On uniqueness of submaximally symmetric geometric structures

Dennis The

(partly based on joint work with Johnson Kessy)

Department of Mathematics & Statistics UiT The Arctic University of Norway

19 January 2023

Srni Winter School, Czech Republic

This talk is about (locally) classifying structures via symmetry.

Throughout, let \mathfrak{M} and \mathfrak{S} denote the maximal / submax sym dim. For the geometries in this talk, \exists ! maximally symmetric structure.

Goal: Locally classify all submaximally symmetric structures.

No homogeneity assumption is assumed, but we'll put some conditions to a priori guarantee homogeneity.

How to classify homog. such structures? Equivalent descriptions:

- coordinate
- Lie-theoretic: f/f^0 with f^0 -invariant structure
- Cartan-theoretic: focus on these.

Working in the Cartan setting allows for systematic classification.

Examples

• (Cartan 1910) For (2,3,5)-distributions, $\mathfrak{M} = 14$, and $\mathfrak{S} = 7$ realized on (x, y, p, q, z)-space by $D_f \subset TM$ spanned by

$$\partial_q, \quad \partial_x + p\partial_y + q\partial_p + f\partial_z,$$

where $f = q^m$ $(m \neq -1, 0, \frac{1}{3}, \frac{2}{3}, 1, 2)$ or $f = \log(q)$.

(Lie ~1890) Let $k \ge 4$. For scalar k-th order ODE (mod contact), $\mathfrak{M} = k + 4$ (unique), $\mathfrak{S} = \begin{cases} \mathfrak{M} - 2, & k \ne 5,7;\\ \mathfrak{M} - 1, & k = 5,7 \end{cases}$ is realized by an

ODE locally equivalent to:

(a) a linear ODE, or (b) exactly one of: (i) k = 5: $9(u_2)^2 u_5 - 45u_2 u_3 u_4 + 40(u_3)^3 = 0.$ (ii) k = 7: $10(u_3)^3 u_7 - 70(u_3)^2 u_4 u_6 - 49(u_3)^2 (u_5)^2 + 280u_3(u_4)^2 u_5 - 175(u_4)^4 = 0.$ (iii) $k \neq 5,7$: $(k-1)u_{k-2}u_k - k(u_{k-1})^2 = 0.$

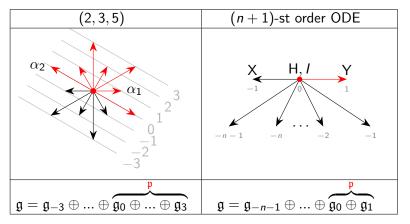
More examples

Have equivalent reformulations as (normalized) Cartan geometries $(\mathcal{G} \to M, \omega)$ of type $(\mathcal{G}, \mathcal{P})$. We have $\mathfrak{M} = \dim \mathcal{G}$.

Structure	G	Р	M	S	Unique submax model?
2-dim projective	A_2	P_1	8	3	\checkmark
2nd order ODE	A_2	$P_{1,2}$	8	3	×
(2,3,5)-distributions	G ₂	P_1	14	7	×
5-dim G ₂ -contact	G ₂	P_2	14	7	\checkmark
3-dim projective	A_3	P_1	15	8	\checkmark
4-dim split-conformal	A_3	P_2	15	9	\checkmark
5-dim Legendrian contact	A ₃	$P_{1,3}$	15	8	\checkmark
$CR\;M^5\subset\mathbb{C}^3\;/w\;indef\;Levi$	SU(2,2)	$P_{1,3}$	15	8	\checkmark
$CR\;M^5\subset\mathbb{C}^3$ /w def Levi	SU(1,3)	$P_{1,3}$	15	7	×
(3,6)-distributions	B ₃	P_3	21	11	\checkmark
57-dim <i>E</i> ₈ -contact	E_8	P_8	248	147	\checkmark

Curvature fcn κ valued in $\bigwedge^2 (\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g}$.

Flat models



▲ Let $\mathfrak{g}^i := \bigoplus_{j \ge i} \mathfrak{g}_j$. The p-inv filtration $\mathfrak{g} \supset ... \supset \mathfrak{g}^i \supset \mathfrak{g}^{i+1} \supset ...$ is important! (Grading is auxilliary.) Have $[\mathfrak{g}^i, \mathfrak{g}^j] \subset \mathfrak{g}^{i+j}$.

