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We establish a correspondence between a class of parabolic geometries
together with an infinitesimal symmetry and geometric structures on the
local leaf space corresponding to certain classes of ODE systems that are
variational (via symmetry reduction and quasi-contactification).

There are well known results for contact geometries with additional
structure in this spirit. In particular, work of Čap and Salač relates
parabolic contact structures with a transversal infinitesimal symmetry to
parabolic conformally symplectic structures on the leaf space.

The class of parabolic geometries that we consider contains:

1 Conformal structures (M̃, [g ]) of signature (p + 1, q + 1), and a
generalization called causal structures

2 (2, 3, 5) distributions

3 (3, 6) distributions

We call them parabolic quasi-contact cone structures. The construction
can be formulated in a unified way.

In this talk I will focus on the case of conformal structures.
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Step 1: Lift to projectivized null-cone bundle

(M̃n+2, [g ]) conformal manifold of signature (p + 1, q + 1), n = p + q.
Consider the projectivized null-cone bundle

π : C̃ → M̃, C̃x = {[v ] ∈ P(TxM̃) : g(v , v) = 0}.

C̃ is equipped with distribution T−1C̃,

T−1[v ] C̃ := (T[v ]π)−1(Rv), at [v ] ∈ C̃,

 filtration of growth (n + 1, 2n + 1, 2n + 2) with splitting

T−1C̃ = Ẽ ⊕ Ṽ ⊂ T−2C̃ = [Ẽ , Ṽ] ⊂ T−3C̃ = T C̃.

Corank 1 distribution

T−2[v ] C̃ = (T[v ]π)−1(v⊥)

is quasi-contact (or even contact), i.e. locally, the kernel of a 1-form α
s.t. dα|T−2C̃ has maximal rank =⇒ 1-dimensional kernel, the

characteristic line bundle Ẽ = ker(dα|T−2C̃), which corresponds to

null-geodesics flow. Ṽ is vertical bundle.
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characteristic line bundle Ẽ = ker(dα|T−2C̃), which corresponds to

null-geodesics flow.
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Step 1: Lift to projectivized null-cone bundle

Conformal structure  normal parabolic geometry (G̃ → M̃, ψ̃) of type
(SO(p + 2, q + 2),P1). C̃ can be identified with correspondence space

C̃ = G̃/P12.

(G̃ → C̃, ψ̃) reg. norm. parabolic geom. of type (SO(p + 2, q + 2),P12).

Underlying structure is given by a bracket generating distribution

T−1C̃ ⊂ T C̃

with constant symbol algebra gr(T−1C̃) isom. to nilpotent rad. of p12.

Two harmonic curvatures F and W. Structures arising from conformal
structures are locally characterized by F = 0.

More general structures correspond to causal structures (Makhmali,
2018), where one allows C̃x ⊂ P(TxM̃) to be arbitrary hypersurface with
nondegenerate 2nd fundamental form of sig. (p, q).
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Step 2: Symmetry Reduction

Transversal infinitesimal symmetry ξ ∈ X(C̃):

Lξη ∈ Γ(T−1C̃) ∀η ∈ Γ(T−1C̃), ξx /∈ T−2x C̃ for any x ∈ C̃.

Inf. symmetry is always transversal on open dense subset of C̃.

Conformal Killing field of [g ] on M̃ lifts to inf symmetry ξ on C̃.

Form local leaf space π : C̃ → C of integral curves. It inherits

Orthopath geometry:

• Generalized path geometry:

T−1C = E
rank1

⊕ V
integrable

⊂ T−2C = TC, L : E ⊗ V ∼= TC/T−1C

locally: C open P(TM) and on M path geometry: family of paths
with unique path through each point in each direction
(gr(T−1C) is quotient of gr(T−1C̃) by last grading component.)

• conformal class [h], h ∈ Γ(S2V∗) of sig. (p, q)
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Variational orthopath geometries

Which orthopath geometries arise this way?

Orthopath geometry has a canonical almost conformally quasi-symplectic
structure: line bundle

` ⊂ Λ2T ∗C s.t. each ρx ∈ `x has maximal rank.

` is compatible in the sense that T−1C is isotropic and E the
characteristic line field of `.

Definition: An orthopath geometry is called conformally
quasi-symplectic, or variational, if ` admits local closed sections.

Such variational orthopath geometries are in 1-1 correspondence with
equivalence classes of non-degenerate first order Lagrangians

L(x , y1, · · · , yn, p1, · · · , pn), det
(

∂2L
∂pa∂pb

)
6= 0 (has interpretation in

terms of generalized Finsler structures).
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Step 3: Quasi-contactification

Theorem
Given a causal structure with a transversal infinitesimal symmetry ξ.
Then the induced orthopath geometry on the leaf space C is variational.
Any variational orthopath geometry can be locally realized as a quotient
of a causal structure in this way.

