On the relation between discrete series representations and BGG-complexes

Christoph Harrach

University of Vienna

joint with Andreas Čap and Pierre Julg

43rd Winter School of Geometry and Physics, Srní 19. January 2023

Image: A matrix

A B > A B >

General setup

Let G be a semisimple Lie group with finite centre and $K \subset G$ a maximal compact subgroup so that G/K is a symmetric space of noncompact type.

э

・ロト ・帰り ・ヨト ・ヨト

General setup

Let G be a semisimple Lie group with finite centre and $K \subset G$ a maximal compact subgroup so that G/K is a symmetric space of noncompact type.

Given a parabolic $P \subset G$ we can view G/P as a boundary component of G/K. On G/P we have the BGG-complex, which is a distinguished *G*-invariant differential complex.

・ロト ・得ト ・ヨト ・ヨト

-

General setup

Let G be a semisimple Lie group with finite centre and $K \subset G$ a maximal compact subgroup so that G/K is a symmetric space of noncompact type.

Given a parabolic $P \subset G$ we can view G/P as a boundary component of G/K. On G/P we have the BGG-complex, which is a distinguished G-invariant differential complex.

Explicitly, $T^*(G/P)$ is a bundle of Lie algebras, which induces an invariant codifferential $\partial^* : \Lambda^k T^*(G/P) \to \Lambda^{k-1} T^*(G/P)$. Defining the *G*-bundles $\mathcal{H}_k := \ker(\partial^*) / \operatorname{im}(\partial^*)$ we can find invariant differential operators $D_k : \Gamma(\mathcal{H}_k) \to \Gamma(\mathcal{H}_{k+1})$ so that $(\Gamma(\mathcal{H}_k), D_k)$ is a complex.

<ロ> (四) ((四)) ((三)) (((-))) (((

General setup

Let G be a semisimple Lie group with finite centre and $K \subset G$ a maximal compact subgroup so that G/K is a symmetric space of noncompact type.

Given a parabolic $P \subset G$ we can view G/P as a boundary component of G/K. On G/P we have the BGG-complex, which is a distinguished G-invariant differential complex.

Explicitly, $T^*(G/P)$ is a bundle of Lie algebras, which induces an invariant codifferential $\partial^* : \Lambda^k T^*(G/P) \to \Lambda^{k-1} T^*(G/P)$. Defining the *G*-bundles $\mathcal{H}_k := \ker(\partial^*)/\operatorname{im}(\partial^*)$ we can find invariant differential operators $D_k : \Gamma(\mathcal{H}_k) \to \Gamma(\mathcal{H}_{k+1})$ so that $(\Gamma(\mathcal{H}_k), D_k)$ is a complex.

Question: Can we relate the BGG-complex to the geometry of G/K?

イロト 不得 とくきとくきとう き

Intertwining operators

Using that $G/K \times G/P$ is isomorphic to G/M with $M := K \cap P$ we can easily construct G-equivariant integral operators

$$\Phi: \Omega^k(G/P) \to \Omega^\ell(G/K).$$

Their kernels are elements in $\Omega^*(G/M)^G$, which correspond to M-invariant elements in the underlying finite dimensional M-module.

Intertwining operators

Using that $G/K \times G/P$ is isomorphic to G/M with $M := K \cap P$ we can easily construct G-equivariant integral operators

$$\Phi\colon \Omega^k(G/P)\to \Omega^\ell(G/K).$$

Their kernels are elements in $\Omega^*(G/M)^G$, which correspond to M-invariant elements in the underlying finite dimensional M-module.

Furthermore, their composition with differential operators on G/K and G/P can be expressed on the level of the kernels. Thus, we can design Φ via computations in finite dimensional representations.

イロト イポト イヨト イヨト

Intertwining operators

Using that $G/K \times G/P$ is isomorphic to G/M with $M := K \cap P$ we can easily construct G-equivariant integral operators

$$\Phi\colon \Omega^k(G/P)\to \Omega^\ell(G/K).$$

Their kernels are elements in $\Omega^*(G/M)^G$, which correspond to M-invariant elements in the underlying finite dimensional M-module.

