# The homological part of the total surgery obstruction 

Tibor Macko

Comenius University and Slovak Academy of Sciences Bratislava www.mat.savba.sk/ ~macko

Winter school Srní<br>January 2023

## Outline

## Based on work of A. Ranicki

(1) Surgery theory
(2) The total surgery obstruction
(3) Cobordisms of quadratic chain complexes
(9) Ideas in the proof

## Surgery theory

Let $X$ be a finite $n$-dim geometric Poincaré complex.
A manifold structure on $X$ is $f: M \xrightarrow{\simeq} X$ with $M$ an $n$-mfd.
Define

$$
\left(f_{0}: M_{0} \xrightarrow{\simeq} X\right) \sim\left(f_{1}: M_{1} \xrightarrow{\simeq} X\right)
$$

if there exists $h: M_{0} \xrightarrow{\cong} M_{1}$ such that

$$
f_{1} \circ h \simeq f_{0}
$$

## Definition:

The structure set of $X$ is

$$
\mathcal{S}^{\mathrm{TOP}}(X):=\{f: M \xrightarrow{\simeq} X\} / \sim
$$

## Surgery theory questions

Uniqueness question

$$
\mathcal{S}^{\mathrm{TOP}}(X) \cong \text { ? }
$$

Existence question

$$
\mathcal{S}^{\mathrm{TOP}}(X) \neq \emptyset \quad ?
$$

## Alternative question

What is the homotopy type of $\widetilde{\mathcal{S}}^{\text {TOP }}(X)$ ?

$$
\pi_{k} \widetilde{\mathcal{S}}^{\mathrm{TOP}}(X)=\mathcal{S}_{\partial}^{\mathrm{TOP}}\left(X \times D^{k}\right)
$$

## Surgery theory answers

Classical surgery theory (Browder-Novikov-Sullivan-Wall) gives

$$
\mathcal{S}^{\mathrm{TOP}}(X) \text { for } \quad X=S^{n}, S^{k} \times S^{\prime}, \mathbb{C} P^{n}, \mathbb{R} P^{n}, L_{N}^{2 d-1}, T^{n}, \ldots
$$

The Borel conjecture ( BC )

$$
\mathcal{S}^{\mathrm{TOP}}(B G)=\left\{\mathrm{id}_{B G}\right\} ?
$$

Existence answer $\mathcal{S}^{\text {TOP }}(X)=\emptyset$ for $X$

- $X^{5}=\left(S^{2} \vee S^{3}\right) \cup_{\eta^{2}+\left[\iota_{2}, \iota_{3}\right]} e^{5}$ (Gitler-Stasheff, Madsen-Milgram)
- $X^{4}=e^{0} \cup e^{1} \cup 10 e^{2} \cup e^{3} \cup e^{4}, \quad \pi_{1} X=\mathbb{Z} / p($ Wall $)$


## Surgery theory method

The surgery exact sequence (Browder-Novikov-Sullivan-Wall)
For an n-manifold $X$ with $n \geq 5$ nad $\pi=\pi_{1}(X)$ we have
$\cdots \rightarrow \mathcal{N}_{\partial}^{\text {TOP }}(X \times I) \xrightarrow{\theta} L_{n+1}(\mathbb{Z} \pi) \xrightarrow{\partial} \mathcal{S}^{\text {TOP }}(X) \xrightarrow{\eta} \mathcal{N}^{\text {TOP }}(X) \xrightarrow{\theta} L_{n}(\mathbb{Z} \pi)$.

## Explanation

- $\mathcal{N}^{\text {TOP }}(X)$ - normal cobordism - gen. cohomology theory
- $L_{n}(\mathbb{Z} \pi)$ - Witt group of quadratic forms


## Existence versus uniqueness

 $(X, \partial X),(Y, \partial Y)$ mfds with $\partial, h: \partial X \xrightarrow{\simeq} \partial Y \rightsquigarrow Z:=X \cup_{h} Y$ is GPC.
## The main theorem

Let $X$ be a finite $n$-dimensional simplicial Poincaré complex.
Let $\Lambda_{*}^{c}(X)$ be the category of chain complexes of free $\mathbb{Z}$-modules which are

- quadratic
- $X$-based
- locally Poincaré
- globally contractible

Let $\mathbf{S}_{n}(X):=\mathbf{L}_{n-1}\left(\wedge_{*}^{c}(X)\right)$ be the $(n-1)$-st $L$-theory space, $n \geq 5$.
Theorem (Ranicki)
There exists a point $s(X) \in \mathbf{S}_{n}(X)$, the total surgery obstruction, and

$$
\mathbf{q s i g n}_{X}: \widetilde{\mathcal{S}}^{\mathrm{TOP}}(X) \xrightarrow{\simeq} \operatorname{Path}_{0}^{s(X)} \mathbf{S}_{n}(X) .
$$

