e
Compact and Non-compact Parabolic Space Forms

Compact and Non-compact Parabolic Space
Forms

Henrik Winther
Joint with B. Kruglikov

Masaryk University, Brno, Czech Republic

January 17, 2023

1/16



Compact and Non-compact Parabolic Space Forms
Introduction, terminology and preliminaries

L Cartan space forms

Let G be a Lie group and H a Lie subgroup.

Definition
A Cartan geometry (G, M,w) of type (G, H) is a principal H-bundle
G — M endowed with a Cartan connection w € Q1(G, g), i.e.:

(i) w is H-equivariant;
(il) w(Cy) =Y, VY € b, where (y(u) = %‘t:O u-exp(tY);
(ili) wy : TyG — g is a linear isomorphism Yu € G.

The curvature of w is dw + 3[w,w] € Q(G, g). The isomorphism (iii)
identifies this 2-form with the curvature function x : G — A%g* ® g,
which is horizontal, so k : G — A%(g/h)* ® g.

A Cartan geometry is flat if K = 0.
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Compact and Non-compact Parabolic Space Forms
Introduction, terminology and preliminaries

L Cartan space forms

Parabolic subgroups

Let G be a (real or complex) simple Lie group with Lie algebra g.
Definition

A minimal parabolic subalgebra b is the normalizer of a non-abelian
maximal nilpotent subalgebra of g. In the complex case, the minimal
parabolic is called the Borel subalgebra, and is a maximal solvable
subalgebra of g.

Definition
A parabolic subalgebra p is a proper subalgebra of g such that b C p (for
some b). A parabolic subgroup is any (not necessarily connected)
subgroup with Lie(P) = p.
Parabolic subalgebras are (up to conjugacy) in bijective correspondance
with:

1. The positive parts of nontrivial Z—gradings

=0 «kD DI 1D DI D--- D g1
2. Markings on the Dynkin (or Satake) diagram of g.
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Compact and Non-compact Parabolic Space Forms
Introduction, terminology and preliminaries

L Cartan space forms

More on markings

Complex Borel subalgebras can be found by picking a hyperplane in the
dual space h* to a Cartan subalgebra b, which does not pass through any
roots. Label the roots in the two half-spaces as positive and negative.
Then b is generated by all positive root vectors together with §.

. X . o . X e —=)— o

The complex parabolic subalgebras p can be classified by which negative
root vectors are not included. This is described by crossing nodes on
Dynkin diagrams.
» In the real case, the parabolics are those which admit a real slice
with the real form in the complexification of g. This is described by
crosses on the Satake diagram, according to some rules.
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Introduction, terminology and preliminaries

L Cartan space forms

Parabolic Geometries

A parabolic geometry is a Cartan geometry modelled on G/P where G is
a semi-simple Lie group and P is a parabolic subgroup. We say that this
is

L. regular, if k(g', ¢/) C g't L, Vi j <O0;
2. normal, if 0%k = 0, where 9* is the Kostant codifferential.

The main invariant of a (normal, regular) parabolic geometry is the
harmonic curvature

ki € C2(G, H(g-, 9))

We have that dim G is always the maximal automorphism dimension, and
G/P is the maximal model, also called the flat model as it's locally
characterized by ky = 0.
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L Cartan space forms

Let G be a real or complex simple Lie group, and P a parabolic subgroup.

Definition (Sharpe)
A (parabolic) Cartan geometry (M, G, w) of type (G, P) will be called a
space form if it is complete and flat.
In the setting of parabolic geometries, there are two distinguished choices
of space forms (with fixed (g, p)-data):
» The universal space form M = 6773 i.e. the simply connected cover
of all other space-forms,

> The (real or complex) algebraic model, given by taking
G = Int(gc) N Aut(g), P = Ng(p), M = G/P, called the
generalized flag manifold of (G, P).

Remark
Other parabolic space forms are also sometimes referred to as generalized
flag manifolds.
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Complex Parabolic Space Forms

Complex Parabolic Space Forms

Let G be a complex connected simple Lie group with parabolic subgroup
P. We have that

» The P-principal bundle G — G/P with the Maurer-Cartan form w is
a space form.

» The homogeneous space M = G/P is a compact Kahler manifold
and a projective algebraic variety.

In particular every complex parabolic space form is compact.
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L Real Parabolic Space Forms

Real Parabolic Space Forms

Let G be a real connected simple Lie group with parabolic subgroup P.
» The P-principal bundle G — G/P with the Maurer-Cartan form w is
a space form.
» The universal space form is not necessarily compact.

» The generalized flag manifold is compact and a real projective
variety.

Example

G = Sp(2n,R), n> 1, P = P,. The space forms: Lagrangian
Grassmannian N, = G /P, its oriented version N} = G /P, and the
universal cover \,. The former two are compact while the latter is
non-compact. The isomorphism H*(A,) = 71(A,) =~ Z is known as the
Maslov index.