Furthermore, their composition with differential operators on G/K and G/P can be expressed on the level of the kernels. Thus, we can design Φ via computations in finite dimensional representations.

In general, the condition $\Delta \circ \Phi = 0$ is equivalent to Φ factoring to the BGG complex. This means that Φ induces a *G*-equivariant map

$$\underline{\Phi} \colon \Gamma(\mathcal{H}_k) \to \Omega^{\ell}(G/K)$$

200

so that $\underline{\Phi}(D_k[\alpha]) = \Phi(d\alpha)$ for all $\alpha \in \Gamma(\ker(\partial^*))$.

The case $G = SO_0(n+1, 1)$

Let $G = SO_0(n + 1, 1)$ with maximal compact $K \cong SO(n + 1)$ and minimal parabolic $P \cong CO(n) \ltimes \mathbb{R}^n$. Then G/K is the real hyperbolic space in dimension n + 1, whereas G/P is the conformal *n*-sphere.

<ロ> <同> <同> <日> <同> <日> <日> <日</p>

The case $G = SO_0(n+1, 1)$

Let $G = SO_0(n+1,1)$ with maximal compact $K \cong SO(n+1)$ and minimal parabolic $P \cong CO(n) \ltimes \mathbb{R}^n$. Then G/K is the real hyperbolic space in dimension n+1, whereas G/P is the conformal *n*-sphere.

In this case the codifferential ∂^* is trivial and thus the BGG-complex coincides with the deRham complex. This implies that every intertwining operator as above has harmonic image.

・ロト ・帰り ・ヨト ・ヨト 三日

The case $G = SO_0(n+1, 1)$

Let $G = SO_0(n+1, 1)$ with maximal compact $K \cong SO(n+1)$ and minimal parabolic $P \cong CO(n) \ltimes \mathbb{R}^n$. Then G/K is the real hyperbolic space in dimension n+1, whereas G/P is the conformal *n*-sphere.

In this case the codifferential ∂^* is trivial and thus the BGG-complex coincides with the deRham complex. This implies that every intertwining operator as above has harmonic image.

Theorem (Gaillard '86, H. '16)

For all $0 \le k \le n$ there is a *G*-equivariant operator

 $\Phi\colon \Omega^k(G/P)\to \Omega^k(G/K)$

whose image consists of coclosed and harmonic differential forms. Moreover,

$$d\circ\Phi_k=(n-2k)\Phi_{k+1}\circ d$$

Complex hyperbolic space

For G = SU(n + 1, 1) the symmetric space G/K is the complex hyperbolic space in (complex) dimension n + 1. This is naturally a Kähler manifold, so we have a decomposition

$$\Omega^k(G/K,\mathbb{C}) = \bigoplus_{p+q=k} \Omega^{p,q}(G/K)$$

into (p, q)-types. Accodingly, we split the exterior derivative as $d = \partial + \overline{\partial}$, where the first and second operator maps (p, q)-forms to (p+1, q)-forms and (p, q+1)-forms, respectively.

Complex hyperbolic space

For G = SU(n + 1, 1) the symmetric space G/K is the complex hyperbolic space in (complex) dimension n + 1. This is naturally a Kähler manifold, so we have a decomposition

$$\Omega^k(G/K,\mathbb{C}) = \bigoplus_{p+q=k} \Omega^{p,q}(G/K)$$

into (p, q)-types. Accodingly, we split the exterior derivative as $d = \partial + \overline{\partial}$, where the first and second operator maps (p, q)-forms to (p+1, q)-forms and (p, q+1)-forms, respectively.

The adjoint of the wedge product with the Kähler form defines the Colefschetz map $L^*: \Omega^{p,q}(G/K) \to \Omega^{p-1,q-1}(G/K)$. Elements in the kernel of L^* are called primitive, which can only exist in degrees $\leq n+1$.

