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Restricted three-body problem

Setup. Three objects: Earth (E), Moon (M), Satellite (S) with masses
mg, my, Mg, under gravitational interaction.

Classical assumptions:
@ (Restricted) ms = 0, i.e. Sis negligible.

@ (Circular) The primaries E and M move in circles around their
center of mass.

© (Planar) S moves in the plane containing E and M.
Spatial case: drop the planar assumption.
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Restricted three-body problem

Setup. Three objects: Earth (E), Moon (M), Satellite (S) with masses
mg, my, Mg, under gravitational interaction.

Classical assumptions:
@ (Restricted) ms = 0, i.e. Sis negligible.

@ (Circular) The primaries E and M move in circles around their
center of mass.

© (Planar) S moves in the plane containing E and M.
Spatial case: drop the planar assumption.

Goal: Study motion of S. )
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Spatial circular restricted three-body problem

In rotating coordinates where E = (1,0,0),M = (—1 + 1,0,0) are
fixed, the Hamiltonian is autonomous and so is conserved:
H:RMNE M} xR >R

I
lg—M| |q-E]|

where we normalize so that mg + my =1, and 1 = my.

1
H(q,p) = EHPHQ + P1G2 — P20,
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Spatial circular restricted three-body problem

In rotating coordinates where E = (1,0,0),M = (—1 + 1,0,0) are
fixed, the Hamiltonian is autonomous and so is conserved:
H:RMNE M} xR >R

1 n 1—pu
H(g,p) = =|p|? - — - .

where we normalize so that mg + my =1, and 1 = my.

Planar problem: p; = g3 = 0 (flow-invariant subset). J
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Spatial circular restricted three-body problem

In rotating coordinates where E = (1,0,0),M = (—1 + 1,0,0) are
fixed, the Hamiltonian is autonomous and so is conserved:
H:RMNE M} xR >R

I
lg—M| |q-E]|

where we normalize so that mg + my =1, and 1 = my.

1
H(q,p) = EHPHQ + P1G2 — P20,

Planar problem: p; = g3 = 0 (flow-invariant subset). J

Two parameters: i, and H = ¢ Jacobi constant. J
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Lagrangian points
H has five critical points: L4, ..., Ls called Lagrangians.

c
-3/2 4
rotating Kepler :
problem T
low energy .
PL:O lf'alnge lu,:j,i 78
c=—c0 L 3
Kepler problem — ——"

The critical values of H.
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Integrable limit cases
fpp=0w»H=K+ L, where

-
Iql
is the Kepler energy (two-body problem), and
L=pigz — p2qy
is the Coriolis/centrifugal term. This is the rotating Kepler problem.

K(g,p) = —HP
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Integrable limit cases
fpp=0w»H=K+ L, where

1
K(q, —|ip|?
(g,p) = HpH Tal

is the Kepler energy (two-body problem), and

L = p1g2 — p2q;
is the Coriolis/centrifugal term. This is the rotating Kepler problem.
We have {H,K} = {H,L} = {K,L} = 0and so
ot = ot o of.
If T(K) = m is the period of a Kepler ellipse of energy K < 0
(Kepler's 3rd law), then closed orbits iff K satisfies the resonance con-
dition

a
= —2m, forsome a,be Z.

T(K) -2
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Integrable limit cases
fpp=0w»H=K+ L, where

1
K(q, —|ip|?
(g,p) = HpH Tal

is the Kepler energy (two-body problem), and

L=pigz — p2qy
is the Coriolis/centrifugal term. This is the rotating Kepler problem.
We have {H.K} = {H,L} = {K,L} = 0and so

of = ot o 0.

If T(K) = m is the period of a Kepler ellipse of energy K < 0

(Kepler's 3rd law), then closed orbits iff K satisfies the resonance con-
dition

T(K) = g%, for some a, b e Z.
Fact: ¢ — —oo ~ Kepler problem (after regularization). |
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Periodic orbits in the rotating Kepler problem

Some orbits with different resonance.
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Low energy Hill regions

asteroids

Morse theory in the three-body problem.
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Low energy Hill regions
¢ € (H(Ly), H(Ly)+€)

A=/
./_\

-E transfer ’:4

r-Earth ar-Moon,

Morse theory in the three-body problem.

asteroids
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Level sets of potential

Lagrange Points

100

LagrangePts.ai

The Lagrange points and the level sets of the potential. The Euler points
Ly, Lo, L3 are collinear and unstable, the Lagrange points L4, Ls give
equilateral triangles and are stable.