Let α ∈ Ω1(C̃) be quasi-contact form, i.e. ker(α) = T−2C̃, s.t. α(ξ) = 1.

dα(ξ, η) = −α([ξ, η]) ∀η ∈ Γ(T−2C̃) =⇒ ιξdα = 0 =⇒ Lξdα = 0

=⇒ dα descends to closed 2-form ρ ∈ Γ(`);

Conversely, suppose ρ = dβ ∈ Γ(`) on U ⊂ C. Define

π : C̃ := U × R→ C and α := π∗β + dt.

Then T−2C̃ := ker(α) is quasi-contact structure, the rest of the filtration
lifts and has symmetry ∂t .
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Variational orthopath geometries

Theorem
An orthopath geometry on C has an associated regular normal Cartan
geometry of type (GL(2,R)× SO(p, q) nR2 ⊗ Rp+q,B × SO(p, q)).

Assuming it is variational, it has fundamental invariants

Aabc ,Tab,Nab, q.

Let C̃ → C be submersion onto the local leaf space of integral curves of
the symmetry ξ.Let F, W the harmonic curvature invariants on C̃. Then

F = π∗A and W = π∗T

. We have

• A = 0 ⇐⇒ quasi-contactifies to conformal structure.

• A = 0, q = 0 ⇐⇒ conformal Killing field ξ is null.

• A = 0, T = 0 ⇐⇒ conformal structure is flat (finite parameter
family of such structures).
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The orthopath geometry of chains

Partially integrable almost CR structure of hypersurface type: H ⊂ TM
contact distribution J : H → H complex str. s.t. L(Jξ, Jη) = L(ξ, η)  
L imaginary part of Hermitian form of signature (p, q).

Has associated regular normal parabolic geometry (P → M, ω) of type
(SU(p + 1, q + 1),P), p = Lie(P) is non-neg. part in contact grading

su(p + 1, q + 1) = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 =
 a Z iz
X A −IpqZ

∗

ix −X ∗Ipq −ā

 : x , z ∈ R,X ∈ Cn,Z ∈ Cn∗,A ∈ u(p, q)


Family of canonical curves called chains, defined as projections of integral
curves of ω−1(g−2) ⊂ TP to M.

Given x ∈ M and a line l ⊂ TxM transversal to Hx , there is a unique
chain γ through x s.t. Txγ = l .  path geometry on subset C ⊂ P(TM)
of transversal lines (Čap-Žádnik).
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The orthopath geometry of chains

Partially integrable almost CR structure of hypersurface type: H ⊂ TM
contact distribution J : H → H complex str. s.t. L(Jξ, Jη) = L(ξ, η)  
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The orthopath geometry of chains

Let S ⊂ P be stabilizer of g−2 in g−2 ⊕ g−1 ∼= su(p + 1, q + 1)/p and
s = Lie(S) = g0 ⊕ g2. Then one has a natural identification

C ∼= G/S

(P → C, ω) is Cartan geometry of type (SU(p + 1, q + 1),S). Via

TC ∼= P ×S su(p + 1, q + 1)/s

the vertical bundle V corresponds to g1 and the line bundle E defining
the chains to g−2.

Observation:

p0 ∼= cu(p, q)-invariant conformal class of sig. (2p, 2q) on p1 ∼= Cn∗  
[h] ∈ Γ(Sym2V∗)
C equipped with path geometry and [h]  orthopath geometry of chains.
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The orthopath geometry of chains

Proposition
The orthopath geometry of chains is variational if and only if the almost
CR structure is integrable. For these structures A = q = 0.

There could be Lagrangians whose extremals are the chains even in the
non-integrable case almost CR case.

Cheng-Marugame-Matveev-Montgomery showed directly that chains in
CR manifolds are extremals of a Kropina metric (F = g

α ), using the
Fefferman metric.

Fefferman’s construction determines natural conformal structure on a
circle bundle M̃ → M over the CR manifold, equipped with a null
conformal Killing field ξ. Null geodesics on M̃ project to chains on M.

Fefferman’s construction also fits with our picture: If we lift ξ to the
subset of the projectivized null-cone bundle C̃ of null-lines not in ξ⊥

(where it is transversal) and form local leaf space, we recover the
orthopath geometry of chains.
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Parabolic quasi-contact cone structures

Parabolic Geometry Description
Regular, normal parabolic geometries with homogeneous models as on
top of the double fibrations:

1 (SO(p + 2, q + 2),P12) (odd and even)

2 (G2,P12)

3 (SO(3, 4),P23)

On the bottom left we have the models for conformal, (2, 3, 5) and (3, 6)
On the bottom right we have homogeneous contact manifolds


