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General setup

Let G be a semisimple Lie group with �nite centre and K ⊂ G a maximal
compact subgroup so that G/K is a symmetric space of noncompact
type.

Given a parabolic P ⊂ G we can view G/P as a boundary component of
G/K . On G/P we have the BGG-complex, which is a distinguished
G -invariant di�erential complex.

Explicitly, T ∗(G/P) is a bundle of Lie algebras, which induces an
invariant codi�erential ∂∗ : ΛkT ∗(G/P)→ Λk−1T ∗(G/P). De�ning the
G -bundles Hk := ker(∂∗)/ im(∂∗) we can �nd invariant di�erential
operators Dk : Γ(Hk)→ Γ(Hk+1) so that (Γ(Hk),Dk) is a complex.

Question: Can we relate the BGG-complex to the geometry of G/K?
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Intertwining operators

Using that G/K × G/P is isomorphic to G/M with M := K ∩ P we can
easily construct G -equivariant integral operators

Φ: Ωk(G/P)→ Ω`(G/K ).

Their kernels are elements in Ω∗(G/M)G , which correspond to
M-invariant elements in the underlying �nite dimensional M-module.

Furthermore, their composition with di�erential operators on G/K and
G/P can be expressed on the level of the kernels. Thus, we can design Φ
via computations in �nite dimensional representations.

In general, the condition ∆ ◦ Φ = 0 is equivalent to Φ factoring to the
BGG complex. This means that Φ induces a G -equivariant map

Φ: Γ(Hk)→ Ω`(G/K )

so that Φ(Dk [α]) = Φ(dα) for all α ∈ Γ(ker(∂∗)).
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The case G = SO0(n + 1, 1)

Let G = SO0(n + 1, 1) with maximal compact K ∼= SO(n + 1) and
minimal parabolic P ∼= CO(n) nRn. Then G/K is the real hyperbolic
space in dimension n + 1, whereas G/P is the conformal n-sphere.

In this case the codi�erential ∂∗ is trivial and thus the BGG-complex
coincides with the deRham complex. This implies that every intertwining
operator as above has harmonic image.

Theorem (Gaillard '86, H. '16)

For all 0 ≤ k ≤ n there is a G -equivariant operator

Φ: Ωk(G/P)→ Ωk(G/K )

whose image consists of coclosed and harmonic di�erential forms.
Moreover,

d ◦ Φk = (n − 2k)Φk+1 ◦ d
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Complex hyperbolic space

For G = SU(n + 1, 1) the symmetric space G/K is the complex
hyperbolic space in (complex) dimension n + 1. This is naturally a Kähler
manifold, so we have a decomposition

Ωk(G/K ,C) =
⊕

p+q=k

Ωp,q(G/K )

into (p, q)-types. Accodingly, we split the exterior derivative as
d = ∂ + ∂, where the �rst and second operator maps (p, q)-forms to
(p + 1, q)-forms and (p, q + 1)-forms, respectively.

The adjoint of the wedge product with the Kähler form de�nes the
Colefschetz map L∗ : Ωp,q(G/K )→ Ωp−1,q−1(G/K ). Elements in the
kernel of L∗ are called primitive, which can only exist in degrees ≤ n + 1.
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CR-sphere and Rumin complex

Let P be the minimal parabolic subgroup of G = SU(n + 1, 1), then
G/P ∼= S2n+1 is a CR-sphere. Let H ⊂ T (G/P) be the contact
subbundle and put Q := T (G/P)/H. Denote by Λk

0H
∗ the tracefree

elements in ΛkH∗ with respect to the Levi bracket.

The bundle Hk is isomorphic to Λk
0H
∗ for k ≤ n and a quotient of

Λk−1H∗ ⊗Q∗ for k ≥ n + 1. The resulting complex (Γ(Hk),Dk) is called
the Rumin complex.

The contact subbundle H carries an invariant complex structure, inducing
a decomposition of ΛkH∗ ⊗R C into (p, q)-types. Thus, for k ≤ n the
bundle Hk ⊗R C decomposes into

⊕
p+q=k Hp,q with Hp,q

∼= Λp,q
0 H∗.

Each Hp,q is an irreducible G -invariant subbundle.

Accodingly, the BGG-operators split into the sum D = D +D, where
D : Γ(Hp,q)→ Γ(Hp+1,q), D : Γ(Hp,q)→ Γ(Hp,q+1).

These are again G -invariant di�erentials.
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Rumin compatible intertwining operators

Theorem (�ap, H., Julg, 2020)

Let 0 ≤ p, q ≤ n with p + q ≤ n. There exists a G -equivariant operator

Φp,q : Γ(Hp,q)→ Ωp,q(G/K )

whose image consists of primitive, harmonic and coclosed di�erential
forms. Moreover,

∂ ◦ Φp−1,q = cp−1,qΦp,q ◦ D ∂ ◦ Φp,q−1 = cp,q−1Φp,q ◦ D

for constants c∗,∗ 6= 0.

Christoph Harrach
On the relation between discrete series representations and BGG-complexes
6 / 12



Motivation
Intertwining operators

Geometric setup
Discrete series representations

Sketch of proof

Discrete series representations

The space of harmonic forms on G/K contains the distinguished
subspace of forms of �nite L2-norm, which representations of the discrete
series representations of G .

