Bounds for the cup-length of some oriented Grassmann manifolds

Tomáš Rusin

January 19, 2023

Tomas Rusin	_			
		mag	5 H I	licin
	10			usili

The cup-length of $\tilde{G}_{n,k}$

January 19, 2023 1 / 11

Introduction

For a topological space, there are various homotopy invariants that in some sense describe how complicated the space is.

Image: A math

Introduction

For a topological space, there are various homotopy invariants that in some sense describe how complicated the space is. In differential topology, one well-known example of such an invariant is the Lusternik-Schnirelman category of a space.

Definition

The Lusternik-Schnirelman category cat(X) of a topological space X is the smallest number k, such that there exists an open cover $\{U_i\}_{i=0}^k$ of X with each U_i contractible in X. For a topological space, there are various homotopy invariants that in some sense describe how complicated the space is. In differential topology, one well-known example of such an invariant is the Lusternik-Schnirelman category of a space.

Definition

The Lusternik-Schnirelman category cat(X) of a topological space X is the smallest number k, such that there exists an open cover $\{U_i\}_{i=0}^k$ of X with each U_i contractible in X.

For a closed manifold this invariant is the strict lower bound for the number of critical points of a smooth function on X.

In algebraic topology, there is the following closely related invariant.

Definition

For a path connected space X, we may define its \mathbb{Z}_2 -cup-length $\operatorname{cup}_{\mathbb{Z}_2}(X)$ as the greatest number r such that there exist cohomology classes $x_1, \ldots, x_r \in H^*(X; \mathbb{Z}_2)$ in positive dimensions such that $x_1 \cdots x_r \neq 0$.

In algebraic topology, there is the following closely related invariant.

Definition

For a path connected space X, we may define its \mathbb{Z}_2 -cup-length $\operatorname{cup}_{\mathbb{Z}_2}(X)$ as the greatest number r such that there exist cohomology classes $x_1, \ldots, x_r \in H^*(X; \mathbb{Z}_2)$ in positive dimensions such that $x_1 \cdots x_r \neq 0$.

The cup-length is related to the Lusternik-Schnirelman category by the inequality

$$\operatorname{cat}(X) \ge \operatorname{cup}_{\mathbb{Z}_2}(X).$$

Introduction

For the Grassmann manifold $G_{n,k} \cong O(n)/(O(k) \times O(n-k))$ we have a simple decription of its cohomology ring.

Cohomology ring of $G_{n,k}$

The cohomology ring of the Grassmann manifold $G_{n,k}$ is

$$H^*(G_{n,k};\mathbb{Z}_2) = \mathbb{Z}_2[w_1, w_2, \ldots, w_k]/(\bar{w}_{n-k+1}, \ldots, \bar{w}_n),$$

where each indeterminate w_i is a representative of the *i*th Stiefel-Whitney class $w_i(\gamma_{n,k})$ of the canonical *k*-plane bundle $\gamma_{n,k}$ over $G_{n,k}$ and polynomials \bar{w}_i correspond to the dual Stiefel-Whitney classes.

The cohomology ring of $G_{n,k}$ is fully generated by the Stiefel-Whitney classes of its canonical bundle.

However the same is not true for the oriented Grassmann manifold $G_{n,k}$ of oriented *k*-dimensional vector subspaces in \mathbb{R}^n , the space $SO(n)/(SO(k) \times SO(n-k))$.

The cohomology ring of $G_{n,k}$ is fully generated by the Stiefel-Whitney classes of its canonical bundle.

However the same is not true for the oriented Grassmann manifold $\widetilde{G}_{n,k}$ of oriented *k*-dimensional vector subspaces in \mathbb{R}^n , the space $SO(n)/(SO(k) \times SO(n-k))$.

There is another homotopy invariant that is useful in providing bounds for the cup-length of $\widetilde{G}_{n,k}$.

Upper bounds for $\operatorname{cup}_{\mathbb{Z}_2}(\widetilde{G}_{n,k})$

The notion of characteristic rank quantifies the degree up to which the cohomology ring is generated by Stiefel-Whitney classes.

