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General setup

Let G be a semisimple Lie group with finite centre and K C G a maximal
compact subgroup so that G/K is a symmetric space of noncompact

type.
Given a parabolic P C G we can view G/P as a boundary component of

G/K. On G/P we have the BGG-complex, which is a distinguished
G-invariant differential complex.

Explicitly, T*(G/P) is a bundle of Lie algebras, which induces an
invariant codifferential 9*: AKT*(G/P) — N1 T*(G/P). Defining the
G-bundles Hy := ker(9*)/im(0*) we can find invariant differential
operators Dy: I'(Hy) — [(Hi41) so that (F(Hk), Di) is a complex.

Question: Can we relate the BGG-complex to the geometry of G/K?
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Intertwining operators

Intertwining operators

Using that G/K x G/P is isomorphic to G/M with M := K N P we can
easily construct G-equivariant integral operators

®: QK(G/P) — QYG/K).

Their kernels are elements in Q*(G/M)¢, which correspond to
M-invariant elements in the underlying finite dimensional M-module.

Christoph Harrach 2/12



Intertwining operators

Intertwining operators

Using that G/K x G/P is isomorphic to G/M with M := K N P we can
easily construct G-equivariant integral operators

®: QK(G/P) — QYG/K).

Their kernels are elements in Q*(G/M)¢, which correspond to
M-invariant elements in the underlying finite dimensional M-module.

Furthermore, their composition with differential operators on G/K and
G /P can be expressed on the level of the kernels. Thus, we can design ¢
via computations in finite dimensional representations.

Christoph Harrach 2/12



Intertwining operators

Intertwining operators

Using that G/K x G/P is isomorphic to G/M with M := K N P we can
easily construct G-equivariant integral operators

®: QK(G/P) — QYG/K).
Their kernels are elements in Q*(G/M)¢, which correspond to
M-invariant elements in the underlying finite dimensional M-module.

Furthermore, their composition with differential operators on G/K and
G /P can be expressed on the level of the kernels. Thus, we can design ¢
via computations in finite dimensional representations.

In general, the condition A o = 0 is equivalent to ® factoring to the
BGG complex. This means that ® induces a G-equivariant map

& T(Hi) — QY(G/K)

so that ®(Dk[a]) = ®(da) for all a € T(ker(9*)).



Geometric setup

The case G = SOp(n+1,1)

Let G = SOp(n+ 1,1) with maximal compact K =2 SO(n+ 1) and
minimal parabolic P =2 CO(n) x R”. Then G/K is the real hyperbolic
space in dimension n+ 1, whereas G/P is the conformal n-sphere.
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The case G = SOp(n+1,1)

Let G = SOp(n+ 1,1) with maximal compact K =2 SO(n+ 1) and
minimal parabolic P =2 CO(n) x R”. Then G/K is the real hyperbolic
space in dimension n+ 1, whereas G/P is the conformal n-sphere.

In this case the codifferential 0* is trivial and thus the BGG-complex
coincides with the deRham complex. This implies that every intertwining
operator as above has harmonic image.

Theorem (Gaillard '86, H. '16)

For all 0 < k < n there is a G-equivariant operator

d: QX(G/P) = QX(G/K)

whose image consists of coclosed and harmonic differential forms.
Moreover,

do®y =(n—2k)dy10d



Geometric setup

Complex hyperbolic space

For G =SU(n+ 1,1) the symmetric space G/K is the complex
hyperbolic space in (complex) dimension n+ 1. This is naturally a K&hler
manifold, so we have a decomposition

QK(G/K,C)= @ Q"I(G/K)
p+q=k

into (p, q)-types. Accodingly, we split the exterior derivative as

d = 0 + 0, where the first and second operator maps (p, g)-forms to
(p+ 1, g)-forms and (p, g + 1)-forms, respectively.

