On uniqueness of submaximally symmetric geometric structures

Dennis The
(partly based on joint work with Johnson Kessy)
Department of Mathematics \& Statistics
UiT The Arctic University of Norway
19 January 2023
Srni Winter School, Czech Republic

Classifying submaximal structures

This talk is about (locally) classifying structures via symmetry.
Throughout, let \mathfrak{M} and \mathfrak{S} denote the maximal / submax sym dim. For the geometries in this talk, \exists ! maximally symmetric structure.

Goal: Locally classify all submaximally symmetric structures.
No homogeneity assumption is assumed, but we'll put some conditions to a priori guarantee homogeneity.

How to classify homog. such structures? Equivalent descriptions:

- coordinate
- Lie-theoretic: $\mathfrak{f} / \mathfrak{f}^{0}$ with \mathfrak{f}^{0}-invariant structure
- Cartan-theoretic: focus on these.

Working in the Cartan setting allows for systematic classification.
(1) (Cartan 1910) For $(2,3,5)$-distributions, $\mathfrak{M}=14$, and $\mathfrak{S}=7$ realized on (x, y, p, q, z)-space by $D_{f} \subset T M$ spanned by

$$
\partial_{q}, \quad \partial_{x}+p \partial_{y}+q \partial_{p}+f \partial_{z}
$$

where $f=q^{m}\left(m \neq-1,0, \frac{1}{3}, \frac{2}{3}, 1,2\right)$ or $f=\log (q)$.
(2) (Lie $\sim 1890)$ Let $k \geq 4$. For scalar k-th order ODE (mod contact), $\mathfrak{M}=k+4$ (unique), $\mathfrak{S}=\left\{\begin{array}{ll}\mathfrak{M}-2, & k \neq 5,7 ; \\ \mathfrak{M}-1, & k=5,7\end{array}\right.$ is realized by an
ODE locally equivalent to:
(a) a linear ODE, or
(b) exactly one of:

$$
\begin{aligned}
& \text { (i) } k=5: \quad 9\left(u_{2}\right)^{2} u_{5}-45 u_{2} u_{3} u_{4}+40\left(u_{3}\right)^{3}=0 . \\
& \text { (ii) } k=7: 10\left(u_{3}\right)^{3} u_{7}-70\left(u_{3}\right)^{2} u_{4} u_{6}-49\left(u_{3}\right)^{2}\left(u_{5}\right)^{2}+ \\
& \\
& 280 u_{3}\left(u_{4}\right)^{2} u_{5}-175\left(u_{4}\right)^{4}=0 . \\
& \text { (iii) } k \neq 5,7: \quad(k-1) u_{k-2} u_{k}-k\left(u_{k-1}\right)^{2}=0 .
\end{aligned}
$$

More examples

Have equivalent reformulations as (normalized) Cartan geometries $(\mathcal{G} \rightarrow M, \omega)$ of type (G, P). We have $\mathfrak{M}=\operatorname{dim} G$.

Structure	G	P	\mathfrak{M}	\mathfrak{S}	Unique submax model?
2-dim projective	A_{2}	P_{1}	8	3	\checkmark
2nd order ODE	A_{2}	$P_{1,2}$	8	3	\times
(2,3,5)-distributions	G_{2}	P_{1}	14	7	\times
5-dim G2-contact	G_{2}	P_{2}	14	7	\checkmark
3-dim projective	A_{3}	P_{1}	15	8	\checkmark
4-dim split-conformal	A_{3}	P_{2}	15	9	\checkmark
5-dim Legendrian contact	A_{3}	$P_{1,3}$	15	8	\checkmark
CR $M^{5} \subset \mathbb{C}^{3} /$ w indef Levi	$\mathrm{SU}(2,2)$	$P_{1,3}$	15	8	\checkmark
CR $M^{5} \subset \mathbb{C}^{3} /$ w def Levi	$\mathrm{SU}(1,3)$	$P_{1,3}$	15	7	\checkmark
$(3,6)$-distributions	B_{3}	P_{3}	21	11	\times
57-dim E_{8}-contact	E_{8}	P_{8}	248	147	\checkmark
					\checkmark