イロト 不得 とくきとくきとう き

CR-sphere and Rumin complex

Let P be the minimal parabolic subgroup of G = SU(n+1,1), then $G/P \cong S^{2n+1}$ is a CR-sphere. Let $H \subset T(G/P)$ be the contact subbundle and put Q := T(G/P)/H. Denote by $\Lambda_0^k H^*$ the tracefree elements in $\Lambda^k H^*$ with respect to the Levi bracket.

イロト イポト イヨト イヨト

CR-sphere and Rumin complex

Let P be the minimal parabolic subgroup of G = SU(n+1,1), then $G/P \cong S^{2n+1}$ is a CR-sphere. Let $H \subset T(G/P)$ be the contact subbundle and put Q := T(G/P)/H. Denote by $\Lambda_0^k H^*$ the tracefree elements in $\Lambda^k H^*$ with respect to the Levi bracket.

The bundle \mathcal{H}_k is isomorphic to $\Lambda_0^k H^*$ for $k \leq n$ and a quotient of $\Lambda^{k-1} H^* \otimes Q^*$ for $k \geq n+1$. The resulting complex $(\Gamma(\mathcal{H}_k), D_k)$ is called the Rumin complex.

《曰》 《圖》 《臣》 《臣》 三臣 …

CR-sphere and Rumin complex

Let P be the minimal parabolic subgroup of G = SU(n+1,1), then $G/P \cong S^{2n+1}$ is a CR-sphere. Let $H \subset T(G/P)$ be the contact subbundle and put Q := T(G/P)/H. Denote by $\Lambda_0^k H^*$ the tracefree elements in $\Lambda^k H^*$ with respect to the Levi bracket.

The bundle \mathcal{H}_k is isomorphic to $\Lambda_0^k H^*$ for $k \leq n$ and a quotient of $\Lambda^{k-1} H^* \otimes Q^*$ for $k \geq n+1$. The resulting complex $(\Gamma(\mathcal{H}_k), D_k)$ is called the Rumin complex.

The contact subbundle H carries an invariant complex structure, inducing a decomposition of $\Lambda^k H^* \otimes_{\mathbb{R}} \mathbb{C}$ into (p, q)-types. Thus, for $k \leq n$ the bundle $\mathcal{H}_k \otimes_{\mathbb{R}} \mathbb{C}$ decomposes into $\bigoplus_{p+q=k} \mathcal{H}_{p,q}$ with $\mathcal{H}_{p,q} \cong \Lambda_0^{p,q} H^*$. Each $\mathcal{H}_{p,q}$ is an irreducible *G*-invariant subbundle.

CR-sphere and Rumin complex

Let P be the minimal parabolic subgroup of G = SU(n+1,1), then $G/P \cong S^{2n+1}$ is a CR-sphere. Let $H \subset T(G/P)$ be the contact subbundle and put Q := T(G/P)/H. Denote by $\Lambda_0^k H^*$ the tracefree elements in $\Lambda^k H^*$ with respect to the Levi bracket.

The bundle \mathcal{H}_k is isomorphic to $\Lambda_0^k H^*$ for $k \leq n$ and a quotient of $\Lambda^{k-1} H^* \otimes Q^*$ for $k \geq n+1$. The resulting complex $(\Gamma(\mathcal{H}_k), D_k)$ is called the Rumin complex.

The contact subbundle H carries an invariant complex structure, inducing a decomposition of $\Lambda^k H^* \otimes_{\mathbb{R}} \mathbb{C}$ into (p, q)-types. Thus, for $k \leq n$ the bundle $\mathcal{H}_k \otimes_{\mathbb{R}} \mathbb{C}$ decomposes into $\bigoplus_{p+q=k} \mathcal{H}_{p,q}$ with $\mathcal{H}_{p,q} \cong \Lambda_0^{p,q} H^*$. Each $\mathcal{H}_{p,q}$ is an irreducible *G*-invariant subbundle.

