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arxiv.org/abs/2207.04740 1



The object of study

= possible shapes of relativistic dust clouds in vacuum

= also known as matching dust to vacuum.

Main results

– We show that every van Stockum dust metric can be matched

(in the sense of Lichnerowicz) to a 1-parameter family of non-static

Papapetrou vacuum metrics, and the converse.

– We obtain dust clouds with prescribed boundaries, including

toroidal ones.

– Interpretation of Lichnerowicz matching conditions as first-order

contact conditions.

– The role of symmetries and invariants.

– Illustrative examples.
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Motivation I

Matching rotating dust to vacuum is a respected problem open for

decades:

W.B. Bonnor, Globally regular solutions of Einstein’s equations, Gen.

Rel. Grav. 14 (1982) 807–821.

S. Viaggiu, Rigidly rotating dust solutions depending upon harmonic

functions, Class. Quantum Grav. 24 (2007) (10) 2755–2760.

T. Zingg, A. Aste and D. Trautmann, Just dust: About the

(in)applicability of rotating dust solutions as realistic galaxy models,

Adv. Stud. Theor. Phys. 1 (2007) 409–432.

N. Gürlebeck, The interior solution of axially symmetric, stationary and

rigidly rotating dust configurations, Gen. Rel. Grav. 41 (2009)

2687–2696.
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Motivation II

A relation between two historically significant classes of metrics.

W.J. van Stockum (1937), The gravitational field of a distribution of

particles rotating about an axis of symmetry, Proc. Roy. Soc. Edinburgh

57 135–154.

A. Papapetrou (1953), Eine rotationssymmetrische Lösung in der

allgemeinen Relativitätstheorie, Annalen der Physik 447 309–315.

Relevance

Dust clouds have been considered as models of galaxies, galaxy

clusters, etc.

Controversy about Papapetrou metrics

Asymptotically flat Papapetrou metrics require a zero-mass source.

J.N. Islam, Rotating Fields in General Relativity (Cambridge Univ.

Press, Cambridge, 1985) § 2.5.

Yet they may be relevant as limit cases.
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Controversy about van Stockum metrics

1) Time machine (closed time-like curves).

2) No global asymptotically flat van Stockum dust solution exist.

A. Caporali, Non-existence of stationary, axially symmetric,

asymptotically flat solutions of the Einstein equations for dust, Phys.

Lett. A 66 (1978) 5–7.

H. Pfister, Do rotating dust stars exist in general relativity?, Class.

Quantum Grav. 27 (2010) 105016.
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Why van Stockum and Papapetrou metrics?

A source of a Papaetrou metric must have a zero mass.

The van Stockum metrics have this property.

 L. Bratek, J. Ja locha and M. Kutschera, Van Stockum–Bonnor

spacetimes of rigidly rotating dust, Phys. Rev. D 75 (2007) 107502.

Dust’s positive mass is balanced by a negative mass in the

singularity.

Negative masses

Google Scholar returns more than 5000 documents containing

“negative mass” and “general relativity.”

R.L. Forward, Observational search for negative matter in intergalactic

voids, in: NASA Breakthrough Propulsion Physics Workshop

Proceedings, NASA/CP-1999-208694, 201–203.

Negative masses are taken seriously nowadays.
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Known examples of rotating dust–vacuum glued metrics

1937 – rigidly rotating dust cylinder by Lanczos and van Stockum;

1977 – differentially rotating analogue by Vishveshwara and

Winicour;

1979 – the constant determinant case by Hoenselaers and

Vishveshwara;

1998 – the vacuum exterior to the Gödel metric by Bonnor, Santos

and MacCallum;

2003 – the dust interior to the NUT metric by Zsigrai (the dust

part due to Lukács, Newman, Sparling and Winicour);

2009 – the vacuum exterior to differentially rotating Maitra’s dust

cylinder by Bonnor and Steadman.

All six possess at least three Killing vectors.

We deal with metrics possessing two Killing vectors.
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The matching problem

Given two smooth metrics, glue them along a hypersurface to

produce a metric of continuity class C1.

