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We consider a family of Z2 × Z2–symmetric Hamiltonian systems in two
degrees of freedom, i.e. invariant with respect to the reflectional
symmetries

%1 : (x1, x2, p1, p2) 7→ (−x1, x2,−p1, p2)

%2 : (x1, x2, p1, p2) 7→ (x1,−x2, p1,−p2)

where (x , p) denote the canonical coordinates. We assume the system to
be close to an elliptic equilibrium at the origin and consider

H(x , p; ε) =
∞∑
j=0

ε2jH2j(x , p).

Here H2j are homogeneous polynomials of degree 2(j + 1) in the
coordinates (x , p), ε is a small parameter and

H0(x , p) =
ω1

2
(x21 + p21) +

ω2

2
(x22 + p22)

so the system can be treated as a symmetric perturbed oscillator.
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The Hamiltonian

H =
ω1

2
(x21 + p21) +

ω2

2
(x22 + p22) +

∞∑
j=1

ε2jH2j

is in general not integrable. Let us introduce a detuning parameter δ by
assuming

ω1 =
(m
n

+ ε2δ
)
ω2, m, n ∈ N

and put the term with the detuning into the perturbation, so to see the
system as a perturbation of a m:n resonant oscillator invariant under the
reflection symmetries.

Then we proceed to a normalization procedure w.r.t. the unperturbed
m:n resonant oscillator: we look for a (formal) coordinate transformation
that brings H into the normal form K so that after scaling t → ω2

n t,

{K ,H0} = 0, H0 =
m

2
(x21 + p21) +

n

2
(x22 + p22).

In this way the system acquires a (formal) constant of motion H0 = η.
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The normalized system is therefore integrable.

Why the detuning? Because even if the unperturbed system is
non-resonant, the non-linear coupling between the degrees of freedom
induced by the perturbation determines a “passage through resonance”.
This in turn is responsible for the birth of new orbit families bifurcating
from the normal modes or from lower-order resonances. Moreover, in this
way we can avoid the presence of terms with small denominators while
normalizing the system.

We aim at a general understanding of the phase space structure and the
bifurcation sequences of periodic orbits in general position from the
normal modes, parametrised by the “energy” E , the detuning δ and the
independent coefficients characterising the nonlinear perturbation.
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Typical periodic orbits associated to the 1:1 and 1 : 2 symmetric
resonances

Figure: 1 : 1 symmetric resonance: loop orbits if 2(φ1 − φ2) = ±π, inclined
orbits if φ1 − φ2 = 0, π.

Figure: 1 : 2 symmetric resonance: anti-banana orbits if 2φ1 − φ2 = 0, π,
banana orbits: 4φ1 − 2φ2 = ±π.

Here action-angle like variables have been introduced:

pj =
√

2τj sinφj , xj =
√

2τj cosφj , j = 1, 2.
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As an example, let us consider the family of systems

H(x , p) =
1

2
(p21 + p22) + V (x),

where

V (x1, x2) =
1

a

(
1 + x21 +

x22
q2

)a/2

, 0 < a < 2, 1
4 < q ≤ 1.

This gravitational potential is generated by a simple but realistic matter
distribution. Its astrophysical relevance is based on its ability to describe
in a simple way the gross features of elliptical galaxies. In the limit p → 0
we have the logarithmic potential

V (x1, x2) = log

(
1 + x21 +

x22
q2

)
.

After series expansion, the Hamiltonian is “prepared” for normalization
by setting

q =
ω1

ω2
=

m

n
+ ε2δ ,

and scaling time and space variables as

x 7→ εx , t 7→ ε2ω2

n
t.
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In general, let us consider

H =
m

2
(x21 + p21) +

n

2
(x22 + p22) + ε2n

δ

2
(x21 + p21) +

∞∑
j=1

ε2jH2j .

The flow ϕH0
t of the unperturbed system yields the S1–action ϕH0

on R4 ∼= C2 given by

ϕH0 : S1 × C2 −→ C2

(`, (z1, z2)) → (e−im`z1, e
−in`z2)

where
zj = xj + ipj , j = 1, 2.

or, equivalently, in action-angle like variables

zj =
√

2τje
iφj , j = 1, 2.

The perturbed Hamiltonian is in general not invariant under this action,
however we can normalize H so that the resulting normal form K does
have the oscillator symmetry, namely

{K ,H0} = 0.
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A set of generators of the Poisson algebra of ϕH0–invariant functions is
given by

τ1 =
z1z̄1

2
, τ2 =

z2z̄2
2

together with

σ1 =
Re zn1 z̄

m
2

2
, σ2 =

Im zn1 z̄
m
2

2

and it is constrained by τ1 ≥ 0, τ2 ≥ 0 and the syzygy

R(τ, σ) := 2n+m−2τn1 τ
m
2 − (σ2

1 + σ2
2) = 0.

