On the relation between discrete series representations and BGG-complexes

Christoph Harrach

University of Vienna
joint with Andreas Čap and Pierre Julg
$43^{\text {rd }}$ Winter School of Geometry and Physics, Srní
19. January 2023

General setup

Let G be a semisimple Lie group with finite centre and $K \subset G$ a maximal compact subgroup so that G / K is a symmetric space of noncompact type.

General setup

Let G be a semisimple Lie group with finite centre and $K \subset G$ a maximal compact subgroup so that G / K is a symmetric space of noncompact type.

Given a parabolic $P \subset G$ we can view G / P as a boundary component of G / K. On G / P we have the BGG-complex, which is a distinguished G-invariant differential complex.

General setup

Let G be a semisimple Lie group with finite centre and $K \subset G$ a maximal compact subgroup so that G / K is a symmetric space of noncompact type.
Given a parabolic $P \subset G$ we can view G / P as a boundary component of G / K. On G / P we have the BGG-complex, which is a distinguished G-invariant differential complex.
Explicitly, $T^{*}(G / P)$ is a bundle of Lie algebras, which induces an invariant codifferential $\partial^{*}: \Lambda^{k} T^{*}(G / P) \rightarrow \Lambda^{k-1} T^{*}(G / P)$. Defining the G-bundles $\mathcal{H}_{k}:=\operatorname{ker}\left(\partial^{*}\right) / \operatorname{im}\left(\partial^{*}\right)$ we can find invariant differential operators $D_{k}: \Gamma\left(\mathcal{H}_{k}\right) \rightarrow \Gamma\left(\mathcal{H}_{k+1}\right)$ so that $\left(\Gamma\left(\mathcal{H}_{k}\right), D_{k}\right)$ is a complex.

General setup

Let G be a semisimple Lie group with finite centre and $K \subset G$ a maximal compact subgroup so that G / K is a symmetric space of noncompact type.

Given a parabolic $P \subset G$ we can view G / P as a boundary component of G / K. On G / P we have the BGG-complex, which is a distinguished G-invariant differential complex.

Explicitly, $T^{*}(G / P)$ is a bundle of Lie algebras, which induces an invariant codifferential $\partial^{*}: \Lambda^{k} T^{*}(G / P) \rightarrow \Lambda^{k-1} T^{*}(G / P)$. Defining the G-bundles $\mathcal{H}_{k}:=\operatorname{ker}\left(\partial^{*}\right) / \operatorname{im}\left(\partial^{*}\right)$ we can find invariant differential operators $D_{k}: \Gamma\left(\mathcal{H}_{k}\right) \rightarrow \Gamma\left(\mathcal{H}_{k+1}\right)$ so that $\left(\Gamma\left(\mathcal{H}_{k}\right), D_{k}\right)$ is a complex.

Question: Can we relate the BGG-complex to the geometry of G / K ?

Intertwining operators

Using that $G / K \times G / P$ is isomorphic to G / M with $M:=K \cap P$ we can easily construct G-equivariant integral operators

$$
\Phi: \Omega^{k}(G / P) \rightarrow \Omega^{\ell}(G / K) .
$$

Their kernels are elements in $\Omega^{*}(G / M)^{G}$, which correspond to M-invariant elements in the underlying finite dimensional M-module.

Intertwining operators

Using that $G / K \times G / P$ is isomorphic to G / M with $M:=K \cap P$ we can easily construct G-equivariant integral operators

$$
\Phi: \Omega^{k}(G / P) \rightarrow \Omega^{\ell}(G / K) .
$$

Their kernels are elements in $\Omega^{*}(G / M)^{G}$, which correspond to M-invariant elements in the underlying finite dimensional M-module.

Furthermore, their composition with differential operators on G / K and G / P can be expressed on the level of the kernels. Thus, we can design Φ via computations in finite dimensional representations.

Intertwining operators

Using that $G / K \times G / P$ is isomorphic to G / M with $M:=K \cap P$ we can easily construct G-equivariant integral operators

$$
\Phi: \Omega^{k}(G / P) \rightarrow \Omega^{\ell}(G / K) .
$$

Their kernels are elements in $\Omega^{*}(G / M)^{G}$, which correspond to M-invariant elements in the underlying finite dimensional M-module.