Definition

Let X be a connected, finite CW–complex and ξ a vector bundle over X. The *characteristic rank* of the vector bundle ξ , denoted charrank(ξ), is the greatest integer q, $0 \le q \le \dim(X)$, such that every cohomology class in $H^j(X; \mathbb{Z}_2)$ for $0 \le j \le q$ can be expressed as a polynomial in the Stiefel–Whitney classes $w_i(\xi)$ of ξ .

< □ > < □ > < □ > < □ > < □ > < □ >

Upper bounds for $\operatorname{cup}_{\mathbb{Z}_2}(\widetilde{G}_{n,k})$

The notion of characteristic rank quantifies the degree up to which the cohomology ring is generated by Stiefel-Whitney classes.

Definition

Let X be a connected, finite CW–complex and ξ a vector bundle over X. The *characteristic rank* of the vector bundle ξ , denoted charrank(ξ), is the greatest integer q, $0 \le q \le \dim(X)$, such that every cohomology class in $H^j(X; \mathbb{Z}_2)$ for $0 \le j \le q$ can be expressed as a polynomial in the Stiefel–Whitney classes $w_i(\xi)$ of ξ .

For the oriented Grassmann manifold $\widetilde{G}_{n,k}$ and its canonical bundle $\widetilde{\gamma}_{n,k}$ we have

$$ext{cup}_{\mathbb{Z}_2}(\widetilde{G}_{n,k}) \leq 1 + rac{k(n-k) - ext{charrank}(\widetilde{\gamma}_{n,k}) - 1}{2}.$$

イロト 不得 トイラト イラト 一日

There is a covering projection $p: \widetilde{G}_{n,k} \to G_{n,k}$, which induces homomorphism $p^*: w_j \mapsto \widetilde{w}_j = w_j(\widetilde{\gamma}_{n,k})$ appearing in the exact sequence

$$\stackrel{\psi}{\rightarrow} H^{j-1}(G_{n,k}) \stackrel{w_1}{\longrightarrow} H^j(G_{n,k}) \stackrel{p^*}{\longrightarrow} H^j(\widetilde{G}_{n,k}) \stackrel{\psi}{\longrightarrow} H^j(G_{n,k}) \stackrel{w_1}{\longrightarrow} H^{j+1}(G_{n,k}) \rightarrow$$

where $H^{j}(G_{n,k}) \xrightarrow{w_{1}} H^{j+1}(G_{n,k})$ is given by the cup product with w_{1} .

= 900

There is a covering projection $p: \widetilde{G}_{n,k} \to G_{n,k}$, which induces homomorphism $p^*: w_j \mapsto \widetilde{w}_j = w_j(\widetilde{\gamma}_{n,k})$ appearing in the exact sequence

$$\stackrel{\psi}{\rightarrow} H^{j-1}(G_{n,k}) \stackrel{w_1}{\longrightarrow} H^j(G_{n,k}) \stackrel{p^*}{\longrightarrow} H^j(\widetilde{G}_{n,k}) \stackrel{\psi}{\longrightarrow} H^j(G_{n,k}) \stackrel{w_1}{\longrightarrow} H^{j+1}(G_{n,k}) \rightarrow$$

where $H^{j}(G_{n,k}) \xrightarrow{w_{1}} H^{j+1}(G_{n,k})$ is given by the cup product with w_{1} . From the exactness we see that $\tilde{w}_{1} = p^{*}(w_{1}) = 0$ and more generally $\operatorname{Im}(p^{*}) = \mathbb{Z}_{2}[\tilde{w}_{2}, \ldots, \tilde{w}_{k}]/p^{*}(g_{n-k+1}, \ldots, g_{n})$, where $g_{i} \in \mathbb{Z}_{2}[w_{2}, \ldots, w_{k}]$ is the reduction of the polynomial \bar{w}_{i} modulo w_{1} .

Lower bounds for $\operatorname{cup}_{\mathbb{Z}_2}(\widetilde{G}_{n,k})$

The sequence of polynomials g_i associated with $G_{n,k}$ is uniquely determined by k and it satisfies the recurrence formula

Recurrence formula

Tomáš Rusi

 $g_i = w_2 g_{i-2} + w_3 g_{i-3} + \cdots + w_k g_{i-k}.$

Every $g_i \in \mathbb{Z}_2[w_2, \ldots, w_k]$ is a weighted homogeneous polynomial corresponding to a class in $H^i(G_{n,k})$.