Note that if the universal space form is compact, all space forms are
compact.
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Compact and Non-compact Parabolic Space Forms
Results and Classification

L Main result

Theorem (Main theorem)
Let G be a simple real Lie group and P = Py its parabolic subgroup.

Then the universal space form G /P is non-compact only in the following
cases:

> G=SU(n,n),n—1€l forl <n;
G =50(2,n), 1€l for2 < n;

G =5p(2n,R), nel forl <n;

G =S50*(2n), nel for2 < ne?2Z

>
>
>
> G=E"® 7€l

For each group, there is just one node which determines compactness.
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Results and Classification

L Some Lemmas

From now on we denote by G the real algebraic Lie group introduced
before and by p: G — G its universal cover. Let P = p~ Y(P) and let P,
be its connected component of unity. Let [ = m1(G).

Lemma

We have G/P G/P,.

Proof. o o

The equality m1(G/P) = |P/P,| follows from the long exact homotopy
sequence:

0=m(G) = m(G/P) S mo(P) = m(G) = 0.

If we change P to P, here, we get the required claim. O
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Compact and Non-compact Parabolic Space Forms

Results and Classification

Some Lemmas

Lemma
We have |Z(G)| < oo < | < 0.

Proof.
This follows from the fact that for algebraic groups G, Z(G) is finite,

and the following short exact sequence:

0— m(G) = Z2(G) —» 2(G) =0
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Results and Classification

L Some Lemmas

Let ¢ be the map of fundamental groups induced by the inclusion
P, C G, which is a part of the long exact sequence

m1(P) = m1(Po) —= m1(G) — m1(G/Po) — mo(Po) = 0.
Lemma .
We have that G/P is compact < [ : ¢(m1(P))] < oo.
Proof.

This follows from the following commutative diagram of coverings:
6 —-——
lr
G——

E/FA’O is compact < [P : P,] < 00 < |m1(G/P)| < 00 & [I: o(m1(P))]

is finite. O

12/16
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Results and Classification

L Partial proof and explanations

Candidate groups

By Lemma 2, groups with noncompact spaceforms must have

|m1(G)| = o0. Since m1(G) = m1(K), we essentially need to look for
groups G where S C K is normal in K. This can be found from the list
of non-compact symmetric spaces.

(A) G =5U(p,q), K= S[U(p)U(q)] (p.q>0),

(B) G =50(p,q), K=S5[0(p)O(q)] (P=2V qg=2),
(C) G =5p(2nm,R), K= U(n),

(D) G =S0*(2n), K = U(n),
(E) G =E™, K = 50(2)Spin(10) and G = E{ %), K = SO(2)E¢.
In each case m1(G)/ Tors(m1(G)) = Z, and so by Lemma 3, the universal
space form is non-compact iff ¢(71(P)) is finite. Also note that if 21‘7/3 is
non-compact and @ C P then 676 is also non-compact. Similarly, if
676 is compact then the same is true for 57;’
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Partial proof and explanations

Satake diagrams for exceptional candidates

o ° . ° o o
°
o(o/j\o‘o

14/16
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L Partial proof and explanations

Cases

We will consider the simplest case B) and the most complicated case E).
> Case B)
Let G = SO(2,q),q > 3. The parabolic P; contracts to CO(1,q — 1),
which has finite fundamental group.
» For P = P; and P = Py 5, the universal space form 6773 is
non-compact.

On the other hand, for P = P, we have Gy = SL(2,R)R4 SO(n — 2) and
the infinite part of the fundamental group is generated by
S50(2) C SL(2,R) that is nontrivial in m(G)

» For P = P,, 571/3 is compact.
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L Partial proof and explanations

> Case E)
Let G = Eﬁ(_”). We have K = SO(2) Spin(10) and m1(G) = Z. We let
P = Pi56 = B, the Borel. This gives Gg = RxC,SU(4). There is a
symmetric space decomposition,

eg_m) = 50(2) ® 50(10) & S1o,

and s0(2) acts as a linear complex structure J on Syo.
» If this J has a non-trivial component in C C go, then all space forms
are compact.
Branch the grading by su(4).
§=9-4DPg3Dg2DPg-1Dgo D g1 Dg2D g3 D ga,
go =R Cosu4), gr1 =R°@C*, gir =R&C* gi3=R° gus =R
and the symmetric decomposition:
50(10)[su(a) = A’R'|5y(a) = 2R+2C*+2R%+5u(4),  Siolsu(ay = 4R+2C*+2R°

» Some reasoning will then give the result that u(1) C C C go
generates a non-trivial loop in G and so all space forms are compact.

16/16



	Introduction, terminology and preliminaries
	Cartan space forms
	Complex Parabolic Space Forms
	Real Parabolic Space Forms

	Results and Classification
	Main result
	Some Lemmas
	Partial proof and explanations