Furthermore, their composition with differential operators on G / K and G / P can be expressed on the level of the kernels. Thus, we can design Φ via computations in finite dimensional representations.

In general, the condition $\Delta \circ \Phi=0$ is equivalent to Φ factoring to the BGG complex. This means that Φ induces a G-equivariant map

$$
\Phi: \Gamma\left(\mathcal{H}_{k}\right) \rightarrow \Omega^{\ell}(G / K)
$$

so that $\Phi\left(D_{k}[\alpha]\right)=\Phi(d \alpha)$ for all $\alpha \in \Gamma\left(\operatorname{ker}\left(\partial^{*}\right)\right)$.

The case $G=\mathrm{SO}_{0}(n+1,1)$

Let $G=\mathrm{SO}_{0}(n+1,1)$ with maximal compact $K \cong \mathrm{SO}(n+1)$ and minimal parabolic $P \cong \mathrm{CO}(n) \ltimes \mathbb{R}^{n}$. Then G / K is the real hyperbolic space in dimension $n+1$, whereas G / P is the conformal n-sphere.

The case $G=\mathrm{SO}_{0}(n+1,1)$

Let $G=\mathrm{SO}_{0}(n+1,1)$ with maximal compact $K \cong \mathrm{SO}(n+1)$ and minimal parabolic $P \cong \mathrm{CO}(n) \ltimes \mathbb{R}^{n}$. Then G / K is the real hyperbolic space in dimension $n+1$, whereas G / P is the conformal n-sphere.

In this case the codifferential ∂^{*} is trivial and thus the BGG-complex coincides with the deRham complex. This implies that every intertwining operator as above has harmonic image.

The case $G=\mathrm{SO}_{0}(n+1,1)$

Let $G=\mathrm{SO}_{0}(n+1,1)$ with maximal compact $K \cong \mathrm{SO}(n+1)$ and minimal parabolic $P \cong \mathrm{CO}(n) \ltimes \mathbb{R}^{n}$. Then G / K is the real hyperbolic space in dimension $n+1$, whereas G / P is the conformal n-sphere. In this case the codifferential ∂^{*} is trivial and thus the BGG-complex coincides with the deRham complex. This implies that every intertwining operator as above has harmonic image.

Theorem (Gaillard '86, H. '16)

For all $0 \leq k \leq n$ there is a G-equivariant operator

$$
\Phi: \Omega^{k}(G / P) \rightarrow \Omega^{k}(G / K)
$$

whose image consists of coclosed and harmonic differential forms. Moreover,

$$
d \circ \Phi_{k}=(n-2 k) \Phi_{k+1} \circ d
$$

Complex hyperbolic space

For $G=\operatorname{SU}(n+1,1)$ the symmetric space G / K is the complex hyperbolic space in (complex) dimension $n+1$. This is naturally a Kähler manifold, so we have a decomposition

$$
\Omega^{k}(G / K, \mathbb{C})=\bigoplus_{p+q=k} \Omega^{p, q}(G / K)
$$

into (p, q)-types. Accodingly, we split the exterior derivative as $d=\partial+\bar{\partial}$, where the first and second operator maps (p, q)-forms to ($p+1, q$)-forms and ($p, q+1$)-forms, respectively.

Complex hyperbolic space

For $G=\operatorname{SU}(n+1,1)$ the symmetric space G / K is the complex hyperbolic space in (complex) dimension $n+1$. This is naturally a Kähler manifold, so we have a decomposition

$$
\Omega^{k}(G / K, \mathbb{C})=\bigoplus_{p+q=k} \Omega^{p, q}(G / K)
$$

into (p, q)-types. Accodingly, we split the exterior derivative as $d=\partial+\bar{\partial}$, where the first and second operator maps (p, q)-forms to $(p+1, q)$-forms and ($p, q+1$)-forms, respectively.

The adjoint of the wedge product with the Kähler form defines the Colefschetz map $L^{*}: \Omega^{p, q}(G / K) \rightarrow \Omega^{p-1, q-1}(G / K)$. Elements in the kernel of L^{*} are called primitive, which can only exist in degrees $\leq n+1$.

