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Introduction

Twistor operators in classical spin geometry for manifolds with
Spin(p, q)-structure

[Penrose] for signature (1, 3)

They form elliptic complexes in definite signature, special
cases of complexes on Hermitian manifolds whose Laplacians
are so called Stein–Weiss operators, e.g. [Baston]

Elliptic complex = complex of symbols is exact out of the zero

section of the contangent bundle



Manifold and Structure Groups

(M2n, ω) symplectic manifold

G = Sp(2n,R) symplectic group (non-compact) of

(R2n, ω =

(
0 −1
1 0

)
)

π1(Sp(2n,R)) = π1(U(n)) = Z

λ : G̃ = Mp(2n,R) → G connected two-fold cover;
metaplectic group



Segal–Shale–Weil/oscillator/metaplectic/symplectic spinor
representation

ρ : G̃ → U(H), H = L2(Rn) Segal–Shale–Weil representation,
R
2n = R

n ⊕R
n splitting in maximal isotropic vector subspaces

L2(Rn) ⊇ S(Rn) ⊇ C[x1, . . . , xn]e−|x |2 = S•(Cn)e−|x |2

(symmetric algebra) × e−|x |2

H = H+ ⊕ H− where H± are the even and odd square
integrable functions

Complex OG-spinors S = S+ ⊕ S− =
∧•(Cn) for

Spin(2n,R) → SO(2n,R) one of the similarities



Symplectic Spinors

Symplectic spinor multiplication is the action
· : R2n × S(Rn) → S(Rn). For canonical basis (ei )

2n
i=1,

f ∈ S(Rn) and x = (x1, . . . , x2n)

(ei · f )(x) = ıx i f (x), ei+n · f =
∂f

∂x i
, i = 1, . . . , n

Also called canonical quantization (with different units)
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Let M admit symplectic spinors ([ForgerHess]); construct the
associated vector bundle; we denote it by H (Kostant’s bundle
of symplectic spinors)

Hi =
∧i T ∗M ⊗H exterior forms twisted by SSW-repr.

T i ⊆ Hi , T i = Ker (Y ), Y (α⊗ s) =
∑2n

i ,j=1 ω
ij ieiα⊗ ej · s,

ith symplectic twistor bundle

pi :
∧i T ∗M ⊗H → T i



Fedosov connection, Covariant derivatives, Symplectic
twistor operators

∇ symplectic connection, i.e., ∇ω = 0. If T∇ = 0 as well,
called Fedosov connection;
affine space of symplectic connections isomorphic to
Γ(S3T ∗M)

∇i ith exterior covariant derivative
∇i : Γ(

∧i
T ∗M ⊗H) → Γ(

∧i+1
T ∗M ⊗H)

Symplectic twistor operators T i = pi+1∇i
|Γ(T i )

Theorem (Krysl, Monats. Math., 2010): (M, ω) symplectic
manifold, ∇ Fedosov connection. If ∇ is Weyl-flat,
(Γ(T i ),Ti )i=0,...,n and (Γ(T i ),Ti )i=n,...,2n are complexes.



Symbols of the symplectic twistor complexes

Are these complexes elliptic, i.e., are complexes of operators’
symbols fibre-wise exact for any 0 6= ξ ∈ T ∗

mM in the category
of vector spaces?

Symbols are σi = σ(T i , ξ)(α⊗ s) = pi+1((ξ ∧ α)⊗ s)

(Γ(T i ),T i )i=0,...,n and (Γ(T i ),T i )i=n,...,2n form complexes
=⇒ σi+1σi = 0

Kerσi+1 ⊆ Imσi? Compute pi .

Projections pi ∈ End
G̃
(
∧i

R
2n ⊗ H) since they are projection

onto a G̃ -subrepresentation; EndG̃ = so-called commutant

algebra, space of G̃ -equivariant maps, space of
G̃ -homomorphisms



Schur–Weyl–Howe-type duality

Theorem (Krysl, J. Lie Thy. 2012, or arXiv 2008): There is a
representation σ : osp(1|2) → End

G̃
(
∧•

R
2n ⊗ H) such that

〈σ(osp(1|2)), p±〉 = End
G̃
(
∧•

R
2n ⊗H), where p± : H → H±.

Schur: Image of the permutation representation for the
symmetric group Sk generates EndGL(V )(V

⊗k).

Weyl: Image of the permutation representation of an
appropriate braid-group generates EndSO(V )(V

⊗k).



Schur–Weyl–Howe-type duality

1) R. Howe [Howe89] further generalizations and a
systematization
2) “Many” examples and extensions: Leites and Ščepočkina
[LeitSca]

Examples of application: 1) Decomposition of polynomials
into sum of products of harmonic polynomials (∆Rnp = 0) ×
polynomials in variable r2 =

∑n
i=1(x

i )2 (SO(n) and sl(2,C));
2) full set of invariants regarding similarity (= g−1 − g) of
matrices on a f. dim. vector space; 3) U(n) and sl(2,C)
regarding Kähler manifolds (Weil)



Symbols via osp(1|2)

F+(α⊗ s) := σ(f +)(α⊗ s) = ı
2ǫ

i ∧ α⊗ ei · s
F− := σ(f −)(α⊗ s) = F−(α⊗ s) = 1

2ω
ij ieiα⊗ ej · s

E± := σ(e±) = ±2{σ(f ±), σ(f ±)}, σ(h) = 2{σ(f +), σ(f −)}.

For i = 0, . . . , n − 1

σi (α⊗ s) = ξ ∧ α⊗ s +
2

i − n
F+(α⊗ ξ♯ · s) +

ı

i − n
E+(iξ♯α⊗ s)

(rather complicated for proving Im = Ker)

Assertion (Krysl, Arch. Math. (Brno), 2011): Let us suppse that a
symmplectic manifold with a Fedosov connection is Weyl-flat and
admits symplectic spinors. Then the symplectic spinor complexes
(Γ(T i ),T i )i=0,...,n and (Γ(T i ),T i )i=n,...,2n are elliptic.



Scheme of the proof

Proof of Kerσi ⊆ Imσi+1 : Apply E− to reduce the form-degree
by two =⇒ iξ♯α = 0. Incorporate it.

Apply iξ♯ =⇒ ξ ∧ α⊗ ξ♯ · s = 0

Use injectivity of ξ♯· to deduce that ξ ∧ α = 0.
Use Cartan lemma on exterior systems =⇒ α⊗ s = ξ ∧ β ⊗ s

which is the pre-image.
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Supplement: Definition of Ricci and Weyl symplectic
curvature tensors

Ricci tensor σ(X ,Y ) = Tr(Z 7→ R∇(Z ,X )Y ),
σij = Rk

ijk = +Rk
ikj , coordinates with respect to a local

symplectic frame (ei )
2n
i=1, R

∇ classical curvature of affine
connection ∇. Unlike the curvature of a Riemannian metric it
maps anti-symmetric 2-tensor fields into symmetric 2-tensor
fields (because of the duality between symmetric and
anti-symmetric differential 2-forms defining the appropriate
geometries; see Vaisman).
Extended Ricci tensor:
σijkl =

1
2n+2(ωilσjk − ωikσjl + ωjlσik − ωjkσil + 2σijωkl),

σ̂ = σijklǫ
i ⊗ ǫj ⊗ ǫk ⊗ ǫl where (ǫi )i is the dual basis (not

ω-dual) (See [Vaisman])
W = R∇ − σ̂ symplectic Weyl curvature tensor
Definition: A Fedosov connection is called symplectic
Weyl-flat (or symplectic Ricci-type) if W = 0.