Christoph Harrach a/12



Geometric setup

Complex hyperbolic space

For G =SU(n+ 1,1) the symmetric space G/K is the complex
hyperbolic space in (complex) dimension n+ 1. This is naturally a K&hler
manifold, so we have a decomposition

QK(G/K,C)= @ Q"I(G/K)
p+q=k
into (p, q)-types. Accodingly, we split the exterior derivative as
d = 0 + 0, where the first and second operator maps (p, g)-forms to
(p+ 1, g)-forms and (p, g + 1)-forms, respectively.

The adjoint of the wedge product with the Kahler form defines the
Colefschetz map L*: QP9(G/K) — QP~1971(G/K). Elements in the
kernel of L* are called primitive, which can only exist in degrees < n+ 1.
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CR-sphere and Rumin complex

Let P be the minimal parabolic subgroup of G = SU(n + 1,1), then
G/P = §2*1 js a CR-sphere. Let H C T(G/P) be the contact
subbundle and put Q := T(G/P)/H. Denote by A§H* the tracefree
elements in AXH* with respect to the Levi bracket.
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subbundle and put Q := T(G/P)/H. Denote by A§H* the tracefree
elements in AXH* with respect to the Levi bracket.

The bundle H is isomorphic to ASH* for k < n and a quotient of
NIH* @ Q* for k > n+ 1. The resulting complex (I'(Hy), D) is called
the Rumin complex.

The contact subbundle H carries an invariant complex structure, inducing
a decomposition of A“H* @ C into (p, q)-types. Thus, for k < n the
bundle 7, @r C decomposes into D, ,—, Hp,q With Hp, g = AGTH*.
Each H, 4 is an irreducible G-invariant subbundle.

Accodingly, the BGG-operators split into the sum D = D + D, where
D:T(Hpq) = T(Hpt1,9), D:T(Hpq) = T(Hp,g+1)-

These are again G-invariant differentials.
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Geometric setup

Rumin compatible intertwining operators

Theorem (Cap, H., Julg, 2020)
Let 0 < p,q < n with p+ q < n. There exists a G-equivariant operator

pq: T(Hp,q) = 7(G/K)

whose image consists of primitive, harmonic and coclosed differential
forms. Moreover,

0o®p_14=Cp-1,4Ppq0D 0o®pq-1=Cpg-1Ppq0D

for constants c, , # 0.
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Discrete series representations

Discrete series representations

The space of harmonic forms on G/K contains the distinguished
subspace of forms of finite L?-norm, which representations of the discrete
series representations of G.

Recall that for a semisimple Lie group G a discrete series representation
(DSR) of G is a unitary subrepresentation of L?(G) whose matrix
coefficients have finite [2-norm.

@ DSR can only exists if rank(G) = rank(K), where K is a maximal
compact subgroup. In particular, G has to have finite centre.

Q@ If Wi and W are the Weyl groups of G and K, then there are
exactly |Wg|/|Wk| DSR with the same infinitesimal character.

© DSR with trivial character are represented by L2-harmonic forms on
G/K. These can only exist in degree 1 dimp(G/K).
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Discrete series representations

L[2-norm of intertwining operator

Theorem (Lott '00)

Let G =SOq(n+ 1,1) and assume that n is odd. Then the image of

d® .- consists of L2-harmonic "£X-forms on G /K.
2
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Discrete series representations

L[2-norm of intertwining operator

Theorem (Lott '00)

Let G =SOq(n+ 1,1) and assume that n is odd. Then the image of
d®._1 consists of L>-harmonic ot forms on G /K.

Theorem (Cap, H., Julg, 2022)

Let G =SU(n+1,1). For all p+ q = n the image of d®, , consists of
L2-harmonic n + 1-forms on G /K. Moreover, the image of d®,, , is dense
the L2-harmonic forms of type (p + 1, q) as well as (p,q+ 1) on G/K.

Therefore, the image of d®,, ; generates the discrete series
representations of SU(n + 1,1) with trivial infinitesimal character.