CR-sphere and Rumin complex

Let P be the minimal parabolic subgroup of $G=\mathrm{SU}(n+1,1)$, then $G / P \cong S^{2 n+1}$ is a CR-sphere. Let $H \subset T(G / P)$ be the contact subbundle and put $Q:=T(G / P) / H$. Denote by $\Lambda_{0}^{k} H^{*}$ the tracefree elements in $\Lambda^{k} H^{*}$ with respect to the Levi bracket.

CR-sphere and Rumin complex

Let P be the minimal parabolic subgroup of $G=\operatorname{SU}(n+1,1)$, then $G / P \cong S^{2 n+1}$ is a CR-sphere. Let $H \subset T(G / P)$ be the contact subbundle and put $Q:=T(G / P) / H$. Denote by $\Lambda_{0}^{k} H^{*}$ the tracefree elements in $\Lambda^{k} H^{*}$ with respect to the Levi bracket.

The bundle \mathcal{H}_{k} is isomorphic to $\Lambda_{0}^{k} H^{*}$ for $k \leq n$ and a quotient of $\Lambda^{k-1} H^{*} \otimes Q^{*}$ for $k \geq n+1$. The resulting complex $\left(\Gamma\left(\mathcal{H}_{k}\right), D_{k}\right)$ is called the Rumin complex.

CR-sphere and Rumin complex

Let P be the minimal parabolic subgroup of $G=\operatorname{SU}(n+1,1)$, then $G / P \cong S^{2 n+1}$ is a CR-sphere. Let $H \subset T(G / P)$ be the contact subbundle and put $Q:=T(G / P) / H$. Denote by $\Lambda_{0}^{k} H^{*}$ the tracefree elements in $\Lambda^{k} H^{*}$ with respect to the Levi bracket.

The bundle \mathcal{H}_{k} is isomorphic to $\Lambda_{0}^{k} H^{*}$ for $k \leq n$ and a quotient of $\Lambda^{k-1} H^{*} \otimes Q^{*}$ for $k \geq n+1$. The resulting complex $\left(\Gamma\left(\mathcal{H}_{k}\right), D_{k}\right)$ is called the Rumin complex.

The contact subbundle H carries an invariant complex structure, inducing a decomposition of $\Lambda^{k} H^{*} \otimes_{\mathbb{R}} \mathbb{C}$ into (p, q)-types. Thus, for $k \leq n$ the bundle $\mathcal{H}_{k} \otimes_{\mathbb{R}} \mathbb{C}$ decomposes into $\bigoplus_{p+q=k} \mathcal{H}_{p, q}$ with $\mathcal{H}_{p, q} \cong \Lambda_{0}^{p, q} H^{*}$. Each $\mathcal{H}_{p, q}$ is an irreducible G-invariant subbundle.

CR-sphere and Rumin complex

Let P be the minimal parabolic subgroup of $G=\operatorname{SU}(n+1,1)$, then $G / P \cong S^{2 n+1}$ is a CR-sphere. Let $H \subset T(G / P)$ be the contact subbundle and put $Q:=T(G / P) / H$. Denote by $\Lambda_{0}^{k} H^{*}$ the tracefree elements in $\Lambda^{k} H^{*}$ with respect to the Levi bracket.

The bundle \mathcal{H}_{k} is isomorphic to $\Lambda_{0}^{k} H^{*}$ for $k \leq n$ and a quotient of $\Lambda^{k-1} H^{*} \otimes Q^{*}$ for $k \geq n+1$. The resulting complex $\left(\Gamma\left(\mathcal{H}_{k}\right), D_{k}\right)$ is called the Rumin complex.

The contact subbundle H carries an invariant complex structure, inducing a decomposition of $\Lambda^{k} H^{*} \otimes_{\mathbb{R}} \mathbb{C}$ into (p, q)-types. Thus, for $k \leq n$ the bundle $\mathcal{H}_{k} \otimes_{\mathbb{R}} \mathbb{C}$ decomposes into $\bigoplus_{p+q=k} \mathcal{H}_{p, q}$ with $\mathcal{H}_{p, q} \cong \Lambda_{0}^{p, q} H^{*}$. Each $\mathcal{H}_{p, q}$ is an irreducible G-invariant subbundle.