The (truncated) normal form K is a polynomial in (τ, σ), namely

K = mτ1 + nτ2 + ε2n δτ1 +
N−1∑
j=1

ε2jK2j(τ) + ε2NK2j(τ, σ).

Without symmetries, the minimal truncation order is m + n − 2. With
both reflection symmetries, the minimal truncation order increases to
2N = 2(m + n)− 2 and this is why one speaks of 2m:2n resonance.
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The normalization allows us to reduce the dynamics to one degree of
freedom as the Poisson bracket on R4 induced by (τ, σ) has two Casimir
elements, namely R and H0 = τ1 + 2τ2.

For a fixed value η ≥ 0 of H0 we can eliminate τ2 = 1
2 (η − τ1). The

dynamics are then constrained to the reduced phase space

Vη =
{

(τ1, σ1, σ2) ∈ R3 : Rη(τ1, σ1, σ2) = 0, 0 ≤ τ1 ≤ η
}

with Poisson structure

{f , g} = 〈∇f ×∇g ,∇Rη〉 ,

where
Rη(τ1, σ1, σ2) = 2n−2(η − τ1)mτn1 − (σ2

1 + σ2
2).

To understand the dynamics of the normal form we follow a geometric
approach: we look at the intersections between the level sets of the
normal form and the reduced phase space.
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Let us focus now on the 2 : 4 resonance. The normal form, truncated at
the minimal order reads

K (τ, σ; δ) = K0(τ) + ε2K2(τ ; δ) + ε4
[
µ
σ2
1 − σ2

2

2
+ νσ1σ2 + K4(τ ; δ)

]
with K2, K4 polynomials of degree 2 and 4, respectively,

K0 = H0 = τ1 + 2τ2 = η.

We assume at least one of the coefficients µ and ν to be non-vanishing
(otherwise we have to consider higher order normal form).

A. Marchesiello Bifurcations of symmetric resonances



The Z2 × Z2–symmetry of the original system is inherited by the normal
form

Indeed, none of the invariants (τ, σ) changes under reflectional symmetry
with respect to the x1− axis. The reflectional symmetry with respect to
the x2− axis becomes the symmetry

(τ, σ) 7→ (τ,−σ)

We perform a further reduction to explicitly divide out this symmetry, by
introducing variables

u := τ1
v := 1

2 (σ2
1 − σ2

2)
w := σ1σ2 .
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Section of the (twice) reduced phase space corresponding to the 2 : 2
(right) and 2 : 4 resonance (left), for η = 1.
Singular equilibria are at the singular points of the reduced phase space

Q1 = (0, 0, 0), and ;Q2 = (0, 0, η).

These correspond to τ1 = 0 and τ1 = η, i.e. the normal modes

x21+p21 = 0, x22+p22 = 2η and x21+p21 = 2η, x22+p22 = 0 (2 : 2 resonance),

x21 +p21 = 0, x22 +p22 = η and x21 +p21 = 2η, x22 +p22 = 0 (2 : 4 resonance)

(also called short and long axial orbits for the 2 : 4 resonance).

The type of the singularity depends on the resonance.
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The normal form of the 2 : 4 resonance now reads (after neglecting
constant terms and scaling one more time by ε2)

Kη(u, v ,w ; δ) = (2δ + αη)u + λu2 + ε2 [µv + νw + Kη
4 (u; δ)]

Note that, since the reduced phase space is a surface of revolution, by
rotation we can always eliminate one of the two variables v ,w from the
Hamiltonian (we do not consider the case µ = ν = 0 here).

For definiteness we assume from now on µ > 0 and ν = 0.

We consider the level sets

Kη
δ,ε :=

{
(u, v ,w) ∈ R3 : Kη(u, v ,w ; δ) = h0 + ε2h2

}
which correspond to a family of third order curves when intersecting

with the (u, v)–plane

v(u) = − 1

ε2µ

[
(2δ + αη)u + λu2 + h0

]
+ h2 − Kη

4 (u; δ).

The ε2 lets the quadratic part of the curve dominate over the cubic part.
Thus, we have to understand the intersections between a parabola and
the reduced phase space section. Tangency points correspond to regular
equilibria.
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Figure: Possible configurations between the phase space section Pη ∩ {w = 0}
and a second order approximation of the level sets {Kη

δ = h} of the normal
form for increasing values of η, δ = 0.25 and fixed values of the coefficients in
the normal form.

