# Compact and Non-compact Parabolic Space Forms

Henrik Winther Joint with B. Kruglikov

Masaryk University, Brno, Czech Republic

January 17, 2023

Let G be a Lie group and H a Lie subgroup.

### Definition

A Cartan geometry  $(\mathcal{G}, M, \omega)$  of type  $(\mathcal{G}, H)$  is a principal *H*-bundle  $\mathcal{G} \to M$  endowed with a Cartan connection  $\omega \in \Omega^1(\mathcal{G}, \mathfrak{g})$ , i.e.:

(i)  $\omega$  is *H*-equivariant;

(ii) 
$$\omega(\zeta_Y) = Y, \forall Y \in \mathfrak{h}$$
, where  $\zeta_Y(u) = \frac{d}{dt}\Big|_{t=0} u \cdot \exp(tY)$ ;

(iii) 
$$\omega_u : T_u \mathcal{G} \to \mathfrak{g}$$
 is a linear isomorphism  $\forall u \in \mathcal{G}$ .

The curvature of  $\omega$  is  $d\omega + \frac{1}{2}[\omega, \omega] \in \Omega^2(\mathcal{G}, \mathfrak{g})$ . The isomorphism (iii) identifies this 2-form with the curvature function  $\kappa : \mathcal{G} \to \Lambda^2 \mathfrak{g}^* \otimes \mathfrak{g}$ , which is horizontal, so  $\kappa : \mathcal{G} \to \Lambda^2(\mathfrak{g}/\mathfrak{h})^* \otimes \mathfrak{g}$ .

A Cartan geometry is flat if  $\kappa \equiv 0$ .

Compact and Non-compact Parabolic Space Forms

# Parabolic subgroups

Let G be a (real or complex) simple Lie group with Lie algebra  $\mathfrak{g}$ .

Definition

A minimal parabolic subalgebra  $\mathfrak{b}$  is the normalizer of a non-abelian maximal nilpotent subalgebra of  $\mathfrak{g}$ . In the complex case, the minimal parabolic is called the Borel subalgebra, and is a maximal solvable subalgebra of  $\mathfrak{g}$ .

### Definition

A parabolic subalgebra  $\mathfrak{p}$  is a proper subalgebra of  $\mathfrak{g}$  such that  $\mathfrak{b} \subset \mathfrak{p}$  (for some  $\mathfrak{b}$ ). A parabolic subgroup is any (not necessarily connected) subgroup with Lie(P) =  $\mathfrak{p}$ .

Parabolic subalgebras are (up to conjugacy) in bijective correspondance with:

 $1. \ \mbox{The positive parts of nontrivial } \mathbb{Z}-\mbox{gradings}$ 

 $\mathfrak{g} = \mathfrak{g}_{-k} \oplus \cdots \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_k \oplus \cdots \oplus \mathfrak{g}_1.$ 

2. Markings on the Dynkin (or Satake) diagram of  $\mathfrak{g}$ .

# More on markings

Complex Borel subalgebras can be found by picking a hyperplane in the dual space  $\mathfrak{h}^*$  to a Cartan subalgebra  $\mathfrak{h}$ , which does not pass through any roots. Label the roots in the two half-spaces as positive and negative. Then  $\mathfrak{b}$  is generated by all positive root vectors together with  $\mathfrak{h}$ .

 $\bullet - - - \times - - \bullet - - \bullet - \bullet - \bullet - \bullet = \rangle = \bullet$ 

The complex parabolic subalgebras  $\mathfrak{p}$  can be classified by which negative root vectors are **not** included. This is described by crossing nodes on Dynkin diagrams.

In the real case, the parabolics are those which admit a real slice with the real form in the complexification of g. This is described by crosses on the Satake diagram, according to some rules. Compact and Non-compact Parabolic Space Forms
Introduction, terminology and preliminaries
Cartan space forms

### Parabolic Geometries

A parabolic geometry is a Cartan geometry modelled on G/P where G is a semi-simple Lie group and P is a parabolic subgroup. We say that this is

- 1. regular, if  $\kappa(\mathfrak{g}^i,\mathfrak{g}^j)\subset\mathfrak{g}^{i+j+1}$ ,  $\forall i,j<0$ ;
- 2. normal, if  $\partial^* \kappa = 0$ , where  $\partial^*$  is the Kostant codifferential.

The main invariant of a (normal, regular) parabolic geometry is the harmonic curvature

$$\kappa_{H} \in C^{\infty}(\mathcal{G}, H^{2}(\mathfrak{g}_{-}, \mathfrak{g}))$$

We have that dim G is always the maximal automorphism dimension, and G/P is the maximal model, also called the flat model as it's locally characterized by  $\kappa_H = 0$ .