Accodingly, the BGG-operators split into the sum $D=\mathcal{D}+\overline{\mathcal{D}}$, where

$$\mathcal{D}\colon \Gamma(\mathcal{H}_{p,q}) \to \Gamma(\mathcal{H}_{p+1,q}), \qquad \overline{\mathcal{D}}\colon \Gamma(\mathcal{H}_{p,q}) \to \Gamma(\mathcal{H}_{p,q+1}).$$

▲ロト ▲御 → ▲ 臣 → ▲ 臣 → ○ ○ ○ ○ ○

These are again G-invariant differentials.

Rumin compatible intertwining operators

Theorem (Čap, H., Julg, 2020)

Let $0 \le p, q \le n$ with $p + q \le n$. There exists a G-equivariant operator

$$\Phi_{p,q}\colon \Gamma(\mathcal{H}_{p,q})\to \Omega^{p,q}(G/K)$$

whose image consists of primitive, harmonic and coclosed differential forms. Moreover,

$$\partial \circ \Phi_{p-1,q} = c_{p-1,q} \Phi_{p,q} \circ \mathcal{D} \qquad \overline{\partial} \circ \Phi_{p,q-1} = c_{p,q-1} \Phi_{p,q} \circ \overline{\mathcal{D}}$$

for constants $c_{*,*} \neq 0$.

Discrete series representations

The space of harmonic forms on G/K contains the distinguished subspace of forms of finite L^2 -norm, which representations of the discrete series representations of G.

Image: A matrix

A B > A B >

Discrete series representations

The space of harmonic forms on G/K contains the distinguished subspace of forms of finite L^2 -norm, which representations of the discrete series representations of G.

Recall that for a semisimple Lie group G a discrete series representation (DSR) of G is a unitary subrepresentation of $L^2(G)$ whose matrix coefficients have finite L^2 -norm.

イロト イポト イヨト イヨト

Discrete series representations

The space of harmonic forms on G/K contains the distinguished subspace of forms of finite L^2 -norm, which representations of the discrete series representations of G.

Recall that for a semisimple Lie group G a discrete series representation (DSR) of G is a unitary subrepresentation of $L^2(G)$ whose matrix coefficients have finite L^2 -norm.

• DSR can only exists if rank(G) = rank(K), where K is a maximal compact subgroup. In particular, G has to have finite centre.

A B M A B M

Discrete series representations

The space of harmonic forms on G/K contains the distinguished subspace of forms of finite L^2 -norm, which representations of the discrete series representations of G.

Recall that for a semisimple Lie group G a discrete series representation (DSR) of G is a unitary subrepresentation of $L^2(G)$ whose matrix coefficients have finite L^2 -norm.

- DSR can only exists if rank(G) = rank(K), where K is a maximal compact subgroup. In particular, G has to have finite centre.
- If W_G and W_K are the Weyl groups of G and K, then there are exactly $|W_G|/|W_K|$ DSR with the same infinitesimal character.

イロト 不得 とくきとくきとう き

Discrete series representations

The space of harmonic forms on G/K contains the distinguished subspace of forms of finite L^2 -norm, which representations of the discrete series representations of G.

Recall that for a semisimple Lie group G a discrete series representation (DSR) of G is a unitary subrepresentation of $L^2(G)$ whose matrix coefficients have finite L^2 -norm.

- OSR can only exists if rank(G) = rank(K), where K is a maximal compact subgroup. In particular, G has to have finite centre.
- If W_G and W_K are the Weyl groups of G and K, then there are exactly $|W_G|/|W_K|$ DSR with the same infinitesimal character.
- OSR with trivial character are represented by L^2 -harmonic forms on G/K. These can only exist in degree $\frac{1}{2} \dim_{\mathbb{R}}(G/K)$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

L²-norm of intertwining operator

Theorem (Lott '00)

Let $G = SO_0(n + 1, 1)$ and assume that n is odd. Then the image of $d\Phi_{\frac{n-1}{2}}$ consists of L^2 -harmonic $\frac{n+1}{2}$ -forms on G/K.

