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Geometry and Physics

A tale of two monodromy problems:

• Constructing conformal blocks of 2d CFT at large central
charge

• The uniformization of the punctured sphere S2\{zn}.

What is known: there exists a unique solution to the Liouville
equation that satisfies prescribed boundary conditions at the
punctures.

The goal: Discuss an existence criterion for a Liouville solution
on the pseudosphere (i.e. Poincaré disk with a boundary
condition)
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Conformal blocks

2d conformal field theory (CFT): a class of quantum mechanical
models of local operators whose correlation functions are invariant
under Möbius transformations

⟨O1(z1)...On(zn)⟩ = ⟨O ′
1(z

′
1)...O

′
n(z

′
n)⟩, (1)

where

O ′
i (z

′
i ) =

(
∂z ′i
∂zi

)−hi

Oi (zi ), zn ∈ C ∪ {∞}. (2)

Infinitesimally invariant under (anti-)holomorphic coordinate
transformations (generated by two copies of the Virasoro algebra):

[Ln, Lm] = Ln−m +
c

12
n(n2 − 1)δn,−m (3)

with central charge c
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Conformal blocks

state-operator map: ∃ an isomorphism from: states |Ψ⟩ → local
operators OΨ(z)

OΨ(0)|0⟩ = |Ψ⟩ (4)

Operator product expansion (OPE):

O1(0)O2(z)|0⟩ =
∑
k

ck(z)|ϕk⟩ =
∑
k

ck
zh1+h2−hk

ϕk(0)|0⟩ (5)

where hi are eigenvalues under the rescaling generator

Holds as an operator equation

O1(0)O2(z) =
∑
k

ck
zh1+h2−hk

ϕk(0) (6)
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Conformal blocks
Operator product expansion (OPE):

O1(0)O2(z)|0⟩ =
∑
k

ck(z)|ϕk⟩ =
∑
k

ck
zh1+h2−hk

Ok(0)|0⟩ (7)

Holds as an operator equation

O1(0)O2(z) =
∑
k

ck
zh1+h2−hk

Ok(0) (8)

Compute correlators by subsequent OPEs

⟨O1O2O3O4⟩ (9)

Conformal block: Restrict the sum of the OPE to the states
associated to a single Virasoro representation.

F(zi , hi |h) =
(z1 − z3)

h−h1−h3

(z2 − z4)h2+h4−h

∞∑
k=0

βkx
k , x =

(z1 − z4)(z3 − z2)

(z1 − z3)(z4 − z2)

(10)
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Null vector decoupling

Conformal blocks at large central charge c:
Put together a null state ⟨null|null⟩ = 0, achieved by

|null⟩ =
(
L−2 −

3

2
(2hψ + 1)L2−1

)
|ψ⟩ c = 2hψ

5− 8hψ
2hψ + 1

(11)

Inserting the operator ψ(0)|0⟩ = |ψ⟩ yields a shortening condition:

ψ′′(z) +
6

c
T (z)ψ(z) = 0 (12)

where

ψ(z) =
⟨ψ(z)O1...On⟩
⟨O1...On⟩

, T (z) =
⟨T (z)O1...On⟩

⟨O1...On⟩
(13)
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Monodromy problem
At c >> 1 and hi ∼ c conformal blocks exponentiate:

F(zi , hi |h) = e−
c
12 f (zi ,

hi
c |h) (14)

Virasoro Ward identity decrees:

T (z) =
n∑

i=1

(
hi

(z − zi )2
−

c
12∂zi f (zi , hi |h)

z − zi

)
(15)

Our ODE is multi-valued, ψ′′ + 6
cT (z)ψ = 0

Recipe:

• solve second-order ODE

• determine monodromies
as function of ∂zi f

• Select out the
monodromies project out
our restricted OPE

• solve for ∂zi f and
integrate
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Uniformization of Riemann
surfaces

Theorem

Uniformization theorem: Any compact oriented genus > 2 surface
S is univerally covered by the upper half-plane

Method of Poincaré: Construct a line element ds2 = e−ϕdzdz̄ on
S that has constant negative scalar curvature everywhere and
respects the identifications imposed by non-contractable cycles on S.

R = −1 ⇔ ∂∂̄ϕ(z , z̄) + e−ϕ(z,z̄) = 0 (16)

Local solution: e−ϕ = |∂f (z)|2
(1−|f (z)|2)2 for any holomorphic f (z).