Harmonic curvature κ_H valued in $H_2(\mathfrak{p}_+,\mathfrak{g})^1 \cong_{\mathfrak{g}_0} H^2_+(\mathfrak{g}_-,\mathfrak{g}).$

Symmetry gaps

- Kruglikov & T. (2014): For parabolic geometries:
 - $\bullet\,$ proved $\mathfrak{S}\leq\mathfrak{U},$ where \mathfrak{U} is defined via rep theory.
 - have adapted versions: $\mathfrak{S}_{\mathbb{U}} \leq \mathfrak{U}_{\mathbb{U}}$ for G_0 -irrep $\mathbb{U} \subset H^2_+(\mathfrak{g}_-,\mathfrak{g})$.
 - when G is complex or split-real simple with rank(G) ≥ 3, we have S = 𝔄. (Also for some rank 2 cases.)
 - $\bullet\,$ have efficient Dynkin diagram recipes to find $\mathfrak{U}.$
 - Kostant's theorem for $H^2(\mathfrak{g}_-,\mathfrak{g})$ is crucial.
- Kessy & T. (2022): For ODEs (mod contact):
 - similarly established $\mathfrak{S} \leq \mathfrak{U}$. (\exists analogous harmonic theory)
 - scalar case: modern proof of \mathfrak{S} , indep. of classification of Lie algebras of vector fields in the plane.
 - vector case: established $\mathfrak{S}=\mathfrak{M}-2$ and various $\mathfrak{S}_{\mathbb{U}}$ results.
 - Used the effective part E ⊂ H²₊(g₋, g), which was described by Doubrov (2001), Medvedev (2010) & Doubrov-Medvedev (2014).

 \triangle When $\mathfrak{S} = \mathfrak{U}$, any submax sym structure is locally homog. in a nbd of a point where κ_H is nonzero.

Q: How to classify submax homogeneous structures efficiently?

Theorem (T. 2021)

Let G be complex simple, $P \leq G$ parabolic. Suppose rank(G) ≥ 3 or $(G, P) = (G_2, P_2)$. A regular, normal Cartan geometry $(\mathcal{G} \rightarrow M, \omega)$ of type (G, P) with:

• κ_H valued in a *P*-irrep $\mathbb{U} \subset H_2(\mathfrak{p}_+,\mathfrak{g})^1$, and

2 submaximal symmetry dimension $\mathfrak{S}_{\mathbb{U}}$

is locally unique near $u \in \mathcal{G}$ with $0 \neq \kappa_H(u) \in \mathbb{U}$. If G were split-real, there is one of at most two possibilities: it is unique iff $\exists g \in P \text{ s.t. } g \cdot \phi_0 = -\phi_0$ for $\phi_0 \in \mathbb{U}$ a l.w.v.

Classically, Cartan reduction of full str eqns can be applied case-by-case. The proof of the above result circumvents this tedious story.

Vector ODE $\mathbf{u}_{n+1} = \mathbf{f}(t, \mathbf{u}, ..., \mathbf{u}_n)$, where $\mathbf{u} = (u^1, ..., u^m)$, $m \ge 2$.

 $\mathbf{u}_{n+1} = \mathbf{0}$ has sym alg $\mathfrak{g} \cong (\mathfrak{sl}_2 \times \mathfrak{gl}_m) \ltimes (\mathbb{V}_n \otimes \mathbb{R}^m)$, so $\mathfrak{M} = \dim \mathfrak{g}$.

Cartan (1938): a contact-invariant class of ODE is a *C-class* if for each ODE in this class, all differential invariants are first integrals. (Utility: generic C-class ODE can be solved w/o any integration.)

Čap–Doubrov–T. (2017):

- modern formulation of C-class: the canonical Cartan geometry associated to the ODE descends to a Cartan geometry over the solution space. (Equiv: κ satisfies a verticality condition.)
- characterization: An ODE is of C-class iff it is Wilczynski-flat,
 i.e. all generalized Wilczynski invariants W_r vanish.

Medvedev (2010), Doubrov–Medvedev (2014): For vector ODEs, κ_H of the associated Cartan geometry is valued in an "effective part" $\mathbb{E} \subset H^2(\mathfrak{g}_-, \mathfrak{g})$, which decomposes into irreducibles $\mathbb{U} \subset \mathbb{E}$:

Туре	п	U	Bi-grade	\mathfrak{sl}_m -module str.
Wilczynski	≥ 2	Wtf	(r,0)	\mathfrak{sl}_m
		$(2 \le r \le n+1)$		
	≥ 2	Wr	(r,0)	$\mathbb{R}\operatorname{id}_m$
		$(3 \le r \le n+1)$		
C-class	2	\mathbb{B}_4	(2,2)	$S^2(\mathbb{R}^m)^*$
	≥ 2	\mathbb{A}_2^{tf}	(1, 1)	$(S^2(\mathbb{R}^m)^*\otimes\mathbb{R}^m)_0$
	≥ 2	\mathbb{A}_2^{tr}	(1,1)	$(\mathbb{R}^m)^*$

Kessy–T. (2023): For each C-class irrep $\mathbb{U} \subset \mathbb{E}$, we gave explicit realizations of lowest weight vectors as harmonic 2-cochains.

