Rational Homotopy Theory, del Pezzo surfaces, and Mysterious Triality Lecture I: Introduction to Mysterious Triality & del Pezzo surfaces

Sasha Voronov Winter School on Geometry and Physics Srní, Czechia

University of Minnesota, USA, and Kavli IPMU, Japan

January 14-19, 2024

Iqbal, Neitzke, and Vafa: Mysterious Duality

Once upon a time at Harvard... in 2001, A. Iqbal, A. Neitzke, and C. Vafa discovered a "mysterious duality:"

Physics: Toroidal compactifications of M-theory: X^{11} , $Y^{10} = X^{11}/S^1$ (type IIA), $X^{11}/(S^1)^2, \dots, X^{11}/(S^1)^8$, and Z^{10} (type IIB)

Math: Del Pezzo surfaces $\mathbb{B}_0 = \mathbb{P}^2$, $\mathbb{B}_1 = \mathbb{P}^2 \# \overline{\mathbb{P}^2} = \mathsf{BI}(\mathbb{P}^2, x_1), \dots, \mathbb{B}_8$, and $\mathbb{P}^1 \times \mathbb{P}^1$

have similar symmetry patterns, both governed by root system E_k , $0 \le k \le 8$.

Del Pezzo's is classical algebraic geometry: cf. 27 lines on a cubic surface (\mathbb{B}_6) (A. Cayley and G. Salmon, 1849)

Math and Physics via the E_{10} Dynkin diagram

Del Pezzos of degrees 9 - k:

Supergravity of dims 11 - k: Dimensional reduction of supergravity on a k-torus $T^k = (S^1)^k$ a.k.a. toroidal compactifications of M-theory

11d M-theory 10d IIA strng. 9d supergr. 8d supergr. 4d supergr. 3d supergr.

Branes in toroidal compactifications of M-theory

Two yogas: homology classes in $H_2(\mathbb{B}_1)$ and tensions of branes in type IIA string theory = M-theory/ S^1 (the k = 1 case):

homology class	tension	type IIA meaning
E	$R^{-1} = l_s^{-1} g_s^{-1}$	D0-brane
H-E	$(2\pi)^2 R l_p^{-3} = (2\pi)^{-1} l_s^{-2}$	F-string
H	$(2\pi) l_p^{-3} = (2\pi)^{-2} l_s^{-3} g_s^{-1}$	D2-brane
2H - E	$(2\pi)^2 R l_p^{-6} = (2\pi)^{-4} l_s^{-5} g_s^{-1}$	D4-brane
2H	$(2\pi) l_p^{-6} = (2\pi)^{-5} l_s^{-6} g_s^{-2}$	NS5-brane
3H-2E	$(2\pi)^3 R^2 l_p^{-9} = (2\pi)^{-6} l_s^{-7} g_s^{-1}$	D6-brane
4H - 3E	$(2\pi)^4 R^3 l_p^{-12} = (2\pi)^{-8} l_s^{-9} g_s^{-1}$	D8-brane

Table credit: Iqbal, Neitzke, and Vafa (2001)

Mystery: Physics and AG give rise to the E_k series, but no explicit connection between physics and del Pezzo surfaces.

The Goal of These Lectures: Mysterious Triality

Main themes:

- Math Physics: The RHT of iterated cyclic loop spaces $\mathcal{L}_c^k S^4$ is explicitly related to the M-theory story. (E.g., want equations of motion of M-theory wrapped on T^5 , i.e., 6d supergravity? Read them off from the differential in the Sullivan minimal model of $\mathcal{L}_c^5 S^4$! (Hypothesis H));
- **Mathematics**: S^4 , $\mathcal{L}_c S^4$, $\mathcal{L}_c^2 S^4$, ... is a new series of objects with hidden internal E_k symmetry. Such as 27 "lines" in $\mathcal{L}_c^6 S^4$, 28 "bitangents" in $\mathcal{L}_c^7 S^4$...

Outline of Lectures

- Introduction to Mysterious Triality & del Pezzo surfaces
- Hypothesis H: Supergravity and Rational Homotopy Theory
- The E_k symmetry of the cyclic loop spaces $\mathcal{L}_c^k S^4$

Del Pezzo surfaces

A *del Pezzo surface* is a complex compact smooth surface S whose anticanonical class $-K := -c_1(\Omega_S^1)$ is ample (sufficiently positive). Del Pezzo surfaces are classified topologically by belonging to one of the following types:

$$\mathbb{B}_0:=\mathbb{CP}^2,\mathbb{B}_1,\mathbb{B}_2,\dots,\mathbb{B}_8$$

and

$$\mathbb{CP}^1 \times \mathbb{CP}^1$$
.