Note: e−ϕ invariant under f → af+b
cf+d where ad − bc = 1,

a, b, c , d ∈ R.
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uniformization of the punctured
sphere

Uniformizable surface: the finitely punctured sphere S2\{zn}
Boundary conditions at the (elliptic) punctures

ϕ(z → zi ) = −2αi log |z − zi |+O(1) (17)

Easily shown: T (z) ≡ ∂2ϕ− 1
2 (∂ϕ)

2 is meromorphic with
second-order poles:

T (z) =
n∑

i=1

(
1
2αi (2− αi )

(z − zi )2
+

ci
z − zi

)
(18)

Classical result: if f (z) solves

S [f , z ] =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

=
1

2
T (z) (19)

then ϕ(z) is a solution to the Liouville equation that satisfies the
correct boundary conditions.
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Monodromy problem
If ψ1(z) and ψ2(z) are linearly independent and solve

ψ′′(z) +
1

2
T (z)ψ(z) = 0 (20)

then f (z) = ψ1(z)/ψ2(z) solves (19) above

The problem: A priori, f (z) is a multi-valued function on the
punctured sphere.
Under a closed loop:

ψ1(z) → aψ1(z) + bψ2(z), (21)

ψ2(z) → cψ1(z) + dψ2(z), (22)

Translates into

f (z) → af (z) + b

cf (z) + d
(23)

The metric is only single-valued on S2\{zn} if(
a b
c d

)
∈ SL(2,R) (24)
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Polyakov conjecture
Two similar monodromy problems:

• We fix the the conjugacy class of M around a few pairs (CFT)

• We fix all the monodromy matrices to fall within SL(2,R)
(Uniformization)

In either case we solve for the residues of the first-order poles

Polyakov conjecture: The Liouville action functional evaluated on
the saddle-point is the generating functional for the accessory
parameters

SL[ϕ] =
1

2

∫ ∫
S2\{zn}

(
|∂ϕ|2 + eϕ

)
dz ∧ dz̄

+
i

2

n∑
i=1

αi

∮
Di

ϕ

(
dz̄

z̄ − z̄i
− dz

z − zi

)
(25)

such that

ci =
1

2π

∂SL[ϕsaddle]

∂zi
(26)
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Liouville theory on the
psuedosphere

Reasonable question: ”Gideon, this is old stuff, where is the new
stuff!?”

Instead of S2\{zn} the punctured psuedosphere UHP\{zn}
ZZ-boundary condition on the real axis:

ϕ(z → Im(z) = 0) = log(2Im(z)) (27)

Physical applications:

• CFTs on a background with a reflecting boundary

• Holographic bulk gravity in a 3d asymptotically AdS universe
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Doubling trick
Consequence of ϕ(z → Im(z) = 0) = log(2Im(z)):

T (z)|Im(z)=0 ∈ R (28)

Continue T (z) to the full (punctured) Riemann sphere by Schwartz
reflection

T (z) = T̄ (z̄) (29)

Implies

czi = cz̄i ⇒ ∂SL[ϕsaddle]

∂zi
=
∂SL[ϕsaddle]

∂z̄i
(30)

Hence up to an irrelevant overall constant

SL[ϕsaddle] ∈ R (31)
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Existence criterion

One can show: T (z) = T̄ (z̄) implies ∃ f (z) such that f (z) = f̄ (z̄)

Hence M = M−1 which implies M = I2×2.
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Existence criterion
Consequence: the doubled psuedosphere Liouville solution computes
a conformal block with exchanged vacuum states

From generic CFT considerations

F(zi , hi |h = 0) =
(z1 − z̄1)

2h1

(z2 − z̄2)2h2(z3 − z̄3)2h3

∞∑
{k1,k2,k3}=0

βk1,k2,k3x
k1
1 xk2

2 xk3
3 ,

(32)
With the cross ratios

x1 =
(z̄2 − z̄3)(z1 − z̄1)

(z̄1 − z̄2)(z̄3 − z1)
, x2 =

(z̄2 − z̄3)(z2 − z̄1)

(z̄1 − z̄2)(z̄3 − z2)
, x3 =

(z̄2 − z̄3)(z3 − z̄1)

(z̄1 − z̄2)(z̄3 − z3)
(33)

Burden for reality lies in the cross-ratios
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What went wrong

Conclusion: Only when the anharmonic ratios are real do we not
obtain a contradiction

Take-away message Existence criterion: while the doubled
psuedosphere yields a unique solution to the uniformization problem
on the sphere, this solution will only satisfy the ZZ-boundary
condition if the anharmonic ratios of the puncture locations are
real-valued
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Thank you for you attention