Curvature fcn κ valued in $\bigwedge^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g}$.
(2,3,5)
\triangle Let $\mathfrak{g}^{i}:=\bigoplus_{j \geq i} \mathfrak{g}_{j}$. The \mathfrak{p}-inv filtration $\mathfrak{g} \supset \ldots \supset \mathfrak{g}^{i} \supset \mathfrak{g}^{i+1} \supset \ldots$ is important! (Grading is auxilliary.) Have $\left[\mathfrak{g}^{i}, \mathfrak{g}^{j}\right] \subset \mathfrak{g}^{i+j}$.

Harmonic curvature κ_{H} valued in $H_{2}\left(\mathfrak{p}_{+}, \mathfrak{g}\right)^{1} \cong \cong_{\mathfrak{g}_{0}} H_{+}^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$.

Symmetry gaps

- Kruglikov \& T. (2014): For parabolic geometries:
- proved $\mathfrak{S} \leq \mathfrak{U}$, where \mathfrak{U} is defined via rep theory.
- have adapted versions: $\mathfrak{S}_{\mathbb{U}} \leq \mathfrak{U}_{\mathbb{U}}$ for G_{0}-irrep $\mathbb{U} \subset H_{+}^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$.
- when G is complex or split-real simple with $\operatorname{rank}(G) \geq 3$, we have $\mathfrak{S}=\mathfrak{U}$. (Also for some rank 2 cases.)
- have efficient Dynkin diagram recipes to find \mathfrak{U}.
- Kostant's theorem for $H^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$ is crucial.
- Kessy \& T. (2022): For ODEs (mod contact):
- similarly established $\mathfrak{S} \leq \mathfrak{U}$. (\exists analogous harmonic theory)
- scalar case: modern proof of \mathfrak{S}, indep. of classification of Lie algebras of vector fields in the plane.
- vector case: established $\mathfrak{S}=\mathfrak{M}-2$ and various $\mathfrak{S}_{\mathbb{U}}$ results.
- Used the effective part $\mathbb{E} \subset H_{+}^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$, which was described by Doubrov (2001), Medvedev (2010) \& Doubrov-Medvedev (2014).
\triangle When $\mathfrak{S}=\mathfrak{U}$, any submax sym structure is locally homog. in a nbd of a point where κ_{H} is nonzero.

Q: How to classify submax homogeneous structures efficiently?

Submaximally symmetric parabolic geometries

Theorem (T. 2021)

Let G be complex simple, $P \leq G$ parabolic. Suppose $\operatorname{rank}(G) \geq 3$ or $(G, P)=\left(G_{2}, P_{2}\right)$. A regular, normal Cartan geometry $(\mathcal{G} \rightarrow M, \omega)$ of type (G, P) with:
(1) κ_{H} valued in a P-irrep $\mathbb{U} \subset H_{2}\left(\mathfrak{p}_{+}, \mathfrak{g}\right)^{1}$, and
(2) submaximal symmetry dimension $\mathfrak{S}_{\mathbb{U}}$
is locally unique near $u \in \mathcal{G}$ with $0 \neq \kappa_{H}(u) \in \mathbb{U}$. If G were split-real, there is one of at most two possibilities: it is unique iff $\exists g \in P$ s.t. $g \cdot \phi_{0}=-\phi_{0}$ for $\phi_{0} \in \mathbb{U}$ a l.w.v.

Classically, Cartan reduction of full str eqns can be applied case-by-case. The proof of the above result circumvents this tedious story.