Example in dimension two

Sphere matched to a flat metric

(circular cylinder) along a circle.

The curvature jumps at the boundary.

Hence, cannot be C2.

For relativistic dust, scalar curvature equals density and jumps at

the boundary. Hence, cannot be C2.

Main difficulty

A boundary problem with free (unknown) boundary.
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Various approaches

G. Darmois, Les équations de la gravitation einsteinienne, Mémorial des

sciences mathématiques XXV (1927).

. . . the first and second fundamental forms of the boundary

hypersurface coincide.

S. O’Brien and J.L. Synge, Jump conditions at discontinuities in general

relativity, Communications of the Dublin Institute for Advanced Studies

A 1952 (1952) (9) (pp 20).

A. Lichnerowicz, Théories relativistes de la gravitation et de

l’électromagnétisme (Masson, Paris, 1955).

. . . equality of ≤ 1-order derivatives across the boundary.

L. Bel and A. Hamoui, Les conditions de raccordement en relativité

générale, Ann. Inst. H. Poincaré A: Phys. Théor. 7 (1967) 229–244.

We follow the Lichnerowicz approach.

Requires shared (admissible) coordinates.
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Ck-continuity and gluing

The pasting lemma. Two Ck-continuous functions f (I) and

f (II), glued along a boundary B, produce a Ck-continuous function,

if and only if

f
(I)
,i1···il |B = f

(II)
,i1···il |B for all i1, . . . , il and all 0 ≤ l ≤ k.

Ck-continuity and kth-order contact

The condition is equivalent to saying that f (I) and f (II) have a

contact of order k along B.

We write f (I) ≡k
B f (II).

The Lichnerowicz matching condition

There exist coordinates such that

g
(I)
ij ≡1

B g
(II)
ij .
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Congruence property of ≡k
B

A folklore in jet theory (a k-jet prolongation of a Ck-function).

Proposition. ≡k
B is a congruence of the algebra of Ck-continuous

functions with Ck-continuous operations.

Proof. Let f
(I)
1 ≡k

B f
(II)
1 . . . , f

(I)
m ≡k

B f
(II)
m . Let F (f1, . . . , fm) be a

Ck-continuous function in a neighbourhood of the image

f
(I)
1 B × · · · × f

(I)
m B = f

(II)
1 B × · · · × f

(II)
m B.

Then

F (f
(I)
1 , . . . , f (I)

m ) ≡k
B F (f

(II)
1 , . . . , f (II)

m )

by the chain rule and induction. Q.E.D.

I. Kolář, P.W. Michor and J. Slovák, Natural Operations in Differential

Geometry (Springer, Berlin, 1993).
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Shared coordinates

Both van Stockum and Papapetrou metrics admit two commuting

and orthogonally transitive Killing vectors, one time-like and one

space-like.

Both can be written in the Lewis–Papapetrou form

g = gij(t
1, t2) dti dtj + hkl(t

1, t2) dzk dzl,

i, j = 1, 2, k, l = 1, 2.

The Killing vectors are ξ(i) = ∂/∂zi and linear combinations.

The first summand gij dt
i dtj can be identified with the orbit metric

= metric on the orbit space (= the space of the Killing orbits).

hkl = g(ξ(k), ξ(l)) are functions on the orbit space.

Since one of the Killing vectors is time-like, deth < 0 and det g > 0.

Hence, the orbit metric is Riemannian.
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Transformations

Metrics g = gij(t
1, t2) dti dtj + hkl(t

1, t2) dzk dzl are preserved

under

t̄i = Φi(t1, t2), z̄k = Ak
l z

l.

Φi(t1, t2) are local coordinate transformations in the orbit space,

A = (Am
n ) ∈ GL2 are constant matrices acting by

h̄kl = Am
k hmnA

n
l

An action of GL2 on the Killing vectors.

Symmetry reduction

The boundary hypersurface projects to a curve in the

two-dimensional orbit space.

The problem reduces to finding that curve.
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First-order invariants

M. Marvan and O. Stoĺın, On local equivalence problem of spacetimes

with two orthogonally transitive commuting Killing fields, J. Math.

