Correspondences of Quantum L_{∞} Algebras

Joint work with Branislav Jurčo, Ján Pulmann

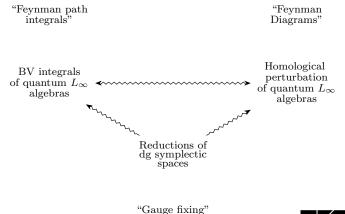
Srní 17.1.2023 Winter School of Geometry and Physics

Martin Zika Mathematical Institute of Charles University

Goal: Extending the homotopy transfer of qL_{∞} algebras to their minimal model [Doubek, Jurčo, Pulmann 2017] to Lagrangian relations.

Overview

Goal: Extending the homotopy transfer of qL_{∞} algebras to their minimal model [Doubek, Jurčo, Pulmann 2017] to Lagrangian relations.



Objects: A **dg symplectic space** is a \mathbb{Z} -graded degree-wise finite real vector space ($V = \bigoplus_{k \in \mathbb{Z}} V_k, Q, \omega$) st. $|Q| = 1, Q^2 = 0$, $|\omega| = -1, \omega$ is graded-skew and

$$\omega\left(Q\bullet,\bullet\right)\pm\left(\bullet,Q\bullet\right)=0.$$

Objects: A **dg symplectic space** is a \mathbb{Z} -graded degree-wise finite real vector space ($V = \bigoplus_{k \in \mathbb{Z}} V_k, Q, \omega$) st. $|Q| = 1, Q^2 = 0$, $|\omega| = -1, \omega$ is graded-skew and

$$\omega\left(Q\bullet,\bullet\right)\pm\left(\bullet,Q\bullet\right)=0.$$

Morphisms: A (Lagrangian) relation $L: V \to W$ is a Lagrangian $(L^{\omega} = L)$ graded linear subspace

$$L \subset \left(\overline{V} \times W, (-\omega_V) \oplus \omega_W\right).$$

Objects: A **dg symplectic space** is a \mathbb{Z} -graded degree-wise finite real vector space ($V = \bigoplus_{k \in \mathbb{Z}} V_k, Q, \omega$) st. $|Q| = 1, Q^2 = 0$, $|\omega| = -1, \omega$ is graded-skew and

$$\omega\left(Q\bullet,\bullet\right)\pm\left(\bullet,Q\bullet\right)=0.$$

Morphisms: A (Lagrangian) relation $L: V \to W$ is a Lagrangian $(L^{\omega} = L)$ graded linear subspace

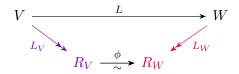
$$L \subset \left(\overline{V} \times W, (-\omega_V) \oplus \omega_W\right).$$

Def: *L* is a (**dg**) reduction, $V \xrightarrow{L} R$, if $\exists C \subset V$ coisotropic ($\Leftrightarrow I \equiv C^{\omega} \subseteq C$ isotropic) st.

 $R \simeq C/I$, (and $I \cap \operatorname{Ker} Q = 0$).

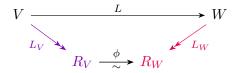
Proposition: Relations decompose (essentialy uniquely) into (co)reductions and linear symplectomorphisms with

 $R_V \simeq C/I \equiv (L \cap V) / \operatorname{Ker} L, \quad R_W \simeq (L \cap W) / \operatorname{Ker} L^T.$



Proposition: Relations decompose (essentialy uniquely) into (co)reductions and linear symplectomorphisms with

 $R_V \simeq C/I \equiv (L \cap V) / \operatorname{Ker} L, \quad R_W \simeq (L \cap W) / \operatorname{Ker} L^T.$

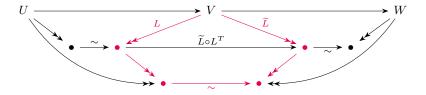


Def: Let $\widehat{\mathcal{S}}(V) \coloneqq \prod_{k \ge 0} (V^*)^{\odot k}$. Then we say L is a **correspondence** between $f_V \in \widehat{\mathcal{S}}(V)$ and $f_W \in \widehat{\mathcal{S}}(W)$ if:

$$\int_{I} \iota_{C}^{*}(f_{V}) \equiv \int_{V} \delta_{L_{V}} f_{V} = \phi^{*} \int_{W} \delta_{L_{W}} f_{W}$$

dg Spaces: Composition of Correspondences

Proposition: Correspondences can be composed if the "neighbouring reductions commute".



Lemma: Given a basis of V, the pentagon commutes if I, \tilde{I} are given by choices of mutually ω -orthogonal generators.

Lemma: For any dg reductions, the generators of the isotropics are ω -orthogonal.

Def(The BV Laplacian): $\mathbf{\Delta} \coloneqq \sum_{i} \frac{\partial_R}{\partial x_i} \frac{\partial_L}{\partial p_i}$ for $\{x_i, p_j\} = \delta_{ij}$.

Def(The BV Laplacian): $\mathbf{\Delta} \coloneqq \sum_{i} \frac{\partial_R}{\partial x_i} \frac{\partial_L}{\partial p_i}$ for $\{x_i, p_j\} = \delta_{ij}$.

Def: A quantum L_{∞} algebra on (V, Q, ω) is given by $S = S_{\text{free}} + S_{\text{int}} \in \widehat{S}(V) \llbracket \hbar \rrbracket$ st.