Vector ODEs \& the C-class

Vector ODE $\mathbf{u}_{n+1}=\mathbf{f}\left(t, \mathbf{u}, \ldots, \mathbf{u}_{n}\right)$, where $\mathbf{u}=\left(u^{1}, \ldots, u^{m}\right), m \geq 2$.
$\mathbf{u}_{n+1}=\mathbf{0}$ has sym alg $\mathfrak{g} \cong\left(\mathfrak{s l}_{2} \times \mathfrak{g l}_{m}\right) \ltimes\left(\mathbb{V}_{n} \otimes \mathbb{R}^{m}\right)$, so $\mathfrak{M}=\operatorname{dim} \mathfrak{g}$.
Cartan (1938): a contact-invariant class of ODE is a C-class if for each ODE in this class, all differential invariants are first integrals. (Utility: generic C-class ODE can be solved w/o any integration.)
Čap-Doubrov-T. (2017):

- modern formulation of C-class: the canonical Cartan geometry associated to the ODE descends to a Cartan geometry over the solution space. (Equiv: κ satisfies a verticality condition.)
- characterization: An ODE is of C-class iff it is Wilczynski-flat, i.e. all generalized Wilczynski invariants \mathcal{W}_{r} vanish.

Harmonic curvature decomposition

Medvedev (2010), Doubrov-Medvedev (2014): For vector ODEs, κ_{H} of the associated Cartan geometry is valued in an "effective part" $\mathbb{E} \subset H^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$, which decomposes into irreducibles $\mathbb{U} \subset \mathbb{E}$:

Type	n	\mathbb{U}	Bi-grade	$\mathfrak{s l}_{m}$-module str.
Wilczynski	≥ 2	$\mathbb{W}_{r}^{\mathrm{tf}}$	$(r, 0)$	$\mathfrak{s l}_{m}$
	≥ 2	$\begin{gathered} \mathbb{W}_{r}^{\mathrm{tr}} \\ (3 \leq r \leq n+1) \end{gathered}$	$(r, 0)$	$\mathbb{R} \mathrm{id}_{m}$
C-class	2	\mathbb{B}_{4}	$(2,2)$	$S^{2}\left(\mathbb{R}^{m}\right)^{*}$
	≥ 2	$\mathbb{A}_{2}^{\text {tf }}$	$(1,1)$	$\left(S^{2}\left(\mathbb{R}^{m}\right)^{*} \otimes \mathbb{R}^{m}\right)_{0}$
	≥ 2	$\mathbb{A}_{2}^{\text {tr }}$	$(1,1)$	$\left(\mathbb{R}^{m}\right)^{*}$

Kessy-T. (2023): For each C-class irrep $\mathbb{U} \subset \mathbb{E}$, we gave explicit realizations of lowest weight vectors as harmonic 2-cochains.

Submaximally symmetric vector ODEs of C-class

Theorem (Kessy \& T. 2023)

Over \mathbb{R}, below is the complete local classification (up to point-equivalence) of vector ODE $\mathbf{u}_{n+1}=\mathbf{f}\left(t, \mathbf{u}, \ldots, \mathbf{u}_{n}\right)$ of C-class of order $n+1 \geq 3$ that are submaximally symmetric.

n	Irreducible C-class module $\mathbb{U} \subset \mathbb{E}$	$\mathfrak{S}_{\mathbb{U}}$	ODE of C-class with $0 \not \equiv \operatorname{img}\left(\kappa_{H}\right) \subset \mathbb{U}$ realizing $\mathfrak{S}_{\mathbb{U}}$
2	\mathbb{B}_{4}	$\mathfrak{M}-m$	$\begin{gathered} u_{3}^{a}=\frac{3 u_{2}^{1} u_{2}^{a}}{2 u_{1}^{1}} \quad \text { or } \quad u_{3}^{a}=\frac{3 u_{1}^{1} u_{2}^{1} u_{2}^{a}}{1+\left(u_{1}^{1}\right)^{2}} \\ (1 \leq a \leq m) \\ (1 \leq a \leq m) \end{gathered}$
≥ 3	$\mathrm{A}_{2}^{\mathrm{tr}}$	$\mathfrak{M}-m-1$	$\begin{gathered} u_{n+1}^{a}=\frac{(n+1) u_{n}^{1} u_{n}^{a}}{n u_{n-1}^{1}} \\ (1 \leq a \leq m) \end{gathered}$
≥ 2	$\mathbb{A}_{2}^{\mathrm{tf}}$	$\mathfrak{M}-2 m+1+\delta_{2}^{n}$	$\begin{gathered} u_{n+1}^{a}=\left(u_{n}^{2}\right)^{2} \delta_{1}^{a} \\ (1 \leq a \leq m) \end{gathered}$

Over \mathbb{C}, the two 3rd order models in the \mathbb{B}_{4} branch are equivalent. (Rmk: When $m=1$, these have $\mathfrak{s o}(2,2)$ and $\mathfrak{s o}(1,3)$ symmetry.)