Phys. 49 (2008) 022503 (pp 17).

Lewis–Papapetrou metrics possess four first-order scalar invariants,

preserved under admissible coordinate transformations.

Given a Lewis–Papapetrou metric

g = ep (dx2 + dy2) + hkl dz
k dzl,

the scalar invariant Qχ(g) is defined to be

Qχ(g) =
detχ

e2p
, χ =

1

deth

∣∣∣∣∣∣dh11 dh12

dh21 dh22

∣∣∣∣∣∣ .
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Isothermal coordinates I

Constructing shared coordinates in the orbit space.

The orbit space being two-dimensional, the Korn–Lichtenstein

theorem ensures the existence of local isothermal coordinates under

the assumption of the Hölder C0,α-continuity of degree 0 < α ≤ 1

(Lipschitz continuity when α = 1).

A. Korn, Zwei Anwendungen der Methode der sukzessiven

Annäherungen, Mathematische Abhandlungen Hermann Amandus

Schwarz (1914) 215–229.

L. Lichtenstein, Beweis des Satzes, daß jedes hinreichend kleine, im

wesentlichen stetig gekrümmte, singularitätenfreie Flächenstück auf

einen Teil einer Ebene zusammenhängend und in den kleinsten Teilen

ähnlich abgebildet werden kann, Berl. Abh. (1911) 1–49.

Shiing-Shen Chern, An elementary proof of the existence of isothermal

parameters on a surface. Proc. Amer. Math. Soc. 6 (1955) 771–782.
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Isothermal coordinates II

The C1-continuity required by the Lichnerowicz conditions is

stronger than the Hölder C0,α-continuity required by the

Korn–Lichtenstein theorem.

Consequently, the glued orbit space admits local isothermal

coordinates x, y.

Thus, the glued orbit metric can be written as

ep(x,y) (dx2 + dy2).

Consequently, the glued space-time metric can be written locally in

the form

g = ep(x,y) (dx2 + dy2) + hkl(x, y) dz
k dzl.
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Matching vacuum to van Stockum dust

Proposition. All van Stockum metrics g satisfy

Qχ(g) = 0.

Proof. Since h22 = −1 = const, we have χ = (dh12)
2/deth and

then detχ = 0.

Corollary. If a vacuum Lewis–Papapetrou metric g matches a

van Stockum metric, then Qχ(g) = 0 on the boundary.

Proof. Being a first-order invariant, Qχ(g) is continuous for every

C1-metric g.
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Matching conditions in isothermal coordinates

There is a remaining freedom to transform z1, z2

= the GL2-action on the Killing vectors.

In shared isothermal coordinates, the matching conditions for two

Lewis–Papapetrou metrics

g(I) = ep
(I)

(dx2 + dy2) + h
(I)
kl dz

(I)k dz(I)l,

g(II) = ep
(II)

(dx2 + dy2) + h
(II)
kl dz(II)k dz(II)l

are

p(I) ≡1
B p(II), h

(I)
kl ≡1

B Am
k h(II)

mnA
n
l .

Here A ∈ GL2 is an unknown constant matrix.

Locating the boundary

Qv
χ|B = 0.
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The van Stockum dust part I

The energy-momentum tensor for dust is Tab = µdUaUb.

Ua is the 4-velocity and µd is the dust density.

Van Stockum’s dust is isometrically flowing, meaning that the

4-velocity Ua is a Killing vector.

Choose z1 = ϕ, z2 = t, in such a way that Ua = ∂t

(comoving coordinates).

Under a particular choice of the variables hkl, the metric can be

written in the form

ep (dx2 + dy2) + r2 dϕ2 − (f dϕ+ dt)2.

The coefficient at dt2 equals gabU
aUb, which is −1 since U is a

4-velocity.
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The van Stockum dust part II

In consequence of the vacuum Einstein equations

Rab − 1
2Rgab = µdUaUb, we have R3

3 +R4
4 = 0.

This implies rxx + ryy = 0 and then r is a harmonic function.

If non-constant, r can serve as one of the isothermal coordinate

functions (Weyl’s canonical coordinates).