Agustin Moreno Universitat Heidelberg

10/54



Moser regularization
H is singular at collisions (g = E6 g = M v~ p = 0).
Moser regularization, near £ or M:

swntch estereo ro
) SN (—p, q) 2T

(@.p € eTs J
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Moser regularization
H is singular at collisions (g = E6 g = M~ p = )
Moser regularization, near £ or M:

(q,p) SN (_p, g) BOER, POk (¢ ) ¢ T g

o regularized Hamiltonian Q : 7*S® — R, with level set Q—'(0) =
Yo~ 588 = §% x 2.

collision locus

= gxg”

planar problem

5f = 5x5”
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Contact geometry of the three-body probIeErp”
Z Z bounded energy components for ¢ < H(Ly), ¥;” connected

sum bounded component, ¢ € (H(Ly), H(L2)). Similarly, Zic, fgc and
=EM
Y p ¢ for planar problem.

Theorem ([AFvKP] (planar problem), [CJK] (spatial problem))
We have
= (8$83=£Std): ifc < H(L‘I):

~ (8*S? £g1g), ifc < H(Ly),
and

Yo = (88 L) #(5* 8P, Le), ifc € (H(L1), H(L1) + €.

Ton = (S*S2, £qg)#(S* 2, £xtg), ifc € (H(Ly), H(Ly) + €).

In all above cases, the planar problem is a codimension-2 contact
submanifold of the spatial problem. o

>
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Poincaré-Birkhoff and the planar problem
To find closed orbits in the planar problem, Poincaré’s approach is:

(1) Global surface of section for the dynamics;
(2) Fixed point theorem for the return map.

@
(
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Poincaré-Birkhoff and the planar problem

To find closed orbits in the planar problem, Poincaré’s approach is:

(1) Global surface of section for the dynamics;
(2) Fixed point theorem for the return map.

@
(

This is the setting for the Poincaré-Birkhoff theorem.
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Poincaré-Birkhoff and the planar problem
To find closed orbits in the planar problem, Poincaré’s approach is:

(1) Global surface of section for the dynamics;
(2) Fixed point theorem for the return map.

@
(

This is the setting for the Poincaré-Birkhoff theorem.

Goal: Generalize this approach to the spatial problem. |
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Step 1: Global
hypersurfaces of section
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Open book decompositions

An OBD on M is a fibration
7m:M\B— S,

with B = M codim-2, and
m(b,r,8) = 6 on collar B x D?.
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Open book decompositions

An OBD on M is a fibration
7:M\B— S,
with B = M codim-2, and
m(b,r,8) = 6 on collar B x D?.
Notation: M = OB(P, ¢).
e P — r1(pt) —=page;
@ B = ¢P =binding;

@ ¢: P> P monodromy,
éls = id.

/
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Global hypersurfaces of section

¢t : M — M flow, then = is adapted to the dynamics if B is invariant,
and orbits are transverse to the interior of all pages.
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Global hypersurfaces of section

¢t : M — M flow, then = is adapted to the dynamics if B is invariant,
and orbits are transverse to the interior of all pages.

Each page P is a global hypersurface of section, i.e.
@ P is codimension-1;
@ B = dPisinvariant;
@ orbits in M\ B meet interior of pages transversely.

«~~ Poincaré return map f : int(P) — int(P).
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Step 1: Open books in the spatial three-body problem

fc;:

H='(c) bounded regularized energy surface in the spatial 3BP.

Theorem (M—van Koert)
For e (0,1),

¥y OB(D*S?, 72), c < H(Ly),
¢ | 0B(D*S%D*S?, 2 072), ce (H(Li),H(L1) +¢), ’
adapted to the dynamics.
@ 7,17, = Dehn-Seidel twist.
@ Binding = planar problem.
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Step 1: Open books in the spatial three-body problem

Y. = H~'(c) bounded regularized energy surface in the spatial 3BP.

Theorem (M—van Koert)
For € (0,1),
s _ [ 0B[D*S?72), ¢ < H(Ly),
7| OB(D*SD*S2,m2072), ce (H(Ly),H(L1) +e), ’

adapted to the dynamics.
@ 7,7, = Dehn-Seidel twist.
@ Binding = planar problem.