Theorem (Kessy & T. 2023)

Over \mathbb{R} , below is the complete local classification (up to point-equivalence) of vector ODE $\mathbf{u}_{n+1} = \mathbf{f}(t, \mathbf{u}, ..., \mathbf{u}_n)$ of C-class of order $n + 1 \ge 3$ that are submaximally symmetric.

n	Irreducible C-class module $\mathbb{U} \subset \mathbb{E}$	$\mathfrak{S}_{\mathbb{U}}$	ODE of C-class with $0 \not\equiv img(\kappa_H) \subset \mathbb{U}$ realizing $\mathfrak{S}_{\mathbb{U}}$
2	\mathbb{B}_4	$\mathfrak{M}-m$	$u_{3}^{a} = \frac{3u_{2}^{1}u_{2}^{a}}{2u_{1}^{1}} or u_{3}^{a} = \frac{3u_{1}^{1}u_{2}^{1}u_{2}^{a}}{1 + (u_{1}^{1})^{2}}$ $(1 \le a \le m) (1 \le a \le m)$
≥ 3	\mathbb{A}_2^{tr}	$\mathfrak{M}-m-1$	$u_{n+1}^{a} = \frac{(n+1)u_{n}^{1}u_{n}^{a}}{nu_{n-1}^{1}}$ $(1 \le a \le m)$
≥ 2	\mathbb{A}_2^{tf}	$\mathfrak{M} - 2m + 1 + \delta_2^n$	$u_{n+1}^{a} = (u_{n}^{2})^{2} \delta_{1}^{a}$ $(1 \le a \le m)$

Over \mathbb{C} , the two 3rd order models in the \mathbb{B}_4 branch are equivalent. (*Rmk:* When m = 1, these have $\mathfrak{so}(2,2)$ and $\mathfrak{so}(1,3)$ symmetry.) Fix $(\mathfrak{g}, \mathfrak{p})$ as before. How to systematically classify homog. str.?

Definition (Cartan-theoretic description)

An algebraic model $(\mathfrak{f}, \mathfrak{g}, \mathfrak{p})$ is a Lie algebra $(\mathfrak{f}, [\cdot, \cdot]_{\mathfrak{f}})$ s.t.:

M1: $\mathfrak{f} \subset \mathfrak{g}$ is a filtered subspace, with filtrands $\mathfrak{f}^i := \mathfrak{f} \cap \mathfrak{g}^i$, and $\mathfrak{s} := \operatorname{gr}(\mathfrak{f})$ satisfying $\mathfrak{s}_- = \mathfrak{g}_-$. (Thus, $\mathfrak{f}/\mathfrak{f}^0 \cong \mathfrak{g}/\mathfrak{p}$.)

 $\begin{array}{ll} \mathsf{M2:} \ \mathfrak{f}^0 \ \textit{inserts trivially into } \kappa(x,y) := [x,y] - [x,y]_{\mathfrak{f}}.\\ (\textit{Thus, } \kappa \in \bigwedge^2(\mathfrak{f}/\mathfrak{f}^0)^* \otimes \mathfrak{g} \cong \bigwedge^2(\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g} \cong \bigwedge^2 \mathfrak{p}_+ \otimes \mathfrak{g}.) \end{array}$

M3: κ is regular / normal, i.e. $\kappa \in \text{ker}(\partial^*)^1$.

Given (G, P), let \mathcal{M} be the set of all algebraic models $(\mathfrak{f}; \mathfrak{g}, \mathfrak{p})$.

- $\mathcal M$ is partially ordered: $\mathfrak f \leq \mathfrak f'$ iff $\mathfrak f \hookrightarrow \mathfrak f'$ as Lie algs.
- \mathcal{M} admits a *P*-action: i.e. $p \cdot \mathfrak{f} = \mathrm{Ad}_p \mathfrak{f}$. Classify!