Accodingly, the BGG-operators split into the sum $D=\mathcal{D}+\overline{\mathcal{D}}$, where

$$
\mathcal{D}: \Gamma\left(\mathcal{H}_{p, q}\right) \rightarrow \Gamma\left(\mathcal{H}_{p+1, q}\right), \quad \overline{\mathcal{D}}: \Gamma\left(\mathcal{H}_{p, q}\right) \rightarrow \Gamma\left(\mathcal{H}_{p, q+1}\right) .
$$

These are again G-invariant differentials.

Rumin compatible intertwining operators

Theorem (Čap, H., Julg, 2020)

Let $0 \leq p, q \leq n$ with $p+q \leq n$. There exists a G-equivariant operator

$$
\Phi_{p, q}: \Gamma\left(\mathcal{H}_{p, q}\right) \rightarrow \Omega^{p, q}(G / K)
$$

whose image consists of primitive, harmonic and coclosed differential forms. Moreover,

$$
\partial \circ \Phi_{p-1, q}=c_{p-1, q} \Phi_{p, q} \circ \mathcal{D} \quad \bar{\partial} \circ \Phi_{p, q-1}=c_{p, q-1} \Phi_{p, q} \circ \overline{\mathcal{D}}
$$

for constants $c_{*, *} \neq 0$.

Discrete series representations

The space of harmonic forms on G / K contains the distinguished subspace of forms of finite L^{2}-norm, which representations of the discrete series representations of G.

Discrete series representations

The space of harmonic forms on G / K contains the distinguished subspace of forms of finite L^{2}-norm, which representations of the discrete series representations of G.

Recall that for a semisimple Lie group G a discrete series representation (DSR) of G is a unitary subrepresentation of $L^{2}(G)$ whose matrix coefficients have finite L^{2}-norm.

Discrete series representations

The space of harmonic forms on G / K contains the distinguished subspace of forms of finite L^{2}-norm, which representations of the discrete series representations of G.

Recall that for a semisimple Lie group G a discrete series representation (DSR) of G is a unitary subrepresentation of $L^{2}(G)$ whose matrix coefficients have finite L^{2}-norm.
(1) DSR can only exists if $\operatorname{rank}(G)=\operatorname{rank}(K)$, where K is a maximal compact subgroup. In particular, G has to have finite centre.

Discrete series representations

The space of harmonic forms on G / K contains the distinguished subspace of forms of finite L^{2}-norm, which representations of the discrete series representations of G.

Recall that for a semisimple Lie group G a discrete series representation (DSR) of G is a unitary subrepresentation of $L^{2}(G)$ whose matrix coefficients have finite L^{2}-norm.
(1) DSR can only exists if $\operatorname{rank}(G)=\operatorname{rank}(K)$, where K is a maximal compact subgroup. In particular, G has to have finite centre.
(2) If W_{G} and W_{K} are the Weyl groups of G and K, then there are exactly $\left|W_{G}\right| /\left|W_{K}\right|$ DSR with the same infinitesimal character.

Discrete series representations

The space of harmonic forms on G / K contains the distinguished subspace of forms of finite L^{2}-norm, which representations of the discrete series representations of G.

Recall that for a semisimple Lie group G a discrete series representation (DSR) of G is a unitary subrepresentation of $L^{2}(G)$ whose matrix coefficients have finite L^{2}-norm.
(1) DSR can only exists if $\operatorname{rank}(G)=\operatorname{rank}(K)$, where K is a maximal compact subgroup. In particular, G has to have finite centre.
(2) If W_{G} and W_{K} are the Weyl groups of G and K, then there are exactly $\left|W_{G}\right| /\left|W_{K}\right|$ DSR with the same infinitesimal character.

- DSR with trivial character are represented by L^{2}-harmonic forms on G / K. These can only exist in degree $\frac{1}{2} \operatorname{dim}_{\mathbb{R}}(G / K)$.