H. Weyl, Zur Gravitationstheorie, Ann. Phys. 54 (1917) 117–145.

Thus, we can set r = x.

With r = x, the Einstein equations reduce to

fxx + fyy −
fx
x

= 0, px =
f2
y − f2

x

2x
, py = −fxfy

x
,

whereas

µd =
f2
x + f2

y

x2p
.

For r = const, see Hoenselaers and Vishveshwara (loc. cit.).

arxiv.org/abs/2207.04740 20



The Papapetrou vacuum part I

Here we rederive the general Papapetrou solution.

Under a particular choice of the variables hkl, the metric can be

written as

eq (dx2 + dy2) +
r2

v
dϕ2 − v(w dϕ+ dt)2

Einstein equations imply R3
3 +R4

4 = 0, giving rxx + ryy = 0, i.e.,

r is a harmonic function again.

We have deth = −x2 on the dust side and deth = −r2 on the

vacuum side.

The requirement of the first-order contact amounts to the

conditions r = ±x, rx = ±1, ry = 0 at the boundary.

This leaves us with r2 = x2 everywhere.

Then the matrix A is restricted to lie in SL2.
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The Papapetrou vacuum part II

The vacuum Einstein equations for the metric

eq (dx2 + dy2) +
x2

v
dϕ2 − v(w dϕ+ dt)2

are
wxx + wyy −

wx

x
= −2

vxwx + vywy

v
,

vxx + vyy +
vx
x

=
v2x + v2y

v
− v3

w2
x + w2

y

x2
,

qx = −vx
v

+
x

2v2
(v2x − v2y)−

v2

2x
(w2

x − w2
y),

qy = −vy
v

+
xvxvy
v2

− v2wxwy

x
.

The Papapetrou class is determined by

vxwx + vywy = 0.

For w = const the metric is static and even flat.
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The first integral

Assume wy ̸= 0 (results for wx ̸= 0 are the same). Denoting

c2 =
x2v2x
v2w2

y

+ v2 > 0,

one easily sees that c = const in consequence of the field equations

and the Papapetrou condition. Thus, a first integral.

Computing Lie symmetries, we obtain coordinate transformations

w v c q

S1 eaw e−av e−ac q

S2 w + a v c q

S3 w v c eaq

where a denotes the group parameter.

Using coordinate transformation S1, one can normalise c to 1.
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Field equations for normalised Papapetrou metrics

Papapetrou metrics with c = 1 are said to be normalised.

By substituting

v =
1

coshu
, eq =

es

v
= es coshu,

we rewrite the Einstein equations in the form

wxx + wyy −
wx

x
,

ux = −wy

x
, uy =

wx

x
, sx = −

w2
x − w2

y

2x
, sy = −wxwy

x
.
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Companion metrics I

Compare the field equations for the van Stockum dust,

fxx + fyy −
fx
x

= 0, px =
f2
y − f2

x

2x
, py = −fxfy

x
,

with the field equations for the normalised Papapetrou vacuum,

wxx + wyy −
wx

x
= 0, sx =

w2
y − w2

x

2x
, sy = −wxwy

x
,

ux = −wy

x
, uy =

wx

x
.

Definition. A van Stockum metric gd determined by field

variables f, p and a normalised non-static Papapetrou metric gv

determined by field variables w, s and u are called companions if

w = f , s = p.

For companion metrics, the first three equations of each set are

identical.
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Companion metrics II

To every normalised non-static Papapetrou vacuum metric there

corresponds a unique companion van Stockum dust metric.

To every van Stockum dust metric there corresponds a

one-parameter family of companion normalised non-static

Papapetrou vacuum metrics.

Indeed, u is determined up to an integration constant, which si the

parameter.

The companion dust and vacuum metrics are

gd = ep (dx2 + dy2) + x2 dϕ2 − (f dϕ+ dt)2

and

gv = ep coshu (dx2 + dy2) + x2 coshudϕ2 − (f dϕ+ dt)2

coshu
,

respectively.
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Locating the boundary

Recall that

0 = Qv
χ|B =

ep sinhu

x4 cosh4 u
P (sinhu, coshu, fx, fy).