## Applications

Algebraic surgery exact sequence (infinite in both directions)
Denote $\mathbb{S}_{n+k}(X)=\pi_{k} \mathbf{S}_{n}(X)$. The we have
$\cdots L_{n+k}(\mathbb{Z} \pi) \longrightarrow \mathbb{S}_{n+k}(X) \longrightarrow H_{n+k-1}(X ; \mathbf{L} .\langle 1\rangle) \xrightarrow{\text { asmb }} L_{n+k-1}(\mathbb{Z} \pi) \cdots$

The Farrell-Jones conjecture (torsion free version):
For $G$ torsion free the map $H_{m}\left(B G ; L_{\mathbf{0}}\right) \xrightarrow{\text { asmb }} L_{m}(\mathbb{Z} G)$ is an iso for all $m$.

FJC implies BC
Ranicki's theorem + FJC for $G$ say that if $s(B G) \sim 0$ then

$$
\tilde{\mathcal{S}}^{\mathrm{TOP}}(B G) \simeq * \quad \Rightarrow \quad \mathcal{S}^{\mathrm{TOP}}(B G) \cong\left\{\operatorname{id}_{B G}\right\} .
$$

## Surgery obstructions

Let $(f, \bar{f}): M \rightarrow X$ be a degree one normal map.

## Surgery question

Can we change $(f, \bar{f})$ by normal cobordism to a homotopy equivalence?

## Surgery answer

Yes if and only if $0=\operatorname{qsign}_{\pi}(f, \bar{f}) \in L_{n}(\mathbb{Z} \pi)$.

Here $\pi=\pi_{1}(X)$ and $n \geq 5$.

## Algebraic surgery

## Idea

Use chain complexes.

## Question

- How to define a symmetric bilinear form on a chain complex?
- How to define a quadratic form on a chain complex?


## On modules

- A symmetric bilinear form on a module is a fixed point.
- A quadratic form on a module is an orbit.


## Forms on modules

A bilinear form is $\varphi \in \operatorname{Hom}_{R}\left(P, P^{*}\right) \cong\left(P \otimes_{R} P\right)^{*} \ni \lambda$.
An involution on forms

$$
T: \operatorname{Hom}_{R}\left(P, P^{*}\right) \rightarrow \operatorname{Hom}_{R}\left(P, P^{*}\right) \quad T:\left(P \otimes_{R} P\right)^{*} \rightarrow\left(P \otimes_{R} P\right)^{*}
$$

$$
T(\varphi)=\varphi^{*} \circ \mathrm{ev} \quad T(\lambda)(x, y)=\overline{\lambda(y, x)}
$$

An $\varepsilon$-symmetric bilinear form for $\varepsilon= \pm 1$ is

$$
\varphi \in \operatorname{ker}(1-\varepsilon T)=\operatorname{Hom}_{R}\left(P, P^{*}\right)^{\mathbb{Z}_{2}}=\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(\mathbb{Z}, \operatorname{Hom}_{R}\left(P, P^{*}\right)\right) .
$$

An $\varepsilon$-quadratic form for $\varepsilon= \pm 1$ is

$$
\psi \in \operatorname{coker}(1-\varepsilon T)=\operatorname{Hom}_{R}\left(P, P^{*}\right)_{\mathbb{Z}_{2}}=\mathbb{Z} \otimes_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]} \operatorname{Hom}_{R}\left(P, P^{*}\right) .
$$

The symmetrization map is $1+\varepsilon T: \operatorname{Hom}_{R}\left(P, P^{*}\right)_{\mathbb{Z}_{2}} \rightarrow \operatorname{Hom}_{R}\left(P, P^{*}\right)^{\mathbb{Z}_{2}}$.

## Structured chain complexes

A "form" on a chain complex $C$ is $\omega \in\left(C \otimes_{R} C\right) \cong \operatorname{Hom}_{R}\left(C^{-*}, C\right)$.
An involution on forms

$$
\begin{aligned}
& C \otimes_{R} C \\
& x \otimes C \otimes_{R} C \\
& x \mapsto(-1)^{|x| \cdot|y|} y \otimes x .
\end{aligned}
$$

But we need a homotopy invariant notion!