- 1. the quadratic genus zero (ie. \hbar -independent) part S_{free} is specified by $S_{\text{free}} = \omega (\bullet, Q \bullet)$,
- 2. S_{int} is in degree ≥ 3 ,
- 3. the quantum master equation is satisfied:

$$\hbar \Delta S + \frac{1}{2} \{ S, S \} = 0 \quad \left(\Leftrightarrow \Delta \left(e^{S/\hbar} = 0 \right) \right)$$

Def(The BV Laplacian): $\mathbf{\Delta} \coloneqq \sum_{i} \frac{\partial_R}{\partial x_i} \frac{\partial_L}{\partial p_i}$ for $\{x_i, p_j\} = \delta_{ij}$.

Def: A quantum L_{∞} algebra on (V, Q, ω) is given by $S = S_{\text{free}} + S_{\text{int}} \in \widehat{S}(V) \llbracket \hbar \rrbracket$ st.

- 1. the quadratic genus zero (ie. \hbar -independent) part S_{free} is specified by $S_{\text{free}} = \omega (\bullet, Q \bullet)$,
- 2. S_{int} is in degree ≥ 3 ,
- 3. the quantum master equation is satisfied:

$$\hbar \Delta S + \frac{1}{2} \{ S, S \} = 0 \quad \left(\Leftrightarrow \Delta \left(e^{S/\hbar} = 0 \right) \right)$$

Lemma [Zwiebach]: A quantum L_{∞} algebra S is equivalent to a *loop homotopy Lie algebra* given by a collection of "higher brackets" $\{l_k^g\}_{k\geq 1,g\geq 0}$ via: $S_k^g(\bullet,\ldots,\bullet) = \pm \omega \left(\bullet, l_k^g(\bullet,\ldots,\bullet)\right)$.

qL_{∞} Algebras: Homological Perturbation

Proposition: Let $V = V' \oplus V'' \xrightarrow{L} V'$ be a dg reduction given by an isotropic $I \subset V''$. Then the *homological perturbation lemma* produces:

► An effective observable

$$P_{\text{eff}}:\widehat{\mathcal{S}}\left(V\right)\llbracket\hbar\rrbracket\longrightarrow\widehat{\mathcal{S}}\left(V'\right)\llbracket\hbar\rrbracket$$

defined by a *perturbative series* in powers of (roughly)

$$\hbar \mathbf{\Delta} \left(-Q \Big|_{I} \right)^{-1}$$

► A new homotopic qL_{∞} algebra on $V', S' = S_{\text{free}}|_{V'} + S'_{\text{int}}$ st. $e^{S'_{\text{int}}/\hbar} - P_{\text{cr}}\left(e^{S_{\text{int}}/\hbar}\right)$

$$e^{S'_{\rm int}/\hbar} = P_{\rm eff} \left(e^{S_{\rm int}/\hbar} \right).$$

qL_{∞} Algebras: Homological Perturbation

Proposition: Let $V = V' \oplus V'' \xrightarrow{L} V'$ be a dg reduction given by an isotropic $I \subset V''$. Then the *homological perturbation lemma* produces:

► An effective observable

$$P_{\text{eff}}:\widehat{\mathcal{S}}\left(V\right)\llbracket\hbar\rrbracket\longrightarrow\widehat{\mathcal{S}}\left(V'\right)\llbracket\hbar\rrbracket$$

defined by a *perturbative series* in powers of (roughly)

$$\hbar \mathbf{\Delta} \left(-Q \Big|_{I} \right)^{-1}$$

► A new homotopic qL_{∞} algebra on $V', S' = S_{\text{free}}|_{V'} + S'_{\text{int}}$ st. $e^{S'_{\text{int}}/\hbar} = P_{\text{eff}}\left(e^{S_{\text{int}}/\hbar}\right).$

Example: For
$$V' = H_Q^{\bullet}$$
, the "effective action" $S' \equiv W$ defines
the *minimal model* of the qL_{∞} -algebra. [DJP17]

Proposition: For a dg reduction $V = V' \oplus V'' \xrightarrow{L} V'$,

$$P_{\rm eff}(f) = \int_V \delta_L e^{S_{\rm free}'/\hbar} f.$$

Proposition: For a dg reduction $V = V' \oplus V'' \xrightarrow{L} V'$,

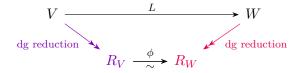
$$P_{\rm eff}(f) = \int_V \delta_L e^{S_{\rm free}'/\hbar} f.$$

Observation: $e^{S'/\hbar} = \int_V \delta_L e^{S/\hbar}$.

Proposition: For a dg reduction $V = V' \oplus V'' \xrightarrow{L} V'$,

$$P_{\rm eff}(f) = \int_V \delta_L e^{S_{\rm free}'/\hbar} f.$$

Observation: $e^{S'/\hbar} = \int_V \delta_L e^{S/\hbar}$. Thus a **correspondence of** qL_{∞} **algebras** defined by integrals of Feynman weights along



is an equality (up to pullback along ϕ) of perturbative effective Feynman weights:

$$e^{S'_V/\hbar} = \phi^* \left(e^{S'_W/\hbar} \right).$$

Conclusion: The interplay between finite-dimensional "path integrals" and homological perturbation theory extends to from the minimal model to a Weinstein-like odd symplectic category.

- Conclusion: The interplay between finite-dimensional "path integrals" and homological perturbation theory extends to from the minimal model to a Weinstein-like odd symplectic category.
- Generalization: Extension to a global setting of graded manifolds should be feasible using the Wehrheim-Woodward category.

- Conclusion: The interplay between finite-dimensional "path integrals" and homological perturbation theory extends to from the minimal model to a Weinstein-like odd symplectic category.
- Generalization: Extension to a global setting of graded manifolds should be feasible using the Wehrheim-Woodward category.
- ▶ Question: Can we use correspondences to describe a natural model category structure on qL_{∞} algebras?