This reduces the dynamics to that of the return map, a Hamiltonian

map of D*S2. The section is non-perturbative, and explicit (good for
numerics).
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Open books

Hamiltonian flow

S%s?

3

(planar problem)

Agustin Moreno
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Basic idea

Let B = {p3 = g3 = 0} (planar problem). Define

Qs + ipa 1 P3dgs — Qadps
m(g,p) = ——€e 8", dn = ———————.
(.9) |5 + ips) P5 + a3

Then

2 (_A—p p
_ P5 + 95 (\q—Eua + uqu\S)
p5 + G5

if p2 + g5 # 0, and the numerator vanishes only on B.

dr(Xn)

>0,
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Basic idea

Let B = {p3 = g3 = 0} (planar problem). Define

Qs + ipa 1 P3dgs — Qadps
m(g,p) = ——€e 8", dn = ———————.
(.9) |5 + ips) P5 + a3

Then

2 (_A—p p
Pt (e + )
P;+ a3
if p2 + g5 # 0, and the numerator vanishes only on B.

dr(Xn)

>0,

Problem: It does not extend to the collision locus g = E,g = M. J
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Physical interpretation

The fiber over /2 corresponds to g; = 0, p3 > 0, and the spatial orbits of S
are transverse to the plane containing £, M away from collisions.
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Polar orbits

Polar orbits prevent transversality on the collision locus.
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The geodesic open book

geodesic

Higher-dimensional
Birkhoff "anmulus'= D*S" The B-page
(the 0-page)

The geodesic open book for $* 5",
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Return map

Theorem (M.—van Koert)

For every € (0,1], ¢ < H(Ly), and page P, the return map f extends
smoothly to the boundary B = éP, and in the interior it is an exact
symplectomorphism

f=fe,: (int(P),w) — (int(P),w),
where w = da|p, a = «a, ¢ contact form. Moreover, f is Hamiltonian in

the interior, and the Hamiltonian isotopy extends smoothly to the
boundary.
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Return map

Theorem (M.—van Koert)

Forevery ue (0,1], ¢ < H(Ly), and page P, the return map f extends
smoothly to the boundary B = éP, and in the interior it is an exact
symplectomorphism

f =t (int(P),w) — (int(P),w),

where w = da|p, o = o, ¢ contact form. Moreover, f is Hamiltonian in
the interior, and the Hamiltonian isotopy extends smoothly to the
boundary.

Here, w degenerates at B, but after a continuous conjugation, it is ac-
tually symplectic and deformation equivalent to the standard sym-
plectic form. The return map however extends only continuously after
conjugation. The Hamiltonian is not rel boundary.
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Remarks

@ The fact that f is a symplectomorphism follows easily from
Liouville’s theorem.

@ The fact that f extends to the boundary is non-trivial (relies on
convexity in directions normal to the binding, cf. dynamical
convexity by HWZ).

@ The fact that f is Hamiltonian relies on: monodromy 72 is
Hamiltonian, one can symplectically join f to the monodromy, and
H'(D*S2;R) = 0.
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Step 2: Fixed-point theory
of Hamiltonian twist maps




{spatial orbits} —— {interior periodic points}.

Agustin Moreno

(planar

L=

A\

IAAL

problem)

Universitat Heidelberg

26/54



{spatial orbits} —— {interior periodic points}.

(planar

L=

L1
/

IAAL

problem)

Goal: Find infinitely many interior periodic points.

)
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Hamiltonian twist maps

(W,w = dA) Liouville domain, o = A|g. Let f : (W,w) — (W,w)be a
Hamiltonian symplectomorphism.
Definition
f is a Hamiltonian twist map if there exists a time-dependent
Hamiltonian H : R x W — R such that:

@ His smooth (or C?);

o f=ol;

@ There exists a smooth function h: R x B — R which is positive

and
Xi,|g = htR..

Agustin Mareno Universitat Heidelberg 27/54




Index growth

We call a strict contact manifold (Y, £ = ker «) strongly index-definite

if the contact structure (£, da)) admits a symplectic trivialization € so
that:

@ There are constants ¢ > 0 and d € R such that for every Reeb
chord v : [0, T] — Y of Reeb action T = SGT ~v*o we have

lwas(vie)| = cT +d.
where upg is the Robbin—Salamon index.