L^{2}-norm of intertwining operator

Theorem (Lott '00)
Let $G=\mathrm{SO}_{0}(n+1,1)$ and assume that n is odd. Then the image of $d \Phi_{\frac{n-1}{2}}$ consists of L^{2}-harmonic $\frac{n+1}{2}$-forms on G / K.

L^{2}-norm of intertwining operator

Theorem (Lott '00)

Let $G=\mathrm{SO}_{0}(n+1,1)$ and assume that n is odd. Then the image of $d \Phi_{\frac{n-1}{2}}$ consists of L^{2}-harmonic $\frac{n+1}{2}$-forms on G / K.

Theorem (Čap, H., Julg, 2022)
Let $G=\operatorname{SU}(n+1,1)$. For all $p+q=n$ the image of $d \Phi_{p, q}$ consists of L^{2}-harmonic $n+1$-forms on G / K. Moreover, the image of $d \Phi_{p, q}$ is dense the L^{2}-harmonic forms of type $(p+1, q)$ as well as $(p, q+1)$ on G / K.

Therefore, the image of $d \Phi_{p, q}$ generates the discrete series representations of $\mathrm{SU}(n+1,1)$ with trivial infinitesimal character.

L^{2}-norm of intertwining operator

Theorem (Lott '00)

Let $G=\mathrm{SO}_{0}(n+1,1)$ and assume that n is odd. Then the image of $d \Phi_{\frac{n-1}{2}}$ consists of L^{2}-harmonic $\frac{n+1}{2}$-forms on G / K.

Theorem (Čap, H., Julg, 2022)
Let $G=\operatorname{SU}(n+1,1)$. For all $p+q=n$ the image of $d \Phi_{p, q}$ consists of L^{2}-harmonic $n+1$-forms on G / K. Moreover, the image of $d \Phi_{p, q}$ is dense the L^{2}-harmonic forms of type $(p+1, q)$ as well as $(p, q+1)$ on G / K.

Therefore, the image of $d \Phi_{p, q}$ generates the discrete series representations of $\mathrm{SU}(n+1,1)$ with trivial infinitesimal character.

The proof of the above result is again in the realms of finite dimensional representation theory.

Sketch of proof I

Step 1: Consider the holonomy reduction of $G / P \cong S^{2 n+1}$ to K / M. This induces a K-invariant pseudo-Hermitian structure $\alpha \in \Omega^{1}(K / M)$ with $\operatorname{ker}(\alpha)=H$. Let ζ be the Reeb vector field. The bundle metric $d \alpha(, J)$ induces a partial Laplace Δ_{H} and a K-invariant L^{2}-norm $\|\|$ on $\Gamma\left(\Lambda^{k} H^{*}\right)$.

Aim: Relate $\left\|d \Phi_{p, q}(\sigma)\right\|$ to $\|\sigma\|$.

Sketch of proof I

Step 1: Consider the holonomy reduction of $G / P \cong S^{2 n+1}$ to K / M. This induces a K-invariant pseudo-Hermitian structure $\alpha \in \Omega^{1}(K / M)$ with $\operatorname{ker}(\alpha)=H$. Let ζ be the Reeb vector field. The bundle metric $d \alpha(, J)$ induces a partial Laplace Δ_{H} and a K-invariant L^{2}-norm $\|\|$ on $\Gamma\left(\Lambda^{k} H^{*}\right)$.

Aim: Relate $\left\|d \Phi_{p, q}(\sigma)\right\|$ to $\|\sigma\|$.
Step 2: Let \mathbb{W} be an irreducible M-representation and \mathbb{V} irreducible K-module. Computing the possible M-weights of \mathbb{V} it follows easily that $\operatorname{Hom}_{M}(\mathbb{V}, \mathbb{W})$ is at most 1-dimensional. By Frobenius reciprocity this shows that

$$
\operatorname{dim}\left(\operatorname{Hom}_{K}\left(\mathbb{V}, \Gamma\left(K \times_{M} \mathbb{W}\right)\right)\right) \leq 1
$$

We refer to this as the multiplicity 1 property.