Proposition

Let $(\mathfrak{f};\mathfrak{g},\mathfrak{p})$ be an algebraic model. Then

 ${\rm \bigcirc} \ ({\mathfrak f},[\cdot,\cdot]_{\mathfrak f}) \text{ is a filtered Lie alg \& } {\mathfrak s}={\rm gr}({\mathfrak f})\subset {\mathfrak g} \text{ is a graded Lie subalg.}$

$$\int^0 \cdot \kappa = 0 : [z, \kappa(x, y)] = \kappa([z, x], y) + \kappa(x, [z, y]), \ \forall x, y \in \mathfrak{f}, \ \forall z \in \mathfrak{f}^0.$$

Here, \mathfrak{a}^{ϕ} is defined below:

Definition (Extrinsic Tanaka prolongation)

Let g be a graded Lie alg with \mathfrak{g}_{-1} generating \mathfrak{g}_{-} . Given ϕ in a \mathfrak{g}_{0} -rep, let $\mathfrak{a} := \mathfrak{a}^{\phi} \subset \mathfrak{g}$ be the graded Lie subalg with $\mathfrak{a}_{\leq 0} := \mathfrak{g}_{-} \oplus \mathfrak{ann}(\phi)$ and $\mathfrak{a}_{k} := \{x \in \mathfrak{g}_{k} : [x, \mathfrak{g}_{-1}] \subset \mathfrak{a}_{k-1}\}, \quad \forall k > 0.$

The aforementioned upper bound is $\mathfrak{U}_{\mathbb{U}} = \max\{\dim \mathfrak{a}^{\phi} : 0 \neq \phi \in \mathbb{U}\}$.

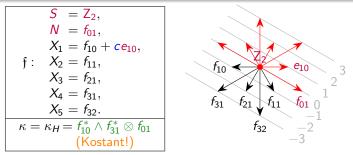
Submaximal (2, 3, 5) models

For (2,3,5), $\mathfrak{a}^{\phi}_{+} = 0$ when $0 \neq \phi \in H^{2}(\mathfrak{g}_{-},\mathfrak{g}) \cong S^{4}\mathfrak{g}_{1}$. Then $\dim \mathfrak{a}^{\phi}$ is maximized on the GL₂-orbit of l.w.v. ϕ_{0} . Weight: $+4\alpha_{1}$.

 $\mathfrak{s} = \mathrm{gr}(\mathfrak{f}) = \mathfrak{a}^{\phi_0} = \mathfrak{g}_- \oplus \mathfrak{a}_0 = \langle f_{31}, f_{32} \rangle \oplus \langle f_{21} \rangle \oplus \langle f_{10}, f_{11} \rangle \oplus \langle \mathsf{Z}_2, f_{01} \rangle$

Proposition (T. 2022)

For (2,3,5): Any 7-dim algebraic model is P-equivalent to $(\mathfrak{f}; \mathfrak{g}, \mathfrak{p})$ given below for some $c \in \mathbb{C}$. These are classified by the essential invariant c^2 .



Lie-theoretic structure: $[\cdot, \cdot]_{\mathfrak{f}} = [\cdot, \cdot] - \kappa(\cdot, \cdot)$. The *canonical submax sym model* here is the structure when c = 0.

Submaximal parabolic geometries - preparation

- g: complex simple Lie alg, with highest root λ
- $\mathfrak{g} = \mathfrak{g}_{-} \oplus \mathfrak{p}$, where $\mathfrak{p} = \mathfrak{g}_0 \oplus \mathfrak{p}_+$.
- \mathbb{V}_{μ} : \mathfrak{g}_0 -irrep with lowest weight μ .

Kostant (1961): $H^2(\mathfrak{g}_-,\mathfrak{g}) = \bigoplus_{w \in W^{\mathfrak{p}}(2)} \mathbb{V}_{\mu}$, where $\mu = -w \bullet \lambda$ (mult. 1).

If $w = \sigma_j \circ \sigma_k$, then \mathbb{V}_{μ} has lwv $\phi_0 = e_{\alpha_j} \wedge e_{\sigma_j(\alpha_k)} \otimes e_{w(-\lambda)}$.

Kruglikov–T. (2014): dim \mathfrak{a}^{ϕ} is maximized on the G_0 -orbit of $[\phi_0]$.

Classify $(\mathfrak{f}; \mathfrak{g}, \mathfrak{p})$ with $\operatorname{gr}(\mathfrak{f}) = \mathfrak{a}^{\phi_0} =: \mathfrak{a}$. (Str.grp: Stab_{G0}($[\phi_0]$) $\ltimes P_+$)

Using Čap (2005), WLOG pass to the minimal twistor space. Then using Kruglikov–T. (2014), we can assume that $\int^1 = 0$.