## Homotopy invariant structures

fixed points $\rightsquigarrow$ homotopy fixed points orbits $\rightsquigarrow$ homotopy orbits

## Structured chain complexes II

The standard $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-resolution of $\mathbb{Z}$ :

$$
W:=\cdots \xrightarrow{1-T} \mathbb{Z}\left[\mathbb{Z}_{2}\right] \xrightarrow{1+T} \mathbb{Z}\left[\mathbb{Z}_{2}\right] \xrightarrow{1-T} \mathbb{Z}\left[\mathbb{Z}_{2}\right] \longrightarrow 0
$$

## Notation

$$
\begin{aligned}
W^{\%}(C) & :=\operatorname{Hom}_{\mathbb{Z}[\mathbb{Z} / 2]}\left(W, C \otimes_{R} C\right)=\left(C \otimes_{R} C\right)^{h \mathbb{Z} / 2} \\
W_{\%}(C) & :=W \otimes_{\mathbb{Z}[\mathbb{Z} / 2]}\left(C \otimes_{R} C\right)=\left(C \otimes_{R} C\right)_{h \mathbb{Z} / 2}
\end{aligned}
$$

## Definition

An $n$-dimensional symmetric structure on $C$ is a cycle $\varphi \in W^{\%}(C)_{n}$. An $n$-dimensional quadratic structure on $C$ is a cycle $\psi \in W_{\%}(C)_{n}$.

## The symmetric construction I

The Alexander-Whitney diagonal + higher homotopies give a chain map

$$
\begin{gathered}
\Delta_{X}: W \otimes C(X) \rightarrow C(X) \otimes C(X) \\
1_{s} \otimes x \mapsto \Delta_{s}(x)
\end{gathered}
$$

The symmetric construction map

$$
\varphi_{X}: C(X) \rightarrow W^{\%}(C(X))
$$

is defined to be the adjoint of $\Delta_{X}$. For a cycle $c \in C_{n}(X)$ we have

$$
\varphi_{X}(c)_{0}=-\cap c: C^{n-*}(X) \rightarrow C(X)
$$

It is natural in $X$ and there is an equivariant version.

## The quadratic construction

The quadratic construction for $(f, \bar{f}): M \rightarrow X$ a deg 1 normal map with $F=S(\bar{f}): \Sigma_{+}^{p} X \rightarrow \Sigma_{+}^{p} M$ and $f^{!}: C(X) \rightarrow C(M)$ is

$$
\psi_{F}: C(X) \rightarrow W_{\%}(C(M)) \quad \text { s.t. } \quad(1+T) \psi_{F}=\varphi_{M} f_{*}^{!}-\left(f^{!}\right)^{\%} \varphi_{X}
$$

and using e: $C(M) \rightarrow \mathcal{C}\left(f^{!}\right)$we get

$$
(C, \psi)=\left(\mathcal{C}\left(f^{!}\right), e_{\%} \psi_{F}[X]\right)
$$

## Definition

An n-dim sym complex $(C, \varphi)$ is called Poincaré if $\varphi_{0}: C^{n-*} \xrightarrow{\simeq} C$.
An n-dim quad complex $(C, \psi)$ is called Poincaré if $(1+T) \psi_{0}: C^{n-*} \xrightarrow{\simeq} C$.

## L-groups

## Definition

$L^{n}(R)$ is the cobordism group of $n$-dim sym alg Poincaré cplxs. $L_{n}(R)$ is the cobordism group of $n$-dim quad alg Poincaré cplxs.

## Theorem (Signatures)

There are symmetric and quadratic signatures maps:

$$
\begin{aligned}
\boldsymbol{\operatorname { s i g n }}_{\pi}: \Omega_{n}^{\mathrm{TOP}}(X) & \rightarrow L^{n}(\mathbb{Z} \pi) \\
\boldsymbol{q s i g n}_{\pi}: \mathcal{N}^{\mathrm{TOP}}(X) & \rightarrow L_{n}(\mathbb{Z} \pi)
\end{aligned}
$$

such that $0=\operatorname{qsign}_{\pi}(f, \bar{f})$ iff $(f, \bar{f}) \in L_{n}(\mathbb{Z} \pi)$ is normally cobordant to a homotopy equivalence.