Sketch of proof II

Let \hat{K} be the set of all isomorphism classes of irreducible K-representations \mathbb{V} so that $\operatorname{Hom}_{K}\left(\mathbb{V}, \Gamma\left(\mathcal{H}_{p, q}\right)\right) \neq 0$. Since K is compact, Peter-Weyl implies that $\bigoplus_{\mathbb{V} \in \hat{K}} \mathbb{V}$ is dense in $\Gamma\left(\mathcal{H}_{p, q}\right)$.

Sketch of proof II

Let \hat{K} be the set of all isomorphism classes of irreducible K-representations \mathbb{V} so that $\operatorname{Hom}_{K}\left(\mathbb{V}, \Gamma\left(\mathcal{H}_{p, q}\right)\right) \neq 0$. Since K is compact, Peter-Weyl implies that $\bigoplus_{\mathbb{V} \in \hat{K}} \mathbb{V}$ is dense in $\Gamma\left(\mathcal{H}_{p, q}\right)$.

Thus: Show Theorem for all $\sigma \in \operatorname{Hom}_{K}\left(\mathbb{V}, \Gamma\left(\mathcal{H}_{p, q}\right)\right)$ and all $\mathbb{V} \in \hat{K}$.

Sketch of proof II

Let \hat{K} be the set of all isomorphism classes of irreducible K-representations \mathbb{V} so that $\operatorname{Hom}_{K}\left(\mathbb{V}, \Gamma\left(\mathcal{H}_{p, q}\right)\right) \neq 0$. Since K is compact, Peter-Weyl implies that $\bigoplus_{\mathbb{V} \in \hat{K}} \mathbb{V}$ is dense in $\Gamma\left(\mathcal{H}_{p, q}\right)$.
Thus: Show Theorem for all $\sigma \in \operatorname{Hom}_{K}\left(\mathbb{V}, \Gamma\left(\mathcal{H}_{p, q}\right)\right)$ and all $\mathbb{V} \in \hat{K}$.
Step 3: If $\sigma \in \operatorname{im}(\mathcal{D}) \cap \operatorname{im}(\overline{\mathcal{D}})$, then the properties of $\Phi_{p, q}$ imply that $d \Phi_{p, q}(\sigma)=0$.
Thus: Assume $\sigma \in(\operatorname{im}(\mathcal{D}) \cap \operatorname{im}(\overline{\mathcal{D}}))^{\perp}$
Let \mathcal{D}^{*} and $\overline{\mathcal{D}}^{*}$ be the formal L^{2}-adjoints of \mathcal{D} and $\overline{\mathcal{D}}$. By adjointness this is equivalent to $\sigma \in \operatorname{ker}\left(\mathcal{D}^{*}\right)+\operatorname{ker}\left(\overline{\mathcal{D}}^{*}\right)$.

Sketch of proof III

Step 4: Consider the Poincaré ball model of G / K, i.e. open unit ball $B \subset \mathbb{C}^{n+1}$ endowed with the Bergman metric

$$
g(z)(\xi, \eta)=\frac{\langle\xi, \eta\rangle}{1-|z|^{2}}+\frac{\langle\xi, z\rangle\langle z, \eta\rangle}{\left(1-|z|^{2}\right)^{2}} .
$$

Let

$$
(r, \theta): B \backslash\{0\} \rightarrow(0,1) \times S^{2 n+1}, \quad z \mapsto\left(|z|,|z|^{-1} z\right)
$$

be the polar decomposition of $B \backslash\{0\}$. The K-orbits of $B \backslash\{0\}$ are the level sets S_{r} of θ, which are all isomorphic to $S^{2 n+1}$.

Aim: Determine explicit formulae for $\Phi_{p, q}(\sigma)$ via restriction to S_{r}.

Sketch of proof IV

Step 5: Let $\tau=\sum_{j} z_{j} d z_{j} \in \Omega^{1,0}(B \backslash\{0\})$. Using $\sigma \in \operatorname{ker}\left(\mathcal{D}^{*}\right)+\operatorname{ker}\left(\overline{\mathcal{D}}^{*}\right)$, primitivity of $\Phi_{p, q}(\sigma)$ and the multiplicity 1 property it follows that

$$
\Phi_{p, q}(\sigma)=f_{1}(r) \theta^{*} \sigma+f_{2}(r) \tau \wedge \theta^{*} \mathcal{D}^{*} \sigma+f_{3}(r) \bar{\tau} \wedge \theta^{*} \overline{\mathcal{D}}^{*} \sigma
$$

for smooth functions $f_{j}:(0,1) \rightarrow \mathbb{C}$.