Drop absolute value «~~» index-positive.

Agustin Mareno Universitat Heidelberg 28/54



Examples

Lemma (Some examples)

@ If(Y.a) c R* is a strictly convex hypersurface, then it is strongly
index-positive.

@ If(Y, kera) = (S*Q,¢&sq) is symplectically trivial and (Q, g) has
positive sectional curvature, then (Y, «) is strongly index-positive.

A
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Fixed-point theorem

Theorem (M.—van Koert, Generalized Poincaré—Birkhoff
theorem)

Suppose that f is an exact symplectomorphism of a Liouville domain
(W, )\), and let « = A|g. Assume the following:

@ (Twist condition) f is a Hamiltonian twist map;

@ (index-definiteness) If dim W = 4, then assume
(W)l = 0, and (W, a) is strongly index-definite. In
addition, assume all fixed points of f are isolated;

@ (Symplectic homology) SH, (W) is infinite dimensional.

Then f has simple interior periodic points of arbitrarily large (integer)
period.
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Special case of fixed-point theorem

Theorem (M.—van Koert, special case)

Let W c (T*M, \¢can) be fiber-wise star-shaped, with M simply
connected, orientable and closed. Let f : W — W be a Hamiftonian
twist map. Assume:

@ Reeb flow on ¢ W is index-positive; and
@ All fixed points of f are isolated.
Then f has simple interior periodic points of arbitrarily large period.
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Non-examples: Katok examples

There are examples of (non-reversible) Finsler metrics on S” with only
finitely many simple geodesics, which are perturbations of the round
metric (and so close to the Kepler problem).
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Non-examples: Katok examples

There are examples of (non-reversible) Finsler metrics on S” with only
finitely many simple geodesics, which are perturbations of the round
metric (and so close to the Kepler problem).

The return maps are Hamiltonian and satisfy all conditions of the the-
orem, except the Hamiltonian twist condition (as a consequence of the
above theorem).
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Toy example: smoothness is relevant

Q = 8" with round metric.

H: T°Q — R, H(q,p) = 2x|p| not smooth at zero section. Then
¢}, = id, all orbits are periodic with same period.
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Toy example: smoothness is relevant

Q = 8" with round metric.

H: T°Q — R, H(q,p) = 2x|p| not smooth at zero section. Then
¢}, = id, all orbits are periodic with same period.

Let K = 2rg, with g = g(|p|) smoothing of |p| near p = 0. Then
o) = gﬁéﬁg'ﬂp‘), where ¢4 geodesic flow, is a Hamiltonian twist map.
It has simple orbits of arbitrary period (9'(|p|) = //k coprime > k-
periodic orbit).

14
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|dea of the proof

Extend a generating Hamiltonian to an e-collar neighbourhood via a
Taylor expansion, so it becomes admissible for SH. If f time-1 map,
then twist condition implies

lim HF, () = SH. (W)

is infinite-dimensional. So, many fixed points of f¥ for k large.
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|dea of the proof

Extend a generating Hamiltonian to an e-collar neighbourhood via a
Taylor expansion, so it becomes admissible for SH. If f time-1 map,
then twist condition implies

lim HF, () = SH. (W)

is infinite-dimensional. So, many fixed points of f¥ for k large.

Contributions near the boundary escape any index window due to
index—definiteness, and so fixed points are those of f. lterating the
same points is ruled out by grading considerations, using the linear
growth of the mean index. Degeneracies are dealt with via local Floer
homology.
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A few remarks

@ Ifdim W = 2, dim SH,(W) = w iff W # D?.

Agustin Moreno



A few remarks

o If dim W = 2, dim SH, (W) = o iff W » D2,

@ A higher-dimensional generalization of the classical
Poincare-Birkhoff theorem, in the spirit of the Conley conjecture.
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A few remarks

@ If dim W = 2, dim SH, (W) = w iff W # D?.
@ A higher-dimensional generalization of the classical
Poincare-Birkhoff theorem, in the spirit of the Conley conjecture.

@ We couldn't check the twist condition in the three-body problem.
The boundary degeneracy of the symplectic form needs to be
addressed.

Agustin Mareno Universitat Heidelberg 35/54



A few remarks

@ If dim W = 2, dim SH, (W) = w iff W # D?.
@ A higher-dimensional generalization of the classical
Poincare-Birkhoff theorem, in the spirit of the Conley conjecture.