Theorem. A dust metric and a normalised Papapetrou metric

that are companions match along the boundary placed at u = 0.

Proof. The companion dust and vacuum metrics are

gd = ep (dx2 + dy2) + x2 dϕ2 − (f dϕ+ dt)2

gv = ep coshu (dx2 + dy2) + x2 coshudϕ2 − (f dϕ+ dt)2

coshu
,

respectively. Obviously,

gd
ij ≡1

{u=0} gv
ij ,

since

1 ≡1
{u=0} coshu.
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Dust clouds of a given shape

Recall that companion metrics are determined by

wxx + wyy −
wx

x
= 0, sx =

w2
y − w2

x

2x
, sy = −wxwy

x
,

ux = −wy

x
, uy =

wx

x
.

Eliminating w, we obtains the equivalent system

uxx + uyy +
ux

x
= 0,

wx = xuy, wy = −xux, sx = x
u2
x − u2

y

2
, sy = xuxuy.

Thus, u satisfies the cylindrical Laplace equation.

Recall that admissible dust-vacuum boundaries are the levels of u.

Thus, admissible dust-vacuum boundaries are the levels of solutions

of the cylindrical Laplace equation.
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The electrostatic analogy

The following problems are equivalent:

– van Stockum–Papapetrou dust clouds of a given shape;

– solutions u of the cylindrical Laplace equation

uxx + uyy +
ux

x
= 0

that are constant along a given boundary;

– axisymmetric solutions of the three-dimensional Laplace

equation constant along a given axisymmetric boundary;

– axisymmetric electrostatic potentials with a prescribed

axisymmetric equipotential surface.

Summarising, the problem can be reduced to a classical potential

theory problem.

The corresponding field lines correspond to f = const.
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Relation to static Weyl vacuum metrics I

The following proposition is easily verified.

Proposition. The companion dust and vacuum metrics are,

respectively, the Ehlers and the Neugebauer–Kramer transform of

the static Weyl vacuum metric

eu+p(dx2 + dy2) + x2eu dϕ2 − e−u dt2.

D. Kramer and G. Neugebauer, Zu axialsymmetrischen stationären

Lösungen der Einsteinschen Feldgleichungen für das Vakuum, Commun.

Math. Phys. 10 (1968) 132–139.

J. Ehlers, Transformations of static exterior solutions of Einstein’s

gravitational field equations into different solutions by means of

conformal mappings, in: Les théories relativistes de la gravitation, Proc.

Conf. Royaumont, 1959 (Éditions du Centre National de la Recherche

Scientifique, Paris, 1962) 275–284.
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Relation to static Weyl vacuum metrics II

Summarising, the companion correspondence can be decomposed as

Papapetrou
vacuum

� -
Neugebauer
Kramer

static

Weyl
seed

� -Ehlers
van

Stockum

dust

Every static Weyl metric

eu+p(dx2 + dy2) + x2eu dϕ2 − e−u dt2

yields an explicit expression for u and p, sufficient to compute the

dust density µ = (u2
x + u2

y)/e
p, curvature invariants, Petrov type,

etc.

f =

∫
xuy dx− xux dy.

A closed-form representation is not always available.
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Example. The Halilsoy metric I

The electrostatic analogue is the point charge.

The static Weyl seed is the Chazy–Curzon metric.

J. Chazy, Sur la champ de gravitation de deux masses fixes dans la

théorie de la relativité, Bull. Soc. Math. France 52 (1924) 17–38.

H.E.J. Curzon, Cylindrical solutions of Einstein’s gravitational

equations, Proc. London Math. Soc. 23 (1924) 477–480.

In Weyl’s coordinates,

u =
2√

x2 + y2
, f =

2y√
x2 + y2

, p = − x2

(x2 + y2)2
,

µ =
4

(x2 + y2)2 ep
.

The vacuum part obtained earlier by Halilsoy.

M. Halilsoy, New metrics for spinning spheroids in general relativity,

J. Math. Phys. 33 (1992) 4225–4230.
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Example. The Halilsoy metric II

The boundaries x2 + y2 = const and the dust density

The density blows up at the centre (x, y) = (0, 0).

