0} \bullet S$
- If these two terms are zero, then $(*)$ equals the term $\left.\kappa\right|_{E^{*} \wedge Q^{*} \otimes E n d_{0}} \bullet S$
- $P^{E^{*} \otimes E^{*}} s, P^{Q^{*} \otimes E^{*}} s$ can be expressed with the standard torsion of the Weyl connections
- If $\nabla_{E}^{\mathcal{T}^{*}}(L(s))=0$ and $\nabla_{V}^{\mathcal{T}^{*}}(L(s))$, then $\nabla_{Q}^{\mathcal{T}^{*}}(L(s))=0$