Cartan-theoretic descriptions

Fix $(\mathfrak{g}, \mathfrak{p})$ as before. How to systematically classify homog. str.?

Definition (Cartan-theoretic description)

An algebraic model $(\mathfrak{f} ; \mathfrak{g}, \mathfrak{p})$ is a Lie algebra $\left(\mathfrak{f},[\cdot, \cdot]_{\mathfrak{f}}\right)$ s.t.:
M1: $\mathfrak{f} \subset \mathfrak{g}$ is a filtered subspace, with filtrands $\mathfrak{f}^{i}:=\mathfrak{f} \cap \mathfrak{g}^{i}$, and

$$
\mathfrak{s}:=\operatorname{gr}(\mathfrak{f}) \text { satisfying } \mathfrak{s}_{-}=\mathfrak{g}_{-} .\left(\text {Thus, } \mathfrak{f} / \mathfrak{f}^{0} \cong \mathfrak{g} / \mathfrak{p} .\right)
$$

M2: \mathfrak{f}^{0} inserts trivially into $\kappa(x, y):=[x, y]-[x, y]_{\mathfrak{f}}$. (Thus, $\kappa \in \Lambda^{2}\left(\mathfrak{f} / \mathfrak{f}^{0}\right)^{*} \otimes \mathfrak{g} \cong \bigwedge^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g} \cong \bigwedge^{2} \mathfrak{p}_{+} \otimes \mathfrak{g}$.)
M3: κ is regular / normal, i.e. $\kappa \in \operatorname{ker}\left(\partial^{*}\right)^{1}$.
Given (G, P), let \mathcal{M} be the set of all algebraic models $(\mathfrak{f} ; \mathfrak{g}, \mathfrak{p})$.

- \mathcal{M} is partially ordered: $\mathfrak{f} \leq \mathfrak{f}^{\prime}$ iff $\mathfrak{f} \hookrightarrow \mathfrak{f}^{\prime}$ as Lie algs.
- \mathcal{M} admits a P-action: i.e. $p \cdot \mathfrak{f}=\operatorname{Ad}_{p} \mathfrak{f}$. Classify!

Necessary constraints

Proposition

Let $(\mathfrak{f} ; \mathfrak{g}, \mathfrak{p})$ be an algebraic model. Then
(1) $\left(\mathfrak{f},[\cdot, \cdot]_{\mathfrak{f}}\right)$ is a filtered Lie alg $\& \mathfrak{s}=\operatorname{gr}(\mathfrak{f}) \subset \mathfrak{g}$ is a graded Lie subalg.
(2) $\mathfrak{f}^{0} \cdot \kappa=0$: $[z, \kappa(x, y)]=\kappa([z, x], y)+\kappa(x,[z, y]), \forall x, y \in \mathfrak{f}, \forall z \in \mathfrak{f}^{0}$.
(3) $\mathfrak{s C} \subset \mathfrak{a}^{\kappa_{H}}$, i.e. \mathfrak{f} is a "filtered sub-deformation" of $\mathfrak{a}^{\kappa_{H}}$. Thus, κ_{H} constrains "leading parts" of f. (Next goal: Find "filtration tails".)

Here, \mathfrak{a}^{ϕ} is defined below:

Definition (Extrinsic Tanaka prolongation)

Let \mathfrak{g} be a graded Lie alg with \mathfrak{g}_{-1} generating \mathfrak{g}_{-}. Given ϕ in a \mathfrak{g}_{0}-rep, let $\mathfrak{a}:=\mathfrak{a}^{\phi} \subset \mathfrak{g}$ be the graded Lie subalg with $\mathfrak{a}_{\leq 0}:=\mathfrak{g}_{-} \oplus \mathfrak{a n n}(\phi)$ and

$$
\mathfrak{a}_{k}:=\left\{x \in \mathfrak{g}_{k}:\left[x, \mathfrak{g}_{-1}\right] \subset \mathfrak{a}_{k-1}\right\}, \quad \forall k>0
$$