・ロト ・得ト ・ヨト ・ヨト

L²-norm of intertwining operator

Theorem (Lott '00)

Let $G = SO_0(n + 1, 1)$ and assume that n is odd. Then the image of $d\Phi_{\frac{n-1}{2}}$ consists of L^2 -harmonic $\frac{n+1}{2}$ -forms on G/K.

Theorem (Čap, H., Julg, 2022)

Let G = SU(n + 1, 1). For all p + q = n the image of $d\Phi_{p,q}$ consists of L^2 -harmonic n + 1-forms on G/K. Moreover, the image of $d\Phi_{p,q}$ is dense the L^2 -harmonic forms of type (p + 1, q) as well as (p, q + 1) on G/K.

Therefore, the image of $d\Phi_{p,q}$ generates the discrete series representations of SU(n + 1, 1) with trivial infinitesimal character.

イロト イポト イヨト イヨト

L²-norm of intertwining operator

Theorem (Lott '00)

Let $G = SO_0(n + 1, 1)$ and assume that n is odd. Then the image of $d\Phi_{\frac{n-1}{2}}$ consists of L^2 -harmonic $\frac{n+1}{2}$ -forms on G/K.

Theorem (Čap, H., Julg, 2022)

Let G = SU(n + 1, 1). For all p + q = n the image of $d\Phi_{p,q}$ consists of L^2 -harmonic n + 1-forms on G/K. Moreover, the image of $d\Phi_{p,q}$ is dense the L^2 -harmonic forms of type (p + 1, q) as well as (p, q + 1) on G/K.

Therefore, the image of $d\Phi_{p,q}$ generates the discrete series representations of SU(n + 1, 1) with trivial infinitesimal character.

The proof of the above result is again in the realms of finite dimensional representation theory.

イロト イポト イヨト イヨト 二日

Sketch of proof l

Step 1: Consider the holonomy reduction of $G/P \cong S^{2n+1}$ to K/M. This induces a K-invariant pseudo-Hermitian structure $\alpha \in \Omega^1(K/M)$ with ker $(\alpha) = H$. Let ζ be the Reeb vector field. The bundle metric $d\alpha(, J)$ induces a partial Laplace Δ_H and a K-invariant L^2 -norm $|| \parallel$ on $\Gamma(\Lambda^k H^*)$.

Aim: Relate $||d\Phi_{p,q}(\sigma)||$ to $||\sigma||$.

イロト イポト イヨト イヨト

э.

Sketch of proof I

Step 1: Consider the holonomy reduction of $G/P \cong S^{2n+1}$ to K/M. This induces a K-invariant pseudo-Hermitian structure $\alpha \in \Omega^1(K/M)$ with ker $(\alpha) = H$. Let ζ be the Reeb vector field. The bundle metric $d\alpha(, J)$ induces a partial Laplace Δ_H and a K-invariant L^2 -norm $|| \parallel$ on $\Gamma(\Lambda^k H^*)$.

Aim: Relate $||d\Phi_{p,q}(\sigma)||$ to $||\sigma||$.

Step 2: Let \mathbb{W} be an irreducible *M*-representation and \mathbb{V} irreducible *K*-module. Computing the possible *M*-weights of \mathbb{V} it follows easily that $\operatorname{Hom}_{M}(\mathbb{V},\mathbb{W})$ is at most 1-dimensional. By Frobenius reciprocity this shows that

```
\dim(\operatorname{Hom}_{\mathcal{K}}(\mathbb{V}, \Gamma(\mathcal{K} \times_{\mathcal{M}} \mathbb{W}))) \leq 1.
```

We refer to this as the multiplicity 1 property.