For values of h corresponding to the red curve we have a stable
equilibrium at the origin (left) or a stable equilibrium at the origin and a
periodic orbit around it (right). For values of h slightly different (gray
curves) we can have periodic orbits around the origin or no dynamics; in
the right figure we furthermore have periodic orbits around a regular
equilibrium.
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At (0, 0) the reduced phase space section has a cuspidal singularity.

The equilibrium Q1 = (0, 0, 0) can be unstable only if the parabola passes
through the origin (u, v) = (0, 0) with vanishing first derivative. This
happens for

v ′(0) = 0

Since we are following a perturbative approach, we look for a solution of
this equation for η in the form of a power series in ε.

We find just one solution, in the form

η = η̄ := η01 + ε2η11

acceptable for η01 ≥ 0.

At this critical value for η two families of periodic orbits bifurcate
off/from the singular equilibrium at the origin and this happens
simultaneously.

This has a geometric reason related to the 2 : 4 resonance and in
particular subsists through all orders of the perturbation for the normal
form.
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Figure: Possible tangencies between the parabola and the phase space section
Pη ∩ {w = 0} for increasing values of η, δ = −0.25 and fixed values of the
coefficients in the normal form. Two regular equilibria appear successively from
the conical singularity and subsequently disappear simultaneously on the
singular equilbrium at the origin. The equilibrium on the upper contour of the
phase space is unstable while the equilibrium on the lower contour is stable.
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At Q2 = (η, 0, 0) the reduced phase space has a conical singularity.

The intersection of the reduced phase space Pη with the (u, v)–plane is
given by

C
η
± = Pη ∩ {w = 0} =

{
(u, v) ∈ R2 : v = ±1

2
(η − u)u2, 0 ≤ u ≤ η

}
whence the slope of the two contour lines constituting the reduced phase

space section at (u, v) = (η, 0) is ∓ 1
2η

2. The corresponding equilibrium
can be unstable only if the slope of the parabola at (u, v) = (η, 0) takes
values in the interval (− 1

2η
2, 12η

2). Thus, to find the critical values for η
which correspond to stability/instability transitions of the equilibrium, we
need to solve the two equations

v ′(η) = ±η
2

2
.

We arrive at the two solutions η = η2,± := η02 + η±, acceptable for
η02 ≥ 0.

In this case two families of periodic orbits can appear/ disappear, not
together.
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Implications for the original system: what the equilibria for the reduced
system correspond to?

The singular equilibria Q1 = (0, 0, 0) and Q2 = (0, 0, η) correspond
to τ1 = 0 and τ1 = η, respectively.

For the original system this are the normal modes

x21 + p21 = 0, x22 + p22 = η

and
x21 + p21 = 2η, x22 + p22 = 0,

also called short and long axial orbits.

Tangencies on the lower contour of the reduced phase space are
banana orbits:

0 = σ1 = τ1
√

2τ2 cos(2φ1 − φ2).

Tangencies on the upper contour of the reduced phase space are
anti-banana orbits:

0 = σ2 = τ1
√

2τ2 sin(2φ1 − φ2).
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banana and/or anti-banana orbits appear/disappear when the
corresponding threshold values for η are acceptable, i.e. not
negative. This is always associated with a stability/instability
transition of a normal mode. This gives conditions in terms of the
coefficients α, λ of the normal form and the detuning δ.
η is not a constant for the original system; nevertheless we can use it
to find threshold values for the bifurcations in terms of the
(generalized) energy E (that is conserved for the original system).

On the long axial orbit (τ1 = η, τ2 = 0), the normal form reads as

K = η + ε2(2δ + α1η)η + . . . .

By the scaling of time we have
ω2

n
K + O(ε6) = H = E

and we can express the (generalized) energy in terms of η as

E =
ω2

n

[
η + ε2 (2δ + α1η) η + . . .

Substituting the threshold values for η we find the critical energy
threshold values that correspond to the bifurcations off/from the
long axial orbit.
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Conclusion and perspectives:

3D problems: a geometric reduction is possible also for 3D systems
that are close to resonances. However, the outcome of the
normalization is in general a normal form possessing only one
additional integral, besides the Hamiltonian and therefore it is not
integrable. Sometimes a renormalization is possible...

Indefinite resonances: one could consider more general systems with
indefinite quadratic part, so that

H0 =
1

2
(m1τ1 −m2τ2), m1,m2 ∈ N

These systems differ from the definite case in several features, even
if their analysis can be performed almost in the same way.

K. Efstathiou, H. Hassmann, A. Marchesiello, Bifurcations and
monodromy of the axially symmetric 1 : 1 : −2 resonance, Journal of
Geometry and Physics, 146, 103493 (2019).

Thank you for your attention
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