Recall that for a semisimple Lie group G a discrete series representation
(DSR) of G is a unitary subrepresentation of L2(G ) whose matrix
coe�cients have �nite L2-norm.

1 DSR can only exists if rank(G ) = rank(K ), where K is a maximal
compact subgroup. In particular, G has to have �nite centre.

2 If WG and WK are the Weyl groups of G and K , then there are
exactly |WG |/|WK | DSR with the same in�nitesimal character.

3 DSR with trivial character are represented by L2-harmonic forms on
G/K . These can only exist in degree 1

2
dimR(G/K ).
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L2-norm of intertwining operator

Theorem (Lott '00)

Let G = SO0(n + 1, 1) and assume that n is odd. Then the image of
dΦ n−1

2
consists of L2-harmonic n+1

2
-forms on G/K .

Theorem (�ap, H., Julg, 2022)

Let G = SU(n + 1, 1). For all p + q = n the image of dΦp,q consists of
L2-harmonic n + 1-forms on G/K . Moreover, the image of dΦp,q is dense
the L2-harmonic forms of type (p + 1, q) as well as (p, q + 1) on G/K .

Therefore, the image of dΦp,q generates the discrete series
representations of SU(n + 1, 1) with trivial in�nitesimal character.

The proof of the above result is again in the realms of �nite dimensional
representation theory.
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Sketch of proof I

Step 1: Consider the holonomy reduction of G/P ∼= S2n+1 to K/M.
This induces a K -invariant pseudo-Hermitian structure α ∈ Ω1(K/M)
with ker(α) = H. Let ζ be the Reeb vector �eld. The bundle metric
dα( , J ) induces a partial Laplace ∆H and a K -invariant L2-norm ‖ ‖ on
Γ(ΛkH∗).

Aim: Relate ‖dΦp,q(σ)‖ to ‖σ‖.

Step 2: Let W be an irreducible M-representation and V irreducible
K -module. Computing the possible M-weights of V it follows easily that
HomM(V,W) is at most 1-dimensional. By Frobenius reciprocity this
shows that

dim(HomK (V, Γ(K ×M W))) ≤ 1.

We refer to this as the multiplicity 1 property.
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Γ(ΛkH∗).

Aim: Relate ‖dΦp,q(σ)‖ to ‖σ‖.

Step 2: Let W be an irreducible M-representation and V irreducible
K -module. Computing the possible M-weights of V it follows easily that
HomM(V,W) is at most 1-dimensional. By Frobenius reciprocity this
shows that

dim(HomK (V, Γ(K ×M W))) ≤ 1.

We refer to this as the multiplicity 1 property.
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Sketch of proof II

Let K̂ be the set of all isomorphism classes of irreducible
K -representations V so that HomK (V, Γ(Hp,q)) 6= 0. Since K is
compact, Peter-Weyl implies that

⊕
V∈K̂ V is dense in Γ(Hp,q).

Thus: Show Theorem for all σ ∈ HomK (V, Γ(Hp,q)) and all V ∈ K̂ .

Step 3: If σ ∈ im(D) ∩ im(D), then the properties of Φp,q imply that
dΦp,q(σ) = 0.

Thus: Assume σ ∈
(
im(D) ∩ im(D)

)⊥
Let D∗ and D∗ be the formal L2-adjoints of D and D. By adjointness
this is equivalent to σ ∈ ker(D∗) + ker(D∗).
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Sketch of proof III

Step 4: Consider the Poincaré ball model of G/K , i.e. open unit ball
B ⊂ Cn+1 endowed with the Bergman metric

g(z)(ξ, η) =
〈ξ, η〉
1− |z |2

+
〈ξ, z〉〈z , η〉
(1− |z |2)2

.

Let

(r , θ) : B \ {0} → (0, 1)× S2n+1, z 7→ (|z |, |z |−1z)

be the polar decomposition of B \ {0}. The K -orbits of B \ {0} are the
level sets Sr of θ, which are all isomorphic to S2n+1.

Aim: Determine explicit formulae for Φp,q(σ) via restriction to Sr .
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Sketch of proof IV

Step 5: Let τ =
∑

j zjdzj ∈ Ω1,0(B \ {0}). Using σ ∈ ker(D∗) + ker(D∗),
primitivity of Φp,q(σ) and the multiplicity 1 property it follows that

Φp,q(σ) = f1(r)θ∗σ + f2(r)τ ∧ θ∗D∗σ + f3(r)τ ∧ θ∗D∗σ

for smooth functions fj : (0, 1)→ C.

Step 6: Distinguish the cases of σ contained in

im(D) ∩ ker(D∗), ker(D∗) ∩ im(D), ker(D∗) ∩ ker(D∗).

Use ∆Φp,q = 0, δΦp,q = 0 and the di�erential calculi on G/K and G/P
to obtain hypergeometric di�erential equations for fj . These depend on
the parameter λ ∈ iR and µ ∈ R≥0 de�ned by Lζσ = λσ and
∆Hσ = µσ.

Step 7: Use the formula for Φp,q on B and Stokes' Theorem to relate
‖dΦp,q(σ)‖2L2 to a multiple of ‖σ‖2L2 .
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Thank you for your attention!
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