Submaximal parabolic geometries - proof outline

Let
$$\ker(\mu) := \{h \in \mathfrak{h} : \mu(h) = 0\}$$
. Note $\ker(\mu) \subset \mathfrak{a}_0 = \mathfrak{ann}(\phi_0)$.

Lemma

Fix $(\mathfrak{g},\mathfrak{p})$ and $\mu = -w \bullet \lambda$ as before. Let $\ell = \operatorname{rank}(\mathfrak{g}) \geq 3$. Then:

(a)
$$\mu = \sum_{i=1}^{\ell} m_i \alpha_i$$
 has coefficients of opposite sign.

(b)
$$\exists H_0 \in \ker(\mu) \subset \mathfrak{h}$$
 with $f(H_0) \neq 0$, $\forall f = \alpha + \beta$ with $\alpha \in \Delta^+$
and $\beta \in \Delta^+ \cup \{0\}$.

Now normalize to $\mathfrak{f} = \mathfrak{a}$, $\kappa = \phi_0$ (canonical submax sym model):

1 Using
$$P_+$$
, normalize f s.t. $H_0 \in f^0$.
Take $H = H_0 + H_r + ... \in f^0$, $r \ge 1$, $H_r = \sum_{\alpha \in \Delta(\mathfrak{g}_r)} c_\alpha e_\alpha$. Define $X := \sum_{\alpha \in \Delta(\mathfrak{g}_r)} \frac{c_\alpha}{\alpha(H_0)} e_\alpha \in \mathfrak{g}_r$.
Then $\operatorname{Ad}_{\exp(X)} H = \exp(\operatorname{ad}_X) H = H + [X, H] + ... = H_0 + \underbrace{H_r - [H_0, X]}_{=0} + ...$ Inductively, $H_+ = 0$.

Observe that $|\ker(\mu) \subset f^0|$.

 $\begin{aligned} & \mathsf{Fix} \ \mathbf{0} \neq H_0' \in \mathsf{ker}(\mu), \ H' := H_0' + H_+' \in \mathfrak{f}. \ \mathsf{So} \ [H_0, H']_{\mathfrak{f}} = [H_0, H'] = [H_0, H_+'] \in \mathfrak{g}_+ \cap \mathfrak{f} = \underbrace{\mathfrak{f}^1 = \mathbf{0}}_{}. \end{aligned}$ Since $\alpha(H_0) \neq 0, \ \forall \alpha \in \Delta^+$, then necessarily $H_+' = 0.$

Submaximal parabolic geometries – proof outline 2

We have $\mathfrak{a} = \mathfrak{g}_{-} \oplus \mathfrak{a}_{0}$.

Show that $f = \mathfrak{a}$ as vector subspaces of \mathfrak{g} .

Write $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{a}^{\perp}$, where $\mathfrak{a}^{\perp} = \ker(\mu)^{\perp} \oplus \mathfrak{g}_{0,+} \oplus \mathfrak{g}_{+}$. Filtration tails are encoded by $\mathfrak{d} \in \mathfrak{a}^{*} \otimes \mathfrak{a}^{\perp}$ with $H \cdot \mathfrak{d} = 0$, $\forall H \in \ker(\mu) \subset \mathfrak{f}^{0}$, so \mathfrak{d} lies in the sum of wt spaces for wts that are multiples of μ .

- Let $\alpha \in \Delta^-$. Since $e_{\alpha}^* \otimes \mathfrak{a}^{\perp}$ has non-negative wts, then $\mathfrak{d}(e_{\alpha}) = 0$.
- For the α ∈ Δ⁺(𝔅₀) case, see my article.

• Show that $\kappa = \kappa_H = \phi_0$.