The aforementioned upper bound is $\mathfrak{U}_{\mathbb{U}}=\max \left\{\operatorname{dim} \mathfrak{a}^{\phi}: 0 \neq \phi \in \mathbb{U}\right\}$

Submaximal $(2,3,5)$ models

For $(2,3,5), \mathfrak{a}_{+}^{\phi}=0$ when $0 \neq \phi \in H^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right) \cong S^{4} \mathfrak{g}_{1}$. Then $\operatorname{dim} \mathfrak{a}^{\phi}$ is maximized on the GL_{2}-orbit of I.w.v. ϕ_{0}. Weight: $+4 \alpha_{1}$.

$$
\mathfrak{s}=\operatorname{gr}(\mathfrak{f})=\mathfrak{a}^{\phi_{0}}=\mathfrak{g}_{-} \oplus \mathfrak{a}_{0}=\left\langle f_{31}, f_{32}\right\rangle \oplus\left\langle f_{21}\right\rangle \oplus\left\langle f_{10}, f_{11}\right\rangle \oplus\left\langle Z_{2}, f_{01}\right\rangle
$$

Proposition (T. 2022)

For (2,3,5): Any 7-dim algebraic model is P-equivalent to ($\mathfrak{f} ; \mathfrak{g}, \mathfrak{p}$) given below for some $c \in \mathbb{C}$. These are classified by the essential invariant c^{2}.

$S=Z_{2}$,
$N=f_{01}$,
$X_{1}=f_{10}+c e_{10}$,
$\mathfrak{f}: X_{2}=f_{11}$,
$X_{3}=f_{21}$,
$X_{4}=f_{31}$,
$X_{5}=f_{32}$.
$\kappa=\kappa_{H}=f_{10}^{*} \wedge f_{31}^{*} \otimes f_{01}$
$($ Kostant $!)$

Lie-theoretic structure: $[\cdot, \cdot]_{\mathfrak{f}}=[\cdot, \cdot]-\kappa(\cdot, \cdot)$. The canonical submax sym model here is the structure when $c=0$.

Submaximal parabolic geometries - preparation

- \mathfrak{g} : complex simple Lie alg, with highest root λ
- $\mathfrak{g}=\mathfrak{g}_{-} \oplus \mathfrak{p}$, where $\mathfrak{p}=\mathfrak{g}_{0} \oplus \mathfrak{p}_{+}$.
- $\mathbb{V}_{\mu}: \mathfrak{g}_{0}$-irrep with lowest weight μ.

Kostant (1961): $H^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)=\bigoplus_{w \in W^{\mathfrak{p}}(2)} \mathbb{V}_{\mu}$, where $\mu=-w \bullet \lambda($ mult. 1$)$.
If $w=\sigma_{j} \circ \sigma_{k}$, then \mathbb{V}_{μ} has Iwv $\phi_{0}=e_{\alpha_{j}} \wedge e_{\sigma_{j}\left(\alpha_{k}\right)} \otimes e_{w(-\lambda)}$.
Kruglikov-T. (2014): $\operatorname{dim} \mathfrak{a}^{\phi}$ is maximized on the G_{0}-orbit of [ϕ_{0}].
Classify $(\mathfrak{f} ; \mathfrak{g}, \mathfrak{p})$ with $\operatorname{gr}(\mathfrak{f})=\mathfrak{a}^{\phi_{0}}=: \mathfrak{a} . \quad\left(\operatorname{Str} . \operatorname{grp}: \operatorname{Stab}_{G_{0}}\left(\left[\phi_{0}\right]\right) \ltimes P_{+}\right)$
Using Čap (2005), WLOG pass to the minimal twistor space. Then using Kruglikov-T. (2014), we can assume that $\mathfrak{f}^{1}=0$.