Let G be a real or complex simple Lie group, and P a parabolic subgroup. Definition (Sharpe)

A (parabolic) Cartan geometry  $(M, \mathcal{G}, \omega)$  of type (G, P) will be called a space form if it is complete and flat.

In the setting of parabolic geometries, there are two distinguished choices of space forms (with fixed  $(\mathfrak{g},\mathfrak{p})$ -data):

- The universal space form  $M = \widetilde{G/P}$ , i.e. the simply connected cover of all other space-forms,
- The (real or complex) algebraic model, given by taking G = Int(g<sub>C</sub>) ∩ Aut(g), P = N<sub>G</sub>(p), M = G/P, called the generalized flag manifold of (G, P).

#### Remark

Other parabolic space forms are also sometimes referred to as generalized flag manifolds.

Compact and Non-compact Parabolic Space Forms

## Complex Parabolic Space Forms

Let G be a complex connected simple Lie group with parabolic subgroup P. We have that

- ▶ The *P*-principal bundle  $G \rightarrow G/P$  with the Maurer-Cartan form  $\omega$  is a space form.
- ▶ The homogeneous space M = G/P is a compact Kähler manifold and a projective algebraic variety.

In particular every complex parabolic space form is compact.

## Real Parabolic Space Forms

Let G be a real connected simple Lie group with parabolic subgroup P.

- ▶ The *P*-principal bundle  $G \rightarrow G/P$  with the Maurer-Cartan form  $\omega$  is a space form.
- The universal space form is not necessarily compact.
- The generalized flag manifold is compact and a real projective variety.

#### Example

 $G = Sp(2n, \mathbb{R}), n \ge 1, P = P_n$ . The space forms: Lagrangian Grassmannian  $\Lambda_n = G/P$ , its oriented version  $\Lambda_n^+ = G/P_o$  and the universal cover  $\tilde{\Lambda}_n$ . The former two are compact while the latter is non-compact. The isomorphism  $H^1(\Lambda_n) = \pi_1(\Lambda_n) \simeq \mathbb{Z}$  is known as the Maslov index.

Note that if the universal space form is compact, all space forms are compact.

### Theorem (Main theorem)

Let G be a simple real Lie group and  $P = P_I$  its parabolic subgroup. Then the universal space form  $\widetilde{G/P}$  is non-compact only in the following cases:



For each group, there is just one node which determines compactness.

From now on we denote by G the real algebraic Lie group introduced before and by  $\rho: \widetilde{G} \to G$  its universal cover. Let  $\hat{P} = \rho^{-1}(P)$  and let  $\hat{P}_o$ be its connected component of unity. Let  $\Gamma = \pi_1(G)$ .

Lemma We have  $\widetilde{G/P} = \widetilde{G}/\hat{P}_o$ .

#### Proof.

The equality  $\pi_1(\tilde{G}/\hat{P}) = |\hat{P}/\hat{P}_o|$  follows from the long exact homotopy sequence:

$$0=\pi_1(\widetilde{G})\to\pi_1(\widetilde{G}/\hat{P})\overset{\sim}{\to}\pi_0(\hat{P})\to\pi_0(\widetilde{G})=0.$$

If we change  $\hat{P}$  to  $\hat{P}_o$  here, we get the required claim.

Compact and Non-compact Parabolic Space Forms Results and Classification Some Lemmas

> Lemma We have  $|\mathcal{Z}(\widetilde{G})| < \infty \Leftrightarrow |\Gamma| < \infty$ .

#### Proof.

This follows from the fact that for algebraic groups G,  $\mathcal{Z}(G)$  is finite, and the following short exact sequence:

$$0 
ightarrow \pi_1(\mathcal{G}) 
ightarrow \mathcal{Z}(\widetilde{\mathcal{G}}) 
ightarrow \mathcal{Z}(\mathcal{G}) 
ightarrow 0$$

Let  $\varphi$  be the map of fundamental groups induced by the inclusion  $P_o \subset G$ , which is a part of the long exact sequence

$$\pi_1(P) = \pi_1(P_o) \stackrel{\varphi}{\longrightarrow} \pi_1(G) \longrightarrow \pi_1(G/P_o) \to \pi_0(P_o) = 0.$$

#### Lemma

We have that G/P is compact  $\Leftrightarrow [\Gamma : \varphi(\pi_1(P))] < \infty$ .

#### Proof.

This follows from the following commutative diagram of coverings:



 $\widetilde{G}/\hat{P}_o$  is compact  $\Leftrightarrow [\hat{P}: \hat{P}_o] < \infty \Leftrightarrow |\pi_1(G/P)| < \infty \Leftrightarrow [\Gamma: \varphi(\pi_1(P))]$  is finite.