Sketch of proof IV

Step 5: Let $\tau=\sum_{j} z_{j} d z_{j} \in \Omega^{1,0}(B \backslash\{0\})$. Using $\sigma \in \operatorname{ker}\left(\mathcal{D}^{*}\right)+\operatorname{ker}\left(\overline{\mathcal{D}}^{*}\right)$, primitivity of $\Phi_{p, q}(\sigma)$ and the multiplicity 1 property it follows that

$$
\Phi_{p, q}(\sigma)=f_{1}(r) \theta^{*} \sigma+f_{2}(r) \tau \wedge \theta^{*} \mathcal{D}^{*} \sigma+f_{3}(r) \bar{\tau} \wedge \theta^{*} \overline{\mathcal{D}}^{*} \sigma
$$

for smooth functions $f_{j}:(0,1) \rightarrow \mathbb{C}$.
Step 6: Distinguish the cases of σ contained in

$$
\operatorname{im}(\mathcal{D}) \cap \operatorname{ker}\left(\overline{\mathcal{D}}^{*}\right), \quad \operatorname{ker}\left(\mathcal{D}^{*}\right) \cap \operatorname{im}(\overline{\mathcal{D}}), \quad \operatorname{ker}\left(\mathcal{D}^{*}\right) \cap \operatorname{ker}\left(\overline{\mathcal{D}}^{*}\right)
$$

Use $\Delta \Phi_{p, q}=0, \delta \Phi_{p, q}=0$ and the differential calculi on G / K and G / P to obtain hypergeometric differential equations for f_{j}. These depend on the parameter $\lambda \in i \mathbb{R}$ and $\mu \in \mathbb{R}_{\geq 0}$ defined by $\mathcal{L}_{\zeta} \sigma=\lambda \sigma$ and $\Delta_{H} \sigma=\mu \sigma$.

Sketch of proof IV

Step 5: Let $\tau=\sum_{j} z_{j} d z_{j} \in \Omega^{1,0}(B \backslash\{0\})$. Using $\sigma \in \operatorname{ker}\left(\mathcal{D}^{*}\right)+\operatorname{ker}\left(\overline{\mathcal{D}}^{*}\right)$, primitivity of $\Phi_{p, q}(\sigma)$ and the multiplicity 1 property it follows that

$$
\Phi_{p, q}(\sigma)=f_{1}(r) \theta^{*} \sigma+f_{2}(r) \tau \wedge \theta^{*} \mathcal{D}^{*} \sigma+f_{3}(r) \bar{\tau} \wedge \theta^{*} \overline{\mathcal{D}}^{*} \sigma
$$

for smooth functions $f_{j}:(0,1) \rightarrow \mathbb{C}$.
Step 6: Distinguish the cases of σ contained in

$$
\operatorname{im}(\mathcal{D}) \cap \operatorname{ker}\left(\overline{\mathcal{D}}^{*}\right), \quad \operatorname{ker}\left(\mathcal{D}^{*}\right) \cap \operatorname{im}(\overline{\mathcal{D}}), \quad \operatorname{ker}\left(\mathcal{D}^{*}\right) \cap \operatorname{ker}\left(\overline{\mathcal{D}}^{*}\right)
$$

Use $\Delta \Phi_{p, q}=0, \delta \Phi_{p, q}=0$ and the differential calculi on G / K and G / P to obtain hypergeometric differential equations for f_{j}. These depend on the parameter $\lambda \in i \mathbb{R}$ and $\mu \in \mathbb{R}_{\geq 0}$ defined by $\mathcal{L}_{\zeta} \sigma=\lambda \sigma$ and $\Delta_{H} \sigma=\mu \sigma$.

Step 7: Use the formula for $\Phi_{p, q}$ on B and Stokes' Theorem to relate $\left\|d \Phi_{p, q}(\sigma)\right\|_{L^{2}}^{2}$ to a multiple of $\|\sigma\|_{L^{2}}^{2}$.

Thank you for your attention!