Submaximal parabolic geometries - proof outline

Let $\operatorname{ker}(\mu):=\{h \in \mathfrak{h}: \mu(h)=0\}$. Note $\operatorname{ker}(\mu) \subset \mathfrak{a}_{0}=\mathfrak{a n n}\left(\phi_{0}\right)$.

Lemma

Fix $(\mathfrak{g}, \mathfrak{p})$ and $\mu=-w \bullet \lambda$ as before. Let $\ell=\operatorname{rank}(\mathfrak{g}) \geq 3$. Then:
(a) $\mu=\sum_{i=1}^{\ell} m_{i} \alpha_{i}$ has coefficients of opposite sign.
(b) $\exists H_{0} \in \operatorname{ker}(\mu) \subset \mathfrak{h}$ with $f\left(H_{0}\right) \neq 0, \forall f=\alpha+\beta$ with $\alpha \in \Delta^{+}$ and $\beta \in \Delta^{+} \cup\{0\}$.

Now normalize to $\mathfrak{f}=\mathfrak{a}, \kappa=\phi_{0}$ (canonical submax sym model):
(1) Using P_{+}, normalize \mathfrak{f} s.t. $H_{0} \in \mathfrak{f}^{0}$.

Then $\operatorname{Ad}_{\exp (X)} H=\exp \left(\operatorname{ad}_{X}\right) H=H+[X, H]+\ldots=H_{0}+\underbrace{H_{r}-\left[H_{0}, X\right]}_{=0}+\ldots$ Inductively, $H_{+}=0$.
(2) Observe that $\operatorname{ker}(\mu) \subset \mathfrak{f}^{0}$.

Fix $0 \neq H_{0}^{\prime} \in \operatorname{ker}(\mu), H^{\prime}:=H_{0}^{\prime}+H_{+}^{\prime} \in \mathfrak{f}$. So $\left[H_{0}, H^{\prime}\right]_{\mathfrak{f}}=\left[H_{0}, H^{\prime}\right]=\left[H_{0}, H_{+}^{\prime}\right] \in \mathfrak{g}+\cap \mathfrak{f}=\mathrm{f}^{1}=0$ Since $\alpha\left(H_{0}\right) \neq 0, \forall \alpha \in \Delta^{+}$, then necessarily $H_{+}^{\prime}=0$.

Submaximal parabolic geometries - proof outline 2

We have $\mathfrak{a}=\mathfrak{g}_{-} \oplus \mathfrak{a}_{0}$.
(3) Show that $\mathfrak{f}=\mathfrak{a}$ as vector subspaces of \mathfrak{g}.

Write $\mathfrak{g}=\mathfrak{a} \oplus \mathfrak{a}^{\perp}$, where $\mathfrak{a}^{\perp}=\operatorname{ker}(\mu)^{\perp} \oplus \mathfrak{g}_{0,+} \oplus \mathfrak{g}_{+}$. Filtration tails are encoded by $\mathfrak{d} \in \mathfrak{a}^{*} \otimes \mathfrak{a}^{\perp}$ with $H \cdot \mathfrak{d}=0, \forall H \in \operatorname{ker}(\mu) \subset \mathfrak{f}^{0}$, so \mathfrak{d} lies in the sum of $w t$ spaces for wts that are multiples of μ.

- Let $\alpha \in \Delta^{-}$. Since $e_{\alpha}^{*} \otimes \mathfrak{a}^{\perp}$ has non-negative wts, then $\mathfrak{d}\left(e_{\alpha}\right)=0$.
- For the $\alpha \in \Delta^{+}\left(\mathfrak{a}_{0}\right)$ case, see my article.
(9) Show that $\kappa=\kappa_{H}=\phi_{0}$.
$\kappa \in \operatorname{ker}\left(\partial^{*}\right)^{1} \subset \bigwedge^{2} \mathfrak{p}_{+} \otimes \mathfrak{g}$ and $\mathfrak{f}^{0} \cdot \kappa=0$. Since $\operatorname{ker}(\mu) \subset \mathfrak{f}^{0}$, the only relevant weights for κ are:

$$
\sigma=r \mu=\alpha+\beta+\gamma, \quad \text { where } \quad \alpha, \beta \in \Delta\left(\mathfrak{p}_{+}\right) \text {distinct, } \quad \gamma \in \Delta \cup\{0\}, \quad r \geq 1
$$

