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Definition
A path geometry on a manifold N is a collection of
unparametrized smooth curves such that in each point x ∈ N
for each direction RX ,0 6= X ∈ TxN, there is exactly one curve
in the collection passing through the point x with a velocity
tangent to the direction RX .

Example
Let [∇] be a projective structure on N. Then each connection in
the projective class gives rise to the same collection of
unparametrized geodesics.
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Path geometry←→ generalized path geometry

A path geometry on N ⇔ a rank 1 distribution E ⊆ TPTN on

PTN :=
⋃

x∈N

{1-dim’l subspaces of TxN}

such that

(the tautological bundle H of PTN)
∼= E ⊕ (the vertical bundle V of PTN → N)

The decomposed distribution E ⊕ V ⊆ TPTN is a generalized
path geometry on the manifold PTN.
Conversely, any generalized path geometry E ⊕ V ⊆ TM on a
manifold M (with dim(M) 6= 5) is locally a path geometry on
some manifold N restricted to an open subset of directions
⊆ PTN.

3 / 10



Path geometry←→ generalized path geometry

A path geometry on N ⇔ a rank 1 distribution E ⊆ TPTN on

PTN :=
⋃

x∈N

{1-dim’l subspaces of TxN}

such that

(the tautological bundle H of PTN)
∼= E ⊕ (the vertical bundle V of PTN → N)

The decomposed distribution E ⊕ V ⊆ TPTN is a generalized
path geometry on the manifold PTN.
Conversely, any generalized path geometry E ⊕ V ⊆ TM on a
manifold M (with dim(M) 6= 5) is locally a path geometry on
some manifold N restricted to an open subset of directions
⊆ PTN.

3 / 10



The corresponding parabolic geometries
A parabolic geometry is a Cartan geometry whose type (G,P)
comes from a graded semisimple Lie algebra, in our case

g := sl(n+2,R) =


g0 gE

1 g2
gE
−1 g0 gV

1

g−2 gV
−1 g0

 in blocks(1,1,n)×(1,1,n)

⇒ p = g0 ⊕ g1 ⊕ g2.
G := SL(n + 2,R),P := {block upper triangular matrices ∈ G}.

A Cartan geometry of type (G,P) is
(i) a principal P-bundle G → M together with
(ii) an equivariant (principal, Adjoint) global trivialisation
ω ∈ Ω1(G, g)P on TG which maps fundamental vector fields to
their generators.
Then TM ∼= G ×P g/p has subbundles
E := G ×P gE

−1/p,V := G ×P gV
−1/p.
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A path geometry on Nn+1  a unique regular normal parabolic
geometry of type (G,P) on PTN =: M

Via each Weyl structure (reduction to the frame bundle), the
Cartan connection is encoded as the following:
I Q ⊆ TM: a complement of H
I ∇: a Weyl connection on all natural bundles (e.g.

TM,E ,V ,TM/H ...) on M
I P ∈ Γ(⊗2T ∗M): Rho tensor

Which we use to describe the tractor calculus on the standard
cotractor bundle.
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Tractor calculus

The pair (G, ω) can be equivalently encoded as a vector bundle
endowed with a linear connection.
I G ↪→ G ×P G to structure group G, the latter has a principal

connection induced by ω.
I Any associated vector bundle of G ×P G comes with a

linear connection (tractor bundle, tractor connection).

I Consider the standard cotractor bundle T ∗ w.r.t. the
standard representation of G = SL(n + 2,R) on (Rn+2)∗.

(Remark: T ∗ is closely related to the projective standard
cotractor bundle in the case of a projective structure on N,
whose tractor calculus is well understood.)
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I The canonical reduction of G ×P G to structure group P
induces a (n ≤ n + 1 ≤ n + 2) filtration on T ∗.

I A choice of Weyl structure gives rise to a direct sum
decomposition into bundles of rank (1,1,n) inducing the
filtration as

T ∗ ∼= E(1,0)⊕ E∗ ⊗ E(1,0)⊕Q∗ ⊗ E(1,0)

Let π : PTN → Nn+1. E(1,0) = π∗E(1) where E(1) is a root
of ∧n+1T ∗N.

In these terms, an explicit formula for the tractor connection
looks as follows:
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General formula; the splitting operator
Let
Γ(T ∗) 3 σ ∼= (s, t ,Y ) ∈ Γ(E(1,0)⊕ E∗ ⊗ E(1,0)⊕Q∗ ⊗ E(1,0)),
(ξ, η, ζ) ∈ Γ(E ⊕ V ⊕Q),

∇T ∗
ξ (σ) ∼= (∇ξs−tξ,∇ξt−sP(ξ, ·|E ),∇ξY−sP(ξ, ·|Q)−tP(ξ, ·|V ))

∇T ∗
η (σ) ∼= (∇ηs,∇ηt−sP(η, ·|E )−Yη,∇ηY−sP(η, ·|Q)−tP(η, ·|V ))

∇T ∗
ζ (σ) ∼= (∇ζs−Y ζ,∇ζ t−sP(ζ, ·|E ),∇ζY−sP(ζ, ·|Q)−tP(ζ, ·|V ))

The splitting operator is L : s 7→ (s,∇Es,∇Qs − 1
2∇

E∇V s) in a
non-standard form. In this case

∇T ∗

E (L(s)) ∼= (0, ∇E∇Es − PE∗⊗E∗
s, (∗))

∇T ∗

V (L(s)) ∼= (∇V s, −1
2∇

E∇V s, (∗∗))

∇T ∗

Q (L(s)) ∼= (0, ∇Q∇Es − PQ∗⊗E∗
s, (∗ ∗ ∗))

Where we read off two invariant (BGG) operators.
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Interpreting the two BGG operators

I ∇V s = 0⇔ s = π∗s for some s ∈ Γ(E(1)).
I Moreover, s 7→ L(π∗s) yields π∗J1(E(1)→ N) ∼= T ∗

I ∇E∇Es − PE∗⊗E∗
s: interpretation in terms of a 1-dim’l

projective structure on the leaves of the foliation
determined by E .

If s = π∗s, then one can interpret it via an induced structure on
the distinguished paths in N. In particular, this provides the
right dimension bound on the joint kernel.

The remaining question is whether a joint solution of the BGG
operators already leads to a parallel tractor. Steps towards this:
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∇T ∗

E (L(s)) ∼= (0, ∇E∇Es − PE∗⊗E∗
s, (∗))

∇T ∗

V (L(s)) ∼= (∇V s, −1
2∇

E∇V s, (∗∗))

∇T ∗

Q (L(s)) ∼= (0, ∇Q∇Es − PQ∗⊗E∗
s, (∗ ∗ ∗))

Denote by κ the curvature of the parabolic geometry.
I If s = π∗s, i.e. ∇V s = 0, then (∗∗) equals the term
κ|V∗∧Q∗⊗End0 • s

I If these two terms are zero, then (∗) equals the term
κ|E∗∧Q∗⊗End0 • s

I PE∗⊗E∗
s,PQ∗⊗E∗

s can be expressed with the standard
torsion of the Weyl connections

I If ∇T ∗

E (L(s)) = 0 and ∇T ∗

V (L(s)), then ∇T ∗

Q (L(s)) = 0
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