## Local Poincaré duality



## Local Poincaré duality II

Additive category with chain duality $(\mathbb{A},(T, e))$
$\rightsquigarrow \quad L^{n}(\mathbb{A})$ and $L_{n}(\mathbb{A})$
$\mathbb{A}=\mathbb{Z}_{*}(X)$ modules $M=\sum_{\sigma \in X} M(\sigma)$ and "lower triangular matrices".
$\rightsquigarrow \quad X$-based chain complexes
Algebraic bordism category $\Lambda=(\mathbb{A},(T, e), \mathbb{B}, \mathbb{C})$ with $\mathbb{C} \subseteq \mathbb{B} \subseteq \mathbb{B}(\mathbb{A})$
$\rightsquigarrow \quad L^{n}(\Lambda)$ and $L_{n}(\Lambda)$
$\Lambda(X)$ globally Poincaré complexes in $\mathbb{Z}_{*}(X)$
$\Lambda_{*}(X)$ locally Poincaré complexes in $\mathbb{Z}_{*}(X)$
$\Lambda_{*}^{c}(X)$ locally Poincaré globally contractible complexes in $\mathbb{Z}_{*}(X)$

## The total surgery obstruction

Recall

$$
s(X)=(C, \psi) \in \mathbf{S}_{n}(X)=\mathbf{L}_{n-1}\left(\Lambda_{*}^{c}(X)\right)
$$

Need $(n-1)$-dim locally Poincaré globally contractible quadratic complex! Start with $\left(C(X), \varphi_{X}([X])\right.$ which is $n$-dim symmetric complex in $\mathbb{Z}_{*}(X)$ Boundary construction of Ranicki produces $(n-1)$-dim locally Poincaré globally contractible symmetric complex

Local normal structure (Quinn, Ranicki) or homological algebra (Weiss) produces quadratic refinement.

Locally
We have

$$
C(\sigma)=\Sigma^{-1} \mathcal{C}\left(C^{n-|\sigma|-*}(D(\sigma, K)) \rightarrow C_{*}(D(\sigma, K), \partial D(\sigma, K))\right)
$$

The homological part of the total surgery obstruction
Algebraic surgery exact sequence (infinite in both directions)


Definition (Homological part of TSO)
Define $t(X)$ to be the image of $s(X)$ under the map

$$
\mathbf{S}_{n}(X) \rightarrow \mathbf{H}_{n-1}(X ; \mathbf{L} \cdot\langle 1\rangle) .
$$

## Theorem (Ranicki)

$$
\mathbf{q s i g n}_{X}: \tilde{\mathcal{N}}^{\mathrm{TOP}}(X) \xrightarrow{\sim} \operatorname{Path}_{0}^{t(X)} \mathbf{H}_{n-1}(X ; \mathbf{L} \mathbf{\bullet}\langle 1\rangle) .
$$

## Main idea of the new proof 1

Use a Mayer-Vietoris principle thanks to the following proposition.

## Proposition

Let $X$ be an $n-G P C$. Then there exists an $N>0$ such that the $(n+N)-G P P$

$$
\left(X \times D^{N}, X \times S^{N-1}\right)
$$

is homotopy equivalent to an $(n+N)-G P P(Z, \partial Z)$ with $Z$ the total space of some $K$-dimensional disk fibration $\xi$ over some smooth manifold with boundary $(Y, \partial Y)$ and with $\partial Z=S(\xi) \cup E\left(\left.\xi\right|_{\partial Y}\right)$ :

$$
D^{k} \rightarrow Z=E(\xi) \rightarrow Y
$$

## Main idea of the new proof 2

Theorem (M. and Adams-Florou (2018))
The suspension homotopy equivalence

$$
\mathbf{H}_{n-1}\left(X ; \mathbf{L}_{\bullet}\langle 1\rangle\right) \rightarrow \mathbf{H}_{n+N-1}\left(X \times D^{N}, X \times S^{N-1} ; \mathbf{L}_{\bullet}\langle 1\rangle\right)
$$

sends

$$
t(X) \mapsto t\left(X \times D^{N}\right)
$$

## Proof.

Use ball complexes instead of simplicial complexes.

Main idea of the new proof 3
Use a Mayer-Vietoris principle via a homotopy handlebody decomposition.
The homotopy handlebody decomposition of $Z$

$$
Z_{m+1}=Z_{m} \cup_{h_{m}} H_{m+1}
$$

where

$$
h_{m}: \partial_{-} Z_{m} \xrightarrow{\simeq} \partial_{-} H_{m+1}=S^{k-1} \times D^{n-k}
$$

## Known

$$
\mathbf{q s i g n}_{H}: \tilde{\mathcal{N}}^{\mathrm{TOP}}(H) \xrightarrow{\simeq} \Omega \mathbf{H}_{n-1}\left(H ; \mathbf{L}_{\bullet}\langle 1\rangle\right)=\mathbf{H}_{n}\left(H ; \mathbf{L}_{\bullet}\langle 1\rangle\right) .
$$

To do Relate $t\left(Z_{m+1}\right)$ to $\mathbf{q s i g n}_{\partial_{-} H_{m+1}}\left(h_{m}\right)$.

Thank you!