@ We couldn't check the twist condition in the three-body problem.
The boundary degeneracy of the symplectic form needs to be
addressed.

@ This opens up an completely unexplored line of research:
Hamiltonian dynamics on higher-dimensional Liouville domains.
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Hamiltonian dynamics on Liouville domains

Natural higher-dimensional analogue of dynamics on surfaces.
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Hamiltonian dynamics on Liouville domains

Natural higher-dimensional analogue of dynamics on surfaces. Con-
crete starting question:

Q. If f: W — W Hamiltonian map on an open Liouville domain, does it

have periodic points? How many? Are there obstructions of f and/or
w?
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Hamiltonian dynamics on Liouville domains

Natural higher-dimensional analogue of dynamics on surfaces. Con-
crete starting question:

Q. If f: W — W Hamiltonian map on an open Liouville domain, does it

have periodic points? How many? Are there obstructions of f and/or
w?

Analogue results in dimension 2: Brouwer translation theorem (open
disk) and a theorem of Franks (open annulus).

Note: Morrison contructs a Hmailtonian map on B2" n = 2, with no
interior fixed points.
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Hamiltonian dynamics on Liouville domains

Natural higher-dimensional analogue of dynamics on surfaces. Con-
crete starting question:

Q. If f: W — W Hamiltonian map on an open Liouville domain, does it
have periodic points? How many? Are there obstructions of f and/or
w?

Analogue results in dimension 2: Brouwer translation theorem (open
disk) and a theorem of Franks (open annulus).

Note: Morrison contructs a Hmailtonian map on B2" n = 2, with no
interior fixed points.

There is a fascinating interplay between interior and boundary phe-
nomena.
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Pseudo-holomorphic
foliations

Universitat Heidelberg 37/54



Lefschetz fibration
TS= LATS')

Topological observation: The section D*S? admits a Lefschetz fibration
with annuli fibers.
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Leaf space is S®

SB

&
The moduli space of fibers (i.e. the leaf space) is S* = OB(D?, 1).
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Pseudo-holomorphic foliations in the 3BC

Let « = o, ¢ contact form giving the 3BP. We say that (i, ¢) lie in the
convexity range if the Levi—Civita regularization of planar problem is a
convex S® ¢ R?.

Theorem (M.)

If (u, c) in the convexity range, there is a pseudo-holomorphic foliation
on the level set S*S® near the Earth or Moon, such thatw = da is an
area form on each annuli.
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Pseudo-holomorphic foliations in the 3BC

Let « = o, ¢ contact form giving the 3BP. We say that (i, ¢) lie in the
convexity range if the Levi—Civita regularization of planar problem is a
convex S® ¢ R?.

Theorem (M.)

If (i, ) in the convexity range, there is a pseudo-holomorphic foliation
on the level set S*S® near the Earth or Moon, such thatw = da is an
area form on each annuli.

As the return map f : D*S? — D*S? preserves w, it sends a sym-
plectic annulus to another symplectic annulus with the same boundary
(direct/retrograde planar orbits), and same symplectic area (the sum
of the period of these orbits). The adapted open book at the planar
problem is given by Hrynewicz—Salomao—Wysocki.
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Return map

D

P
N

The return map f in general does not preserve the foliation.
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Contact structures and Reeb dynamics on moduli
(M, &) = OB(P, ¢) an iterated planar 5-fold, i.e. P = LF(F,¢f) has a
4D Lefschetz fibration with genus zero fibers.

Reeb(P, ¢) = {« adapted contact form: a|g adapted to B = OB(F, ¢¢)}.
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Contact structures and Reeb dynamics on moduli
(M, &) = OB(P, ¢) an iterated planar 5-fold, i.e. P = LF(F,¢f) has a
4D Lefschetz fibration with genus zero fibers.

Reeb(P, ¢) = {« adapted contact form: a|g adapted to B = OB(F, ¢¢)}.

Theorem (M., Contact structures and Reeb dynamics on moduli)

There is a moduli space M of holomorphic annuli foliating M, forming
the fibers of a Lefschelz fibration on each page. It is a contact
manifold (M, &) = (S8, €sg) = OB(D?, 1).