Sketch of proof II

Let \hat{K} be the set of all isomorphism classes of irreducible *K*-representations \mathbb{V} so that $\operatorname{Hom}_{\mathcal{K}}(\mathbb{V}, \Gamma(\mathcal{H}_{p,q})) \neq 0$. Since *K* is compact, Peter-Weyl implies that $\bigoplus_{\mathbb{V}\in\hat{K}}\mathbb{V}$ is dense in $\Gamma(\mathcal{H}_{p,q})$.

・ロト ・帰り ・ヨト ・ヨト

Sketch of proof II

Let \hat{K} be the set of all isomorphism classes of irreducible *K*-representations \mathbb{V} so that $\operatorname{Hom}_{\mathcal{K}}(\mathbb{V}, \Gamma(\mathcal{H}_{p,q})) \neq 0$. Since *K* is compact, Peter-Weyl implies that $\bigoplus_{\mathbb{V}\in\hat{K}}\mathbb{V}$ is dense in $\Gamma(\mathcal{H}_{p,q})$.

Thus: Show Theorem for all $\sigma \in \text{Hom}_{\mathcal{K}}(\mathbb{V}, \Gamma(\mathcal{H}_{p,q}))$ and all $\mathbb{V} \in \hat{\mathcal{K}}$.

Image: A matrix

< ∃ →

Sketch of proof II

Let \hat{K} be the set of all isomorphism classes of irreducible *K*-representations \mathbb{V} so that $\operatorname{Hom}_{\mathcal{K}}(\mathbb{V}, \Gamma(\mathcal{H}_{p,q})) \neq 0$. Since *K* is compact, Peter-Weyl implies that $\bigoplus_{\mathbb{V}\in\hat{K}} \mathbb{V}$ is dense in $\Gamma(\mathcal{H}_{p,q})$.

Thus: Show Theorem for all $\sigma \in \text{Hom}_{\mathcal{K}}(\mathbb{V}, \Gamma(\mathcal{H}_{p,q}))$ and all $\mathbb{V} \in \hat{\mathcal{K}}$.

Step 3: If $\sigma \in im(\mathcal{D}) \cap im(\overline{\mathcal{D}})$, then the properties of $\Phi_{p,q}$ imply that $d\Phi_{p,q}(\sigma) = 0$.

Thus: Assume $\sigma \in (im(\mathcal{D}) \cap im(\overline{\mathcal{D}}))^{\perp}$

Let \mathcal{D}^* and $\overline{\mathcal{D}}^*$ be the formal L^2 -adjoints of \mathcal{D} and $\overline{\mathcal{D}}$. By adjointness this is equivalent to $\sigma \in \ker(\mathcal{D}^*) + \ker(\overline{\mathcal{D}}^*)$.

Sketch of proof III

Step 4: Consider the Poincaré ball model of G/K, i.e. open unit ball $B \subset \mathbb{C}^{n+1}$ endowed with the Bergman metric

$$g(z)(\xi,\eta)=rac{\langle \xi,\eta
angle}{1-|z|^2}+rac{\langle \xi,z
angle\langle z,\eta
angle}{(1-|z|^2)^2}.$$

Let

$$(r, \theta) \colon B \setminus \{0\} \to (0, 1) \times S^{2n+1}, \qquad z \mapsto (|z|, |z|^{-1}z)$$

be the polar decomposition of $B \setminus \{0\}$. The *K*-orbits of $B \setminus \{0\}$ are the level sets S_r of θ , which are all isomorphic to S^{2n+1} .

Aim: Determine explicit formulae for $\Phi_{p,q}(\sigma)$ via restriction to S_r .

Sketch of proof IV

Step 5: Let $\tau = \sum_j z_j dz_j \in \Omega^{1,0}(B \setminus \{0\})$. Using $\sigma \in \ker(\mathcal{D}^*) + \ker(\overline{\mathcal{D}}^*)$, primitivity of $\Phi_{p,q}(\sigma)$ and the multiplicity 1 property it follows that

$$\Phi_{p,q}(\sigma) = f_1(r)\theta^*\sigma + f_2(r)\tau \wedge \theta^*\mathcal{D}^*\sigma + f_3(r)\overline{\tau} \wedge \theta^*\overline{\mathcal{D}}^*\sigma$$

for smooth functions $f_j : (0,1) \to \mathbb{C}$.