 $\kappa \in \ker(\partial^*)^1 \subset \bigwedge^2 \mathfrak{p}_+ \otimes \mathfrak{g}$ and $\mathfrak{f}^0 \cdot \kappa = 0$. Since $\ker(\mu) \subset \mathfrak{f}^0$, the only relevant weights for κ are:

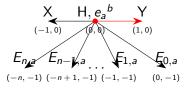
$$\sigma = r\mu = \alpha + \beta + \gamma, \quad \text{where} \quad \alpha, \beta \in \Delta(\mathfrak{p}_+) \text{ distinct}, \quad \gamma \in \Delta \cup \{0\}, \qquad r \geq 1$$

Write $\lambda = \sum_{i} n_i \alpha_i$, where $n_i > 0$, $\forall i$ (since g is simple). We have $-\lambda \leq \gamma \leq \sigma$. If $\{Z_i\}$ are dual to $\{\alpha_i\}$, then $\forall i \neq j, k$:

$$-n_i = \mathsf{Z}_i(-\lambda) \le \mathsf{Z}_i(\gamma) \le \mathsf{Z}_i(\sigma) = r\mathsf{Z}_i(\mu) = -rn_i. \quad \therefore r \le 1 \quad \therefore r = 1 \quad \therefore \sigma = \mu$$

But μ is a l.w. with mult. one (by Kostant), so κ is a nonzero multiple of ϕ_0 . By regularity, we can exponentiate the grading element action to normalize to ϕ_0 over \mathbb{C} (or $\pm \phi_0$ over \mathbb{R}).

Vector ODEs of C-class



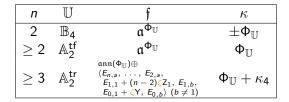
We needed to augment the Doubrov-Medvedev classification with realizations of l.w.v. as harmonic 2-cochains, i.e. get an analogue of Kostant's thm.

Theorem (Kessy–T. (2023))

For each C-class irrep $\mathbb{U} \subset \mathbb{E}$, the following are explicit realizations of a *l.w.v.* $\Phi_{\mathbb{U}} \in \mathbb{U}$ as a harmonic 2-cochain in $C^{2}(\mathfrak{g}_{-},\mathfrak{g})$.

n	U	Bi-grade	Lowest weight vector $\Phi_{\mathbb{U}} \in \mathbb{U}$
2	\mathbb{B}_4	(2, 2)	$ \begin{array}{c} E^{2,1} \wedge E^{1,1} \otimes X - \frac{1}{2} E^{2,1} \wedge E^{0,1} \otimes H - \frac{1}{2} E^{1,1} \wedge E^{0,1} \otimes Y \\ + \sum_{a=1}^{m} \left(E^{2,1} \wedge E^{0,a} - E^{1,1} \wedge E^{1,a} + E^{0,1} \wedge E^{2,a} \right) \otimes \mathbf{e}_{a}^{1} \end{array} $
≥ 3	\mathbb{A}_2^{tr}	(1, 1)	$\begin{split} &\alpha \sum_{i=0}^{n} \left[\Phi^{2,i} + (\frac{n}{2} - i) \Phi^{1,i} - \frac{1}{2}i(n+1-i) \Phi^{0,i} \right] \\ &+ \beta \sum_{i=0}^{n} \left[(n+1-i) (\Phi^{i,0} - \Phi^{0,i}) + \Phi^{i,1} - \Phi^{1,i} \right], \\ &\text{where} \Phi^{i,j} := \sum_{a=1}^{m} E^{i,1} \wedge E^{j,a} \otimes E_{i+j-1,a} \\ &\text{and} \alpha = \frac{-6(n-1)(m+1)}{mn(n+1)+6} \beta \end{split}$
≥ 2	\mathbb{A}_2^{tf}	(1, 1)	$\sum_{j=0}^{n} [(n+1-j)\Phi^{0,j} + \Phi^{1,j}],$ where $\Phi^{i,j} := E^{i,1} \wedge E^{j,1} \otimes E_{i+j-1,m}$

Dennis The On uniqueness of submax sym geometric structures 17/18



$$\begin{split} \kappa_4 &= \mu_1 E^{3,1} \wedge E^{0,1} \otimes \mathsf{X} + \mu_2 E^{2,1} \wedge E^{1,1} \otimes \mathsf{X} - \frac{\mu_1 + \mu_2}{2} \left(E^{2,1} \wedge E^{0,1} \otimes \mathsf{H} + E^{1,1} \wedge E^{0,1} \otimes \mathsf{Y} \right) \\ &+ \mu_3 \sum_{a=1}^m \left(E^{2,1} \wedge E^{0,a} - E^{2,a} \wedge E^{0,1} + E^{1,a} \wedge E^{1,1} \right) \otimes \mathsf{e_a}^1 \end{split}$$

Jacobi identity \Rightarrow params ζ , μ_1 , μ_2 , μ_3 are uniquely determined fcns of (n, m).

To match this with aforementioned coordinate models, verify:

• κ_H is in the correct branch (use known invariants), and

•
$$\dim \mathfrak{f} = \mathfrak{S}$$
.