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Interpretation:

Let C be a small category and X a functor

C
X
Ð→ VectK.

That is:
- Spaces X(c) for each object c ∈ C
- Linear maps X(f )∶X(c) → X(d) for morphism f ∶ c → d.
Operations on X :

X(c1) ⊗ X(c2) ⊗ X(c3)
α
Ð→ X(c).

Symmetry isomorphisms

X(c1) ⊗ X(c2) ⊗ X(c3) ≅ X(c2) ⊗ X(c3) ⊗ X(c1).

The diagram says what to do with elements x1, . . . , x7 ∈ X (of certain
types) to produce a new element of X (of a certain type).
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EXAMPLE: Differential graded associative algebra

A chain complex
X(n)

∂
Ð→ X(n − 1)

with an operation

X(n) ⊗ X(m)
µ
Ð→ X(m + n),

such that:
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DGAs

DGAs are algebras of a D-colored operad, where D is a (linear)
category

⋯
∂
Ð→ (n + 1)

∂
Ð→ (n)

∂
Ð→ (n − 1)

∂
Ð→ ⋯,

with ∂∂ = 0.
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Why

Classically, operads are used to describe homotopy versions of
algebraic structures.
C-operads can describe more complicated structures, such as
classical operads.
If an algebraic structure has unary operations, we can hide them
into the coloring category and resolve the remaining operations.
Goal = homotopy operads:

Classical (non-unital) operads are algebras of a (binary quadratic)
category-colored operad.
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Define C-operads

Let SC be the free symmetric monoidal category on C.

Definition

A C-collection is a functor

(SC)op × C P
Ð→ VectK
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Define C-operads

A C-collection is:
Spaces

Pn (
c

c1⋯ cn
)

symmetric actions

P (
c

c1⋯ cn
)

(−)σ
ÐÐ→
≅

P (
c

cσ(1)⋯ cσ(n)
) ,

C-actions

P (
c

c1⋯ cn
)

P
⎛

⎝

f
f1⋯ fn

⎞

⎠

ÐÐÐÐÐÐ→ P (
d

d1⋯dn
) ,
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Define C-operads

Definition
A C-operad is a C-collection P with composition maps

P (
c

c1⋯ ci⋯ cn
) ⊗ P (

ci
d1⋯dm

)

○i
Ð→ P (

c
c1⋯d1⋯dm⋯ cn

) ,

’natural’ in the connecting variable ci
natural in c1, . . . ,d1 . . . ,dm, . . . , cn, c
associative
respect symmetric actions
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Algebras

Definition
Let P be a C-operad. A P-algebra is a functor X ∶C → VectK
together with a maps

P (
c

c1⋯ cn
) ⊗ X(c1) ⊗⋯⊗ X(cn)

α
Ð→ X(c),

which respect the actions and composition of P.
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Two results

(Binary quadratic) category-colored operad H, whose algebras
are classical (non-unital) operads. The construction works in the
context of operadic categories - can describe other operad-like
structurtes.
Characterisation of C-operad as internal operads in a specific
categorical operad of functors (more category theory).
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Result I

Classical operad:

spaces O(n) with symmetric actions O(n)
(−)σ
ÐÐ→ O(n),

copmositions O(n) × O(m)
○i
Ð→ O(m + n − 1),

equivariant:
○i ⋅ ((−)σ ⊗ (−)τ) = (σ ○i τ) ⋅ ○σ(i),

associative:

○i ⋅ (○j ⊗ 1) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

○j+k−1 ⋅ (○i ⊗ 1) if 1 ≤ i < j ≤ n,
○j ⋅ (1⊗ ○i−j+1) if j ≤ i < j +m,
○j ⋅ (○i−m+1 ⊗ 1) if j +m ≤ i ≤ n +m − 1.

⇒ we want to abstract this data
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Result I

The coloring category is Σ - objects natural numbers, morphisms
bijections
Formal operations

G (
n +m − 1
n m ) = {∗i ∣1 ≤ i ≤ n}

×Σn ×Σm ×Σn+m−1/Eq

(∗i, σ, τ,1) ∼ (∗σ(i),1,1, σ ○i τ)

H = F(G)/As
[∗i] ○1 [∗j] ∼ τ([∗j+k−1] ○1 [∗i])

[∗i] ○1 [∗j] ∼ [∗j] ○2 [∗i−j+1]

[∗i] ○1 [∗j] ∼ τ([∗j] ○1 [∗i−m+1])
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