Here

$$\mathbb{B}_k$$
 = blowup of \mathbb{CP}^2 at k generic points = $\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}$

Anticanonical "embedding:" $\mathbb{B}_k \hookrightarrow \mathbb{CP}^{9-k}$ associated with the anticanonical line bundle $(\wedge^2 \Omega^1_S)^*$. \mathbb{B}_k is a subvariety of degree (-K, -K) = 9 - k in \mathbb{CP}^{9-k} .

Blowup; picture credit: R. Hartshorne

Intersection theory on a del Pezzo surface

Surface: $\mathbb{B}_k = \text{blowup of } \mathbb{CP}^2 \text{ at } k \text{ generic points} = \mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}$

Homology:
$$H_2(\mathbb{B}_k) = \langle H, E_1, \dots, E_k \rangle \cong \mathbb{Z}^{k+1}$$
 $H = \text{the class of a line in } \mathbb{P}^2 \text{ (lifted to } \mathbb{B}_k\text{)}$ $E_1, \dots, E_k = \text{the exceptional divisors}$

Intersection form:

$$(H, H) = 1, \quad (H, E_i) = 0, \quad (E_i, E_j) = -\delta_{ij}, \quad 1 \le i, j \le k$$

Combinatorial Extract

- The rank-(k+1) lattice $N_k = H_2(\mathbb{B}_k) \subset N_k \otimes \mathbb{R}$;
- ② The Lorentzian inner product $(-,-): N_k \otimes N_k \to \mathbb{Z}$;
- 3 The anticanonical class $-K_k = 3H E_1 \cdots E_k$.

Theorem (Y. I. Manin, Cubic Forms, 1972)

The triple $(N_k, (-, -), -K_k)$ gives rise to the wealth of combinatorial data associated with the root system of type E_k :

- The very root system $R_k = \{\beta \in N_k \mid (\beta, -K_k) = 0, (\beta, \beta) = -2\}$ sitting in the Euclidean space $(-K_k)^{\perp} := \{\beta \in N_k \otimes \mathbb{R} \mid (\beta, -K_k) = 0\};$
- The Weyl group $W(E_k)$;
- The system of "lines" $I_k = \{\beta \in N_k \mid (\beta, -K_k) = 1, (\beta, \beta) = -1\};$
- Etc.

Examples of Root Systems

The E_k root system arises in the orthogonal complement to K in the cohomology group $H^2(\mathbb{B}_k; \mathbb{Z})$ with the intersection form $H^2(\mathbb{B}_k; \mathbb{Z}) \otimes H^2(\mathbb{B}_k; \mathbb{Z}) \to \mathbb{Z}$. For example, the root system arising from \mathbb{B}_2 is A_1 and from \mathbb{B}_3 is $A_2 \times A_1$:

 $A_1 \times A_1$

More on the E_k series

k	del Pezzo	Dynkin Diagram	Type of E_k	Lie Algebra
0	₽2		A_{-1}	$\mathfrak{sl}_0=\varnothing$
1	\mathbb{B}_1		A_0	$\mathfrak{sl}_0=arnothing \ \mathfrak{sl}_1=0$
1	$\mathbb{P}^1 imes \mathbb{P}^1$		A_1	\mathfrak{sl}_2
2	\mathbb{B}_2		A_1	\mathfrak{sl}_2
3	\mathbb{B}_3		$A_2 \times A_1$	$\mathfrak{sl}_3 \oplus \mathfrak{sl}_2$
4	\mathbb{B}_4		A_4	\mathfrak{sl}_5
5	\mathbb{B}_5		D_5	\$0 ₁₀
6	\mathbb{B}_6		E ₆	€6
7	\mathbb{B}_7		E ₇	€7
8	₿8		E ₈	€8
9	non-dP _{B9}		$E_9=\widehat{E}_8$	affine $\mathfrak{e}_9=\widehat{\mathfrak{e}}_8$

Geometry & Root Systems: 27 Lines on a Cubic Surface

The del Pezzo surfaces of type \mathbb{B}_6 are exactly the smooth *cubic* surfaces, such as the Fermat cubic $x^3 + y^3 + z^3 = 1$, in \mathbb{CP}^3 .

Theorem (A. Cayley and G. Salmon, 1849)

Every smooth complex cubic surface contains exactly 27 lines.

The 27 lines can be identified with the weights $I_k = \{\beta \in N_k \mid (\beta, -K_k) = 1, (\beta, \beta) = -1\}$ of a 27-dimensional fundamental representation of the Lie group E_6 . See Manin's *Cubic Forms*.