Example

The sequence of polynomials g_i for low values of k is as follows.

	k = 3		<i>k</i> = 4		
	$g_1 = 0$		$g_1 = 0$		
	$g_2 = w_2$		$g_2 = w_1$	2	
	$g_3 = w_3$		$g_3 = w_1$	3	
	$g_4 = w_2^2$		$g_4 = w_1$	$^{2}_{2} + w_{4}$	
n		The cup-length of \widetilde{G}_{i}	n k		January 19, 2023

8 / 11

Review of results for $\operatorname{cup}_{\mathbb{Z}_2}(\widetilde{G}_{n,3})$

Theorem (Petrović, Prvulović, Radovanović, 2017)

Let $t \geq 3$. For all n in the interval $2^t - 1 \leq n < 2^t - 1 + \frac{2^t}{3}$ we have

$$\operatorname{cup}_{\mathbb{Z}_2}(\widetilde{G}_{n,3})=2^t-3$$

Theorem

Let $t \geq 3$. We have

$$\begin{aligned} & \operatorname{cup}_{\mathbb{Z}_2}(\widetilde{G}_{2^t+2^{t-1}+1,3}) = 2^t + 2^{t-2}, \\ & \operatorname{cup}_{\mathbb{Z}_2}(\widetilde{G}_{2^t+2^{t-1}+2,3}) = 2^t + 2^{t-2} + 1. \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Review of results for $\operatorname{cup}_{\mathbb{Z}_2}(\widetilde{G}_{n,4})$

Theorem (Prvulović, Radovanović, 2019)

Let $t \geq 3$. If $2^t \leq n-1 \leq 2^t+1$, then

$$2^t-5\leq \operatorname{cup}_{\mathbb{Z}_2}(\widetilde{G}_{n,4})\leq 2^t+2^{t-1}-5.$$

If $n - 1 = 2^t + 2^r + j$ with $1 \le r \le t - 1$, $0 \le j \le 2^r - 1$. If $r \le t - 3$, then

$$2^{t} + 2^{r+1} + j - 5 \leq \operatorname{cup}_{\mathbb{Z}_{2}}(\widetilde{G}_{n,4}) \leq 2^{t} + 2^{t-1} - 5.$$

If $t - 2 \le r \le t - 1$, then

$$2^t + 2^{r+1} + j - 5 \le \sup_{\mathbb{Z}_2} (\widetilde{G}_{n,4}) \le 2^t + 2^{r+1} + 2j - 3.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Review of results for $\operatorname{cup}_{\mathbb{Z}_2}(\widetilde{G}_{n,4})$

Theorem (Prvulović, Radovanović, 2019)

Let $t \geq 3$. If $2^t \leq n-1 \leq 2^t+1$, then

$$2^t-5\leq \operatorname{cup}_{\mathbb{Z}_2}(\widetilde{G}_{n,4})\leq 2^t+2^{t-1}-5.$$

If $n - 1 = 2^t + 2^r + j$ with $1 \le r \le t - 1$, $0 \le j \le 2^r - 1$. If $r \le t - 3$, then

$$2^{t} + 2^{r+1} + j - 5 \leq \operatorname{cup}_{\mathbb{Z}_2}(\widetilde{G}_{n,4}) \leq 2^{t} + 2^{t-1} - 5.$$

If $t - 2 \le r \le t - 1$, then

$$2^{t} + 2^{r+1} + j - 5 \le \sup_{\mathbb{Z}_{2}} (\widetilde{G}_{n,4}) \le 2^{t} + 2^{r+1} + 2j - 3.$$

Theorem

We have
$$\operatorname{cup}_{\mathbb{Z}_2}(\widetilde{G}_{8,4}) = \operatorname{cup}_{\mathbb{Z}_2}(\widetilde{G}_{9,4}) = 6$$
, $\operatorname{cup}_{\mathbb{Z}_2}(\widetilde{G}_{10,4}) = 7$, and $\operatorname{cup}_{\mathbb{Z}_2}(\widetilde{G}_{11,4}) = 9$.

Tomáš Rusin

Conclusion

Thank you.

Tomáš Rusin

The cup-length of $\widetilde{G}_{n,k}$

January 19, 2023 11 / 11

æ

A D N A B N A B N A B N