Write $\lambda=\sum_{i} n_{i} \alpha_{i}$, where $n_{i}>0, \forall i$ (since \mathfrak{g} is simple). We have $-\lambda \leq \gamma \leq \sigma$. If $\left\{\mathrm{Z}_{i}\right\}$ are dual to $\left\{\alpha_{i}\right\}$, then $\forall i \neq j, k$:

$$
-n_{i}=\mathrm{Z}_{i}(-\lambda) \leq \mathrm{Z}_{i}(\gamma) \leq \mathrm{Z}_{i}(\sigma)=r \mathrm{Z}_{i}(\mu)=-r n_{i} . \quad \therefore r \leq 1 \quad \therefore r=1 \quad \therefore \sigma=\mu
$$

But μ is a I.w. with mult. one (by Kostant), so κ is a nonzero multiple of ϕ_{0}. By regularity, we can exponentiate the grading element action to normalize to ϕ_{0} over \mathbb{C} (or $\pm \phi_{0}$ over \mathbb{R}).

Vector ODEs of C-class

We needed to augment the DoubrovMedvedev classification with realizations of I.w.v. as harmonic 2-cochains, i.e. get an analogue of Kostant's thm.

Theorem (Kessy-T. (2023))

For each C-class irrep $\mathbb{U} \subset \mathbb{E}$, the following are explicit realizations of a I.w.v. $\Phi_{\mathbb{U}} \in \mathbb{U}$ as a harmonic 2-cochain in $C^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$.

n	\mathbb{U}	Bi-grade		
2	\mathbb{B}_{4}	$(2,2)$		$E^{2,1} \wedge E^{1,1} \otimes \times-\frac{1}{2} E^{2,1} \wedge E^{0,1} \otimes H-\frac{1}{2} E^{1,1} \wedge E^{0,1} \otimes \mathrm{Y}$
:---:				

Cartan-theoretic summary: submax vector ODEs of C-class

n	\mathbb{U}	\mathfrak{f}	κ
2	\mathbb{B}_{4}	$\mathfrak{a}_{\mathbb{U}}$	$\pm \Phi_{\mathbb{U}}$
≥ 2	$\mathbb{A}_{2}^{\mathrm{tf}}$	$\mathfrak{a}^{\Phi_{\mathbb{U}}}$	$\Phi_{\mathbb{U}}$
≥ 3	$\mathbb{A}_{2}^{\mathrm{tr}}$	$\operatorname{ann}\left(\Phi_{\mathbb{U}}\right) \oplus$ $\left\langle E_{n, a}, \ldots, E_{2, a}\right.$, $E_{1,1}+(n-2)\left(Z_{1}, E_{1, b}\right.$, $\left.E_{0,1}+\zeta \mathrm{Y}, E_{0, b}\right\rangle(b \neq 1)$	$\Phi_{\mathbb{U}}+\kappa_{4}$

$$
\begin{aligned}
& \kappa_{4}=\mu_{1} E^{3,1} \wedge E^{0,1} \otimes \mathbf{X}+\mu_{2} E^{2,1} \wedge E^{1,1} \otimes \mathbf{X}-\frac{\mu_{1}+\mu_{2}}{2}\left(E^{2,1} \wedge E^{0,1} \otimes \mathbf{H}+E^{1,1} \wedge E^{0,1} \otimes \mathrm{Y}\right) \\
&+\mu_{3} \sum_{a=1}^{m}\left(E^{2,1} \wedge E^{0, a}-E^{2, a} \wedge E^{0,1}+E^{1, a} \wedge E^{1,1}\right) \otimes e_{a}{ }^{1}
\end{aligned}
$$

Jacobi identity \Rightarrow params $\zeta, \mu_{1}, \mu_{2}, \mu_{3}$ are uniquely determined fcns of (n, m).
To match this with aforementioned coordinate models, verify:

- κ_{H} is in the correct branch (use known invariants), and
- $\operatorname{dim} \mathfrak{f}=\mathfrak{S}$.