# Candidate groups

By Lemma 2, groups with noncompact spaceforms must have  $|\pi_1(G)| = \infty$ . Since  $\pi_1(G) = \pi_1(K)$ , we essentially need to look for groups G where  $S^1 \subset K$  is normal in K. This can be found from the list of non-compact symmetric spaces.

(A) 
$$G = SU(p,q), K = S[U(p)U(q)] (p,q > 0),$$
  
(B)  $G = SO(p,q), K = S[O(p)O(q)] (p = 2 \lor q = 2),$   
(C)  $G = Sp(2n, \mathbb{R}), K = U(n),$   
(D)  $G = SO^*(2n), K = U(n),$   
(E)  $G = E_6^{(-14)}, K = SO(2)Spin(10)$  and  $G = E_7^{(-25)}, K = SO(2)E_6^c.$   
In each case  $\pi_1(G)/\operatorname{Tors}(\pi_1(G)) = \mathbb{Z}$ , and so by Lemma 3, the universal space form is non-compact iff  $\varphi(\pi_1(P))$  is finite. Also note that if  $\widetilde{G/P}$  is non-compact and  $Q \subset P$  then  $\widetilde{G/Q}$  is also non-compact. Similarly, if  $\widetilde{G/Q}$  is compact then the same is true for  $\widetilde{G/P}$ .

Compact and Non-compact Parabolic Space Forms

Partial proof and explanations

### Satake diagrams for exceptional candidates



### Cases

We will consider the simplest case B) and the most complicated case E).

Case B)

Let G = SO(2, q), q > 3. The parabolic  $P_1$  contracts to CO(1, q - 1), which has finite fundamental group.

For  $P = P_1$  and  $P = P_{1,2}$ , the universal space form  $\widetilde{G/P}$  is non-compact.

On the other hand, for  $P = P_2$  we have  $G_0 = SL(2, \mathbb{R})\mathbb{R}_{\times}SO(n-2)$  and the infinite part of the fundamental group is generated by  $SO(2) \subset SL(2, \mathbb{R})$  that is nontrivial in  $\pi_1(G)$ 

For 
$$P = P_2$$
,  $\widetilde{G/P}$  is compact.

Compact and Non-compact Parabolic Space Forms Results and Classification Partial proof and explanations

Case E)

Let  $G = E_6^{(-14)}$ . We have K = SO(2) Spin(10) and  $\pi_1(G) = \mathbb{Z}$ . We let  $P = P_{1,2,6} = B$ , the Borel. This gives  $G_0 = \mathbb{R}_{\times} \mathbb{C}_{\times} SU(4)$ . There is a symmetric space decomposition,

$$\mathfrak{e}_6^{(-14)} = \mathfrak{so}(2) \oplus \mathfrak{so}(10) \oplus \mathbb{S}_{10},$$

and  $\mathfrak{so}(2)$  acts as a linear complex structure J on  $\mathbb{S}_{10}$ .

If this J has a non-trivial component in C ⊂ g<sub>0</sub>, then all space forms are compact.

Branch the grading by  $\mathfrak{su}(4)$ .

$$\mathfrak{g}=\mathfrak{g}_{-4}\oplus\mathfrak{g}_{-3}\oplus\mathfrak{g}_{-2}\oplus\mathfrak{g}_{-1}\oplus\mathfrak{g}_0\oplus\mathfrak{g}_1\oplus\mathfrak{g}_2\oplus\mathfrak{g}_3\oplus\mathfrak{g}_4,$$

 $\mathfrak{g}_0=\mathbb{R}\oplus\mathbb{C}\oplus\mathfrak{su}(4),\ \mathfrak{g}_{\pm1}=\mathbb{R}^6\oplus\mathbb{C}^4,\ \mathfrak{g}_{\pm2}=\mathbb{R}\oplus\mathbb{C}^4,\ \mathfrak{g}_{\pm3}=\mathbb{R}^6,\ \mathfrak{g}_{\pm4}=\mathbb{R}.$ 

and the symmetric decomposition:

$$\mathfrak{so}(10)|_{\mathfrak{su}(4)} = \Lambda^2 \mathbb{R}^{10}|_{\mathfrak{su}(4)} = 2\mathbb{R} + 2\mathbb{C}^4 + 2\mathbb{R}^6 + \mathfrak{su}(4), \quad \mathbb{S}_{10}|_{\mathfrak{su}(4)} = 4\mathbb{R} + 2\mathbb{C}^4 + 2\mathbb{R}^6$$

Some reasoning will then give the result that u(1) ⊂ C ⊂ g<sub>0</sub> generates a non-trivial loop in G and so all space forms are compact.