Any o € Reeb(P, ¢) induces a contact form o € Reeb(D?, 1),
ker apg = Epq.
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Contact structures and Reeb dynamics on moduli
(M, &) = OB(P, ¢) an iterated planar 5-fold, i.e. P = LF(F,¢f) has a
4D Lefschetz fibration with genus zero fibers.

Reeb(P, ¢) = {« adapted contact form: a|g adapted to B = OB(F, ¢¢)}.
Theorem (M., Contact structures and Reeb dynamics on moduli)

There is a moduli space M of holomorphic annuli foliating M, forming
the fibers of a Lefschelz fibration on each page. It is a contact
manifold (M, &) = (S8, €sg) = OB(D?, 1).

Any o € Reeb(P, ¢) induces a contact form o € Reeb(D?, 1),
ker apg = Epq.

Fiberwise integration:
(@anulv) = | as(v(@))oz
u

with dz = dal,, £aq corresponds to a symplectic connection on each
page of M.
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Integrable case i = 0.

i i
) - 5 1 B X,
j s’ / /
4D, '« Sz o x 23, @
— [ - X.
Sa

If © = 0~ f-invariant foliation, f is a classical twist map on the fibers with
variable rotation angle T(K) = m (Kepler’'s 3rd law), and the nodal

Lefschetz singularities are fixed points (the polar orbits).
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Integrable case i = 0.

, i : prs”
S5 X SJ. % S @

retrograde ciraular

X.

S

If & = 0~ f-invariant foliation, fis a classical twist map on the fibers with
variable rotation angle T(K) = 5 K)w (Kepler’'s 3rd law), and the nodal

Lefschetz singularities are fixed points (the polar orbits).

What happens when we perturb, i.e. u ~ 07 How does the dynamics J

interact with the foliation?

Agustin Moreno
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The shadowing cone

D{sl !?PB

s”

By=ker(dg,)

The shadowing cone is obtained by projecting the flow. Orbits of the flow
project to orbits of the cone.
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Holomorphic shadow

The holomorphic shadow map is obtained by taking the shadow:
HS : Reeb(D*S?, %) — Reeb(DD?, 1)

Q> (X AL
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Holomorphic shadow

The holomorphic shadow map is obtained by taking the shadow:
HS : Reeb(D*S?, %) — Reeb(DD?, 1)

Q> (X AL

Theorem (M., Reeb lifting theorem)
HS is surjective. J
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Holomorphic shadow

The holomorphic shadow map is obtained by taking the shadow:
HS : Reeb(D*S?, %) — Reeb(DD?, 1)

Q> (AL

Theorem (M., Reeb lifting theorem)
HS is surjective. J

In other words, Reeb dynamics in S? x S is at least as “complex” as Reeb
dynamics in S® (i.e. highly complicated). l.e.:

“Spatial problem is at least as complicated as planar problem”.
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The holomorphic shadow map is obtained by taking the shadow:
HS : Reeb(D*S?, %) — Reeb(DD?, 1)

Q> (AL

Theorem (M., Reeb lifting theorem)
HS is surjective. J

In other words, Reeb dynamics in S? x S is at least as “complex” as Reeb
dynamics in S® (i.e. highly complicated). l.e.:

“Spatial problem is at least as complicated as planar problem”.

New program: Try to “lift” knowledge from dynamics on S°.
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Case of three-body problem

If (i, €) in convexity range, combining our adapted open book with
[HSW] on B = RP® « o, ; € Reeb(D*S?, 72).

c
rotating u= 1/2
e re2 3 re
£=-3/2 ' re=-3/2

2

—
'integrable” fiber D*s
p)%;;%‘z“ ‘_‘d_ — Reeb(fr':(/D@LfZ)
HsS
Reeb(D?,1)
Hopf flow
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Dynamical applications

Definition
Let P be a page, and f : int(P) — int(P) a return map. A fiber-wise
k-recurrent point is x € int(P) such that fA(My) n My # &.

This is a “symplectic version” of a leaf-wise intersection.

Theorem (M.)

In the SCR3BP for every k, one can find sufficently small
perturbations of the integrable cases which admit infinitely many
fiber-wise k-recurrent points.
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ldea of proof: symplectic tomographies

L L=f(L)

DW W f PF(D)
NVZERAY

L=fL)

e ;

We induce maps fp : int(D?) — int(D?) for every symplectic disk section of
the LF. These are the identity for the integrable case. These preserve area for
near integrable cases, and hence Brouwer applies.
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