Rational Homotopy Theory, del Pezzo surfaces, and Mysterious Triality Lecture II: Supergravity and Rational Homotopy Theory (Hypothesis H)

Sasha Voronov Winter School on Geometry and Physics Srní, Czechia

University of Minnesota, USA, and Kavli IPMU, Japan

January 16, 2024

The Goal of These Lectures: Mysterious Triality

Main themes:

- **Math Physics**: The RHT of iterated *cyclic loop spaces* $\mathcal{L}_c^k S^4$ is explicitly related to the M-theory story. (E.g., want equations of motion of M-theory wrapped on T^5 , *i.e.*, 6d supergravity? Read them off from the differential in the Sullivan minimal model of $\mathcal{L}_c^5 S^4$! (**Hypothesis H**));
- **Mathematics**: S^4 , $\mathcal{L}_c S^4$, $\mathcal{L}_c^2 S^4$, ... is a new series of objects with hidden internal E_k symmetry. Such as 27 "lines" in $\mathcal{L}_c^6 S^4$, 28 "bitangents" in $\mathcal{L}_c^7 S^4$...

Rational homotopy theory (RHT)

Definition: $X \stackrel{\mathbb{Q}}{\sim} Y$ iff $X \to Y$ rational (homotopy) equivalence of path connected spaces, a continuous map inducing isomorphisms $H_{\bullet}(X;\mathbb{Q}) \stackrel{\sim}{\to} H_{\bullet}(Y;\mathbb{Q})$ on rational homology. The equivalence class of a space X is called the *rational homotopy type* of X.

Rational homotopy category: topological spaces with inverses of rational homotopy equivalences formally added.

Fact (Quillen, Sullivan, '60–70s): the rational homotopy category (of good enough spaces) is equivalent to the opposite category of DGCAs (or DGLAs, resp.) of a certain type:

 $X \mapsto M(X)$, a DGCA, the Sullivan minimal model of $X \mapsto Q(X)$, a DGLA, the Quillen minimal model of X.

Fundamental Theorem of RHT: For good enough X and Y, $X \stackrel{\mathbb{Q}}{\sim} Y \Leftrightarrow M(X) \cong M(Y) \Leftrightarrow Q(X) \cong Q(Y)$.

DGCA's

A differential graded commutative algebra (DGCA) is a graded commutative associative algebra

$$M = \bigoplus_{n \geq 0} M^n, \qquad M^i \cdot M^j \subset M^{i+j}, \quad ba = (-1)^{|a| \cdot |b|} ab,$$

$$d: M^n \to M^{n+1}, \quad d^2 = 0, \qquad d(ab) = (da)b + (-1)^{|a|}a(db).$$

A minimal Sullivan DGCA is a DGCA M which is free as a graded commutative algebra (i.e., a polynomial algebra in even and odd variables) with a decomposable differential $dM \subset M^+ \cdot M^+$ (and if $M^1 \neq 0$, satisfying a certain nilpotence condition). Here $M^+ := \bigoplus_{n \geq 0} M^n$.

Example: S4

$$egin{align} \mathcal{M}(\mathcal{S}^4) &= (\mathbb{Q}[g_4,g_7],d), \ dg_4 &= 0, \qquad dg_7 &= -rac{1}{2}g_4^2, \ |g_4| &= 4, \qquad |g_7| &= 7. \ \end{dcases}$$

$$egin{aligned} \mathit{M}(S^4) \otimes_{\mathbb{Q}} \mathbb{R} & \stackrel{\mathsf{q ext{-}is}}{\longrightarrow} \Omega_{\mathsf{dR}}^{ullet}(S^4), \ g_4 &\mapsto \mathsf{volume} \ \mathsf{form} \ \mathsf{on} \ S^4, \ g_7 &\mapsto 0. \end{aligned}$$

Remark: We will have to use $\mathbb R$ in place of $\mathbb Q$ (*rational homotopy theory over the reals*), but we will ignore this.

M-theory and 11d supergravity

Fact: 11d supergravity is the low-energy (UV) limit of M-theory.

Equations of motion of 11d supergravity:

$$dG_4 = 0, \qquad dG_7 = -\frac{1}{2}G_4 \wedge G_4, \qquad *G_4 = G_7,$$

where $G_4 \in \Omega^4(X^{11})$ and $G_7 \in \Omega^7(X^{11})$ and $X^{11} =$ spacetime.

Duality-Symmetric formulation (metric-free background):

$$dG_4 = 0, \qquad dG_7 = -\frac{1}{2}G_4 \wedge G_4.$$

In M-theory

$$G_4 \rightsquigarrow M2$$
-brane $G_7 \rightsquigarrow M5$ -brane

Sati's "Hypothesis H" in 11d (2013)

We obviously (this is algebra, after all!) have a DGCA map

$$egin{aligned} M(\mathcal{S}^4) &
ightarrow \Omega_{
m dR}^ullet(X^{11}), \ g_4 &\mapsto G_4, \ g_7 &\mapsto G_7. \end{aligned}$$

According to the Fundamental Theorem of RHT, this gives a unique map in rational homotopy category

$$\varphi: X^{11} \to S^4$$
.

Hisham Sati called this observation Hypothesis H.

Reduction to 10d: Type IIA string theory

Suppose X^{11} has a free action of S^1 . Then $Y^{10} := X^{11}/S^1$ will be the spacetime reduced to 10 dimensions. The map φ will then induce a map φ_1 :

$$X^{11} \xrightarrow{\varphi} S^4$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$Y^{10} = X^{11}/S^1 \xrightarrow{\varphi_1} \mathcal{L}_c S^4$$

Actually, there is an adjunction (Fiorenza-Sati-Schreiber 2017)

$$[Y \times_{BS^1} ES^1, Z] \xrightarrow{\sim} [Y, \mathsf{Map}(S^1, Z) /\!\!/ S^1]_{/BS^1} \tag{1}$$

between the homotopy categories of spaces and spaces over the classifying space $BS^1 = \mathbb{CP}^{\infty}$. Note that $Y^{10} \times_{BS^1} ES^1 \sim X^{11}$ and $Map(S^1, Z)/\!/S^1 = \mathcal{L}_c Z$.

Type IIA string theory: Hypothesis H in 10d, as per Fiorenza-Sati-Schreiber 2017

$$egin{align} M(\mathcal{L}_cS^4) &= (\mathbb{R}[g_4,g_7,sg_4,sg_7,w],d), \ &|w|=2, \qquad |sg_4|=3, \qquad |sg_7|=6, \ &dg_4 = (sg_4)\cdot w, \qquad dg_7 = -rac{1}{2}g_4^2 + (sg_7)\cdot w, \ &d(sg_4)=0, \quad d(sg_7) = (sg_4)\cdot g_4, \quad dw=0. \ \end{pmatrix