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Introduction, terminology and preliminaries

Cartan space forms

Let G be a Lie group and H a Lie subgroup.

Definition
A Cartan geometry (G,M, ω) of type (G ,H) is a principal H-bundle
G → M endowed with a Cartan connection ω ∈ Ω1(G, g), i.e.:
(i) ω is H-equivariant;

(ii) ω(ζY ) = Y , ∀Y ∈ h, where ζY (u) =
d
dt

∣∣
t=0

u · exp(tY );

(iii) ωu : TuG → g is a linear isomorphism ∀u ∈ G.
The curvature of ω is dω + 1

2 [ω, ω] ∈ Ω2(G, g). The isomorphism (iii)
identifies this 2-form with the curvature function κ : G → Λ2g∗ ⊗ g,
which is horizontal, so κ : G → Λ2(g/h)∗ ⊗ g.

A Cartan geometry is flat if κ ≡ 0.
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Cartan space forms

Parabolic subgroups
Let G be a (real or complex) simple Lie group with Lie algebra g.

Definition
A minimal parabolic subalgebra b is the normalizer of a non-abelian
maximal nilpotent subalgebra of g. In the complex case, the minimal
parabolic is called the Borel subalgebra, and is a maximal solvable
subalgebra of g.

Definition
A parabolic subalgebra p is a proper subalgebra of g such that b ⊂ p (for
some b). A parabolic subgroup is any (not necessarily connected)
subgroup with Lie(P) = p.

Parabolic subalgebras are (up to conjugacy) in bijective correspondance
with:

1. The positive parts of nontrivial Z−gradings
g = g−k ⊕ · · · ⊕ g−1 ⊕ g0 ⊕ gk ⊕ · · · ⊕ g1.

2. Markings on the Dynkin (or Satake) diagram of g.
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Cartan space forms

More on markings

Complex Borel subalgebras can be found by picking a hyperplane in the
dual space h∗ to a Cartan subalgebra h, which does not pass through any
roots. Label the roots in the two half-spaces as positive and negative.
Then b is generated by all positive root vectors together with h.

• × • ◦ • × • •⟩

The complex parabolic subalgebras p can be classified by which negative
root vectors are not included. This is described by crossing nodes on
Dynkin diagrams.

▶ In the real case, the parabolics are those which admit a real slice
with the real form in the complexification of g. This is described by
crosses on the Satake diagram, according to some rules.



5/16

Compact and Non-compact Parabolic Space Forms

Introduction, terminology and preliminaries

Cartan space forms

Parabolic Geometries

A parabolic geometry is a Cartan geometry modelled on G/P where G is
a semi-simple Lie group and P is a parabolic subgroup. We say that this
is

1. regular, if κ(gi , gj) ⊂ gi+j+1, ∀i , j < 0;

2. normal, if ∂∗κ = 0, where ∂∗ is the Kostant codifferential.

The main invariant of a (normal, regular) parabolic geometry is the
harmonic curvature

κH ∈ C∞(G,H2(g−, g))

We have that dimG is always the maximal automorphism dimension, and
G/P is the maximal model, also called the flat model as it’s locally
characterized by κH = 0.
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Cartan space forms

Let G be a real or complex simple Lie group, and P a parabolic subgroup.

Definition (Sharpe)
A (parabolic) Cartan geometry (M,G, ω) of type (G ,P) will be called a
space form if it is complete and flat.

In the setting of parabolic geometries, there are two distinguished choices
of space forms (with fixed (g, p)-data):

▶ The universal space form M = G̃/P, i.e. the simply connected cover
of all other space-forms,

▶ The (real or complex) algebraic model, given by taking
G = Int(gC) ∩Aut(g), P = NG (p), M = G/P, called the
generalized flag manifold of (G ,P).

Remark
Other parabolic space forms are also sometimes referred to as generalized
flag manifolds.
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Complex Parabolic Space Forms

Let G be a complex connected simple Lie group with parabolic subgroup
P. We have that

▶ The P-principal bundle G → G/P with the Maurer-Cartan form ω is
a space form.

▶ The homogeneous space M = G/P is a compact Kähler manifold
and a projective algebraic variety.

In particular every complex parabolic space form is compact.
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Real Parabolic Space Forms

Real Parabolic Space Forms

Let G be a real connected simple Lie group with parabolic subgroup P.

▶ The P-principal bundle G → G/P with the Maurer-Cartan form ω is
a space form.

▶ The universal space form is not necessarily compact.

▶ The generalized flag manifold is compact and a real projective
variety.

Example
G = Sp(2n,R), n ≥ 1, P = Pn. The space forms: Lagrangian
Grassmannian Λn = G/P, its oriented version Λ+

n = G/Po and the
universal cover Λ̃n. The former two are compact while the latter is
non-compact. The isomorphism H1(Λn) = π1(Λn) ≃ Z is known as the
Maslov index.

Note that if the universal space form is compact, all space forms are
compact.
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Main result

Theorem (Main theorem)
Let G be a simple real Lie group and P = PI its parabolic subgroup.