The proof of the above result is again in the realms of finite dimensional
representation theory.
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Sketch of proof

Sketch of proof |

Step 1: Consider the holonomy reduction of G/P = 52" to K/M.
This induces a K-invariant pseudo-Hermitian structure o € Q(K/M)
with ker(a) = H. Let ¢ be the Reeb vector field. The bundle metric

da( ,J ) induces a partial Laplace Ay and a K-invariant L2-norm || || on
F(AKH?),

Aim: Relate ||d®, 4(0)]| to [|o].
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Step 1: Consider the holonomy reduction of G/P = 52" to K/M.
This induces a K-invariant pseudo-Hermitian structure o € Q(K/M)
with ker(a) = H. Let ¢ be the Reeb vector field. The bundle metric

da( ,J ) induces a partial Laplace Ay and a K-invariant L2-norm || || on
F(AKH?),

Aim: Relate ||d®, 4(0)]| to ||o]|-

Step 2: Let W be an irreducible M-representation and V irreducible
K-module. Computing the possible M-weights of V it follows easily that
Hom (V, W) is at most 1-dimensional. By Frobenius reciprocity this
shows that

dim(Hom (V,T(K xn W))) < 1.

We refer to this as the multiplicity 1 property.
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Sketch of proof Il

Let K be the set of all isomorphism classes of irreducible
K-representations V so that Homk(V,[(#,,4)) # 0. Since K is
compact, Peter-Weyl implies that Py, z V is dense in T'(#, 4).
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Sketch of proof Il

Let K be the set of all isomorphism classes of irreducible
K-representations V so that Homk(V,[(#,,4)) # 0. Since K is
compact, Peter-Weyl implies that Py, z V is dense in T'(#, 4).

Thus: Show Theorem for all o € Homy (V,T(H,.4)) and all V € K.

Step 3: If o € im(D) Nim(D), then the properties of ¢, , imply that
dd, 4(c) = 0.

Thus: Assume o € (im(D) N im(ﬁ))l

Let D* and D" be the formal [*-adjoints of D and D. By adjointness
this is equivalent to o € ker(D*) + ker(D").
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Sketch of proof

Sketch of proof Ill

Step 4: Consider the Poincaré ball model of G/K, i.e. open unit ball
B C C"*! endowed with the Bergman metric

g(Z)(f,'ﬂ) = 1<§’ |77Z>|2 * fl,f>|<zzl’27)7Z

Let
(r,0): B\ {0} — (0,1) x S+ z = (|z],|2| t2)

be the polar decomposition of B\ {0}. The K-orbits of B\ {0} are the
level sets S, of 8, which are all isomorphic to S2"+1,

Aim: Determine explicit formulae for ¢, ,(o) via restriction to S,.

Christoph Harrach 11 /12
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Sketch of proof IV

Step 5: Let 7=}, zidz € Q10(B\ {0}). Using o € ker(D*) +ker(D"),
primitivity of ®, (o) and the multiplicity 1 property it follows that

&, 4(0) = A(r)0*c + h(r)T AO*D*o + H(r)TA 0D o

for smooth functions f;: (0,1) — C.
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Step 5: Let 7=}, zidz € Q10(B\ {0}). Using o € ker(D*) +ker(D"),
primitivity of ®, (o) and the multiplicity 1 property it follows that

&, 4(0) = A(r)0*c + h(r)T AO*D*o + H(r)TA 0D o

for smooth functions f;: (0,1) — C.

Step 6: Distinguish the cases of o contained in

im(D)Nker(D'),  ker(D*)Nim(D),  ker(D*)Nker(D").

Use Ad, , =0, 6®, 4 = 0 and the differential calculi on G/K and G/P
to obtain hypergeometric differential equations for f;. These depend on
the parameter A € iR and ;1 € R>¢ defined by L;0 = Ao and

Apo = uo.

Step 7: Use the formula for ®, , on B and Stokes’ Theorem to relate
|d®p q(c)||7- to a multiple of ||o|2..
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Sketch of proof

Thank you for your attention!
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