The curve x = 0 is not a regular axis,

but x = 0, y < 0 and x = 0, y > 0 are.
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Example. The Bonnor metric I

The electrostatic analogue is the dipole.

The static Weyl seed is unphysical.

In Weyl’s coordinates,

u = − 2my

(x2 + y2)3/2
, f =

2mx2

(x2 + y2)3/2
, p =

m2x2(x2 − 8y2)

2(x2 + y2)4
,

µ =
4m2(x2 + 4y2)

(x2 + y2)4ep
.

Both the dust and vacuum parts have been studied by Bonnor.

W.B. Bonnor, A rotating dust cloud in general relativity, J. Phys. A.

Math. Theor. 10 (1977) 1673–1677.

W.B. Bonnor, An exact solution for a rotating body with negligible

mass, Gen. Rel. Grav. 37 (2005) 1145–1149.

Matching unnoticed.
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Example. The Bonnor metric II

Possible boundaries are 2my = u0(x
2 + y2)3/2, u0 ∈ (−∞,∞).

The density blows up at the centre (x, y) = (0, 0).

Rotationally symmetric.
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Example. The Morgan–Morgan disc I

Consider the static Morgan–Morgan disc solution.

T. Morgan and L. Morgan, The gravitational field of a disk, Phys. Rev.

183 (1969) 1097–1101.

P.S. Letelier and S.R. Oliveira, Superposition of Weyl solutions: the

equilibrium forces, Class. Quantum Grav. 15 (1998) 421–433.

In Weyl coordinates,

u = 2arctan

( √
2 a√√

(x2 + y2 − a2)2 + 4a2y2 + x2 + y2 − a2

)
,

p = − ln

(
1 +

x2 + y2 + a2√
(x+ a)2 + y2

√
(x− a)2 + y2

)
,

µ =
8a2(

(x+ a)2 + y2
)(
(x− a)2 + y2

) .
A closed-form representation for f is not available.
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Example. The Morgan–Morgan disc II

The density blows up at the “ring” (x, y) = (±a, 0).

Rotational symmetry is not confirmed.
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Example. The Bach–Weyl ring I

Consider the static Bach–Weyl ring.

R. Bach and H. Weyl, Neue Lösungen der Einsteinschen Gravitations-

gleichungen. B. Explizite Aufstellung statischer axialsymmetrischer

Felder, Math. Z. 13 (1922) 134–145.

O. Semerák, Static axisymmetric rings in general relativity: How diverse

they are, Phys. Rev. D 94 (2016) 104021.

In Weyl coordinates,

u =
4mK(Ω)√
(x+ a)2 + y2

, Ω = 2

√
ax

(x+ a)2 + y2
,

p = −m

a2

(
x2 + y2 + 3a2

(x+ a)2 + y2
K(Ω)2 − 2K(Ω)E(Ω)

+
x2 + y2 − a2

(x− a)2 + y2
E(Ω)2

)
,

where K,E denote the complete elliptic functions.
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Example. The Bach–Weyl ring II

The density is

µ =
4m2

x2 ep

(
K(Ω)2

(x+ a)2 + y2
− 2 (a2 − x2 + y2)

K(Ω)

(x+ a)2 + y2

× E(Ω)

(x− a)2 + y2
+

E(Ω)2

(x− a)2 + y2

)
.

A closed-form representation for f is not available.
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Example. The Bach–Weyl ring III

The density blows up at the “ring” (x, y) = (±a, 0).

Rotational symmetry is not confirmed.
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Example. The Lanczos–van Stockum cylinder

K. Lanczos, Über eine stationäre Kosmologie im Sinne der Einsteinschen

Gravitationstheorie, Zeitschrift für Physik 21 (1924) 73–110.

W.J. van Stockum (1937), The gravitational field of a distribution of

particles rotating about an axis of symmetry, Proc. Roy. Soc. Edinburgh

57 135–154.

In Weyl coordinates,

u = 2y, f = x2, p = −x2, µ = 4ex
2

.

1

1
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THE END
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