Then the universal space form G̃/P is non-compact only in the following
cases:

▶ G = SU(n, n), n − 1 ∈ I for 1 < n;

▶ G = SO(2, n), 1 ∈ I for 2 < n;

▶ G = Sp(2n,R), n ∈ I for 1 ≤ n;

▶ G = SO∗(2n), n ∈ I for 2 < n ∈ 2Z;
▶ G = E

(−25)
7 , 7 ∈ I .

◦ • • • ◦ ×

•

For each group, there is just one node which determines compactness.
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Results and Classification

Some Lemmas

From now on we denote by G the real algebraic Lie group introduced
before and by ρ : G̃ → G its universal cover. Let P̂ = ρ−1(P) and let P̂o

be its connected component of unity. Let Γ = π1(G ).

Lemma
We have G̃/P = G̃/P̂o .

Proof.
The equality π1(G̃/P̂) = |P̂/P̂o | follows from the long exact homotopy
sequence:

0 = π1(G̃ ) → π1(G̃/P̂)
∼→ π0(P̂) → π0(G̃ ) = 0.

If we change P̂ to P̂o here, we get the required claim.
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Results and Classification

Some Lemmas

Lemma
We have |Z(G̃ )| < ∞ ⇔ |Γ| < ∞.

Proof.
This follows from the fact that for algebraic groups G , Z(G ) is finite,
and the following short exact sequence:

0 → π1(G ) → Z(G̃ ) → Z(G ) → 0
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Let φ be the map of fundamental groups induced by the inclusion
Po ⊂ G , which is a part of the long exact sequence

π1(P) = π1(Po)
φ−→ π1(G ) −→ π1(G/Po) → π0(Po) = 0.

Lemma
We have that G̃/P is compact ⇔ [Γ : φ(π1(P))] < ∞.

Proof.
This follows from the following commutative diagram of coverings:

G̃ G̃/P̂o

G̃/P̂

G G/P

Γ π1(G/P)

P̂/P̂o

G̃/P̂o is compact ⇔ [P̂ : P̂o ] < ∞ ⇔ |π1(G/P)| < ∞ ⇔ [Γ : φ(π1(P))]
is finite.
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Partial proof and explanations

Candidate groups

By Lemma 2, groups with noncompact spaceforms must have
|π1(G )| = ∞. Since π1(G ) = π1(K ), we essentially need to look for
groups G where S1 ⊂ K is normal in K . This can be found from the list
of non-compact symmetric spaces.

(A) G = SU(p, q), K = S [U(p)U(q)] (p, q > 0),

(B) G = SO(p, q), K = S [O(p)O(q)] (p = 2 ∨ q = 2),

(C) G = Sp(2n,R), K = U(n),

(D) G = SO∗(2n), K = U(n),

(E) G = E
(−14)
6 , K = SO(2)Spin(10) and G = E

(−25)
7 , K = SO(2)E c

6 .

In each case π1(G )/Tors(π1(G )) = Z, and so by Lemma 3, the universal

space form is non-compact iff φ(π1(P)) is finite. Also note that if G̃/P is

non-compact and Q ⊂ P then G̃/Q is also non-compact. Similarly, if

G̃/Q is compact then the same is true for G̃/P.
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Satake diagrams for exceptional candidates

◦ • • • ◦ ◦

•

◦ • • • ◦

◦
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Partial proof and explanations

Cases

We will consider the simplest case B) and the most complicated case E).

▶ Case B)

Let G = SO(2, q), q > 3. The parabolic P1 contracts to CO(1, q − 1),
which has finite fundamental group.

▶ For P = P1 and P = P1,2, the universal space form G̃/P is
non-compact.

On the other hand, for P = P2 we have G0 = SL(2,R)R×SO(n − 2) and
the infinite part of the fundamental group is generated by
SO(2) ⊂ SL(2,R) that is nontrivial in π1(G )

▶ For P = P2, G̃/P is compact.
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▶ Case E)

Let G = E
(−14)
6 . We have K = SO(2) Spin(10) and π1(G ) = Z. We let

P = P1,2,6 = B, the Borel. This gives G0 = R×C×SU(4). There is a
symmetric space decomposition,

e
(−14)
6 = so(2)⊕ so(10)⊕ S10,

and so(2) acts as a linear complex structure J on S10.
▶ If this J has a non-trivial component in C ⊂ g0, then all space forms

are compact.

Branch the grading by su(4).

g = g−4 ⊕ g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3 ⊕ g4,

g0 = R⊕ C⊕ su(4), g±1 = R6 ⊕ C4, g±2 = R⊕ C4, g±3 = R6, g±4 = R.

and the symmetric decomposition:

so(10)|su(4) = Λ2R10|su(4) = 2R+2C4+2R6+su(4), S10|su(4) = 4R+2C4+2R6.

▶ Some reasoning will then give the result that u(1) ⊂ C ⊂ g0
generates a non-trivial loop in G and so all space forms are compact.
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