イロト イポト イヨト イヨト

Sketch of proof IV

Step 5: Let $\tau = \sum_j z_j dz_j \in \Omega^{1,0}(B \setminus \{0\})$. Using $\sigma \in \ker(\mathcal{D}^*) + \ker(\overline{\mathcal{D}}^*)$, primitivity of $\Phi_{p,q}(\sigma)$ and the multiplicity 1 property it follows that

$$\Phi_{p,q}(\sigma) = f_1(r) heta^*\sigma + f_2(r) au \wedge heta^*\mathcal{D}^*\sigma + f_3(r)\overline{ au} \wedge heta^*\overline{\mathcal{D}}^*\sigma$$

for smooth functions $f_j \colon (0,1) \to \mathbb{C}$.

Step 6: Distinguish the cases of σ contained in

$$\operatorname{im}(\mathcal{D}) \cap \operatorname{ker}(\overline{\mathcal{D}}^*), \quad \operatorname{ker}(\mathcal{D}^*) \cap \operatorname{im}(\overline{\mathcal{D}}), \quad \operatorname{ker}(\mathcal{D}^*) \cap \operatorname{ker}(\overline{\mathcal{D}}^*).$$

Use $\Delta \Phi_{p,q} = 0$, $\delta \Phi_{p,q} = 0$ and the differential calculi on G/K and G/P to obtain hypergeometric differential equations for f_j . These depend on the parameter $\lambda \in i\mathbb{R}$ and $\mu \in \mathbb{R}_{\geq 0}$ defined by $\mathcal{L}_{\zeta}\sigma = \lambda\sigma$ and $\Delta_H\sigma = \mu\sigma$.

《曰》 《祠》 《曰》 《曰》 曰

Sketch of proof IV

Step 5: Let $\tau = \sum_j z_j dz_j \in \Omega^{1,0}(B \setminus \{0\})$. Using $\sigma \in \ker(\mathcal{D}^*) + \ker(\overline{\mathcal{D}}^*)$, primitivity of $\Phi_{p,q}(\sigma)$ and the multiplicity 1 property it follows that

$$\Phi_{p,q}(\sigma) = f_1(r) heta^*\sigma + f_2(r) au \wedge heta^*\mathcal{D}^*\sigma + f_3(r)\overline{ au} \wedge heta^*\overline{\mathcal{D}}^*\sigma$$

for smooth functions $f_j \colon (0,1) o \mathbb{C}$.

Step 6: Distinguish the cases of σ contained in

$$\mathsf{im}(\mathcal{D})\cap\mathsf{ker}(\overline{\mathcal{D}}^*),\qquad\mathsf{ker}(\mathcal{D}^*)\cap\mathsf{im}(\overline{\mathcal{D}}),\qquad\mathsf{ker}(\mathcal{D}^*)\cap\mathsf{ker}(\overline{\mathcal{D}}^*).$$

Use $\Delta \Phi_{p,q} = 0$, $\delta \Phi_{p,q} = 0$ and the differential calculi on G/K and G/P to obtain hypergeometric differential equations for f_j . These depend on the parameter $\lambda \in i\mathbb{R}$ and $\mu \in \mathbb{R}_{\geq 0}$ defined by $\mathcal{L}_{\zeta}\sigma = \lambda\sigma$ and $\Delta_H\sigma = \mu\sigma$.

Step 7: Use the formula for $\Phi_{p,q}$ on *B* and Stokes' Theorem to relate $\|d\Phi_{p,q}(\sigma)\|_{L^2}^2$ to a multiple of $\|\sigma\|_{L^2}^2$.

Thank you for your attention!

Christoph Harrach 13/12

イロト イポト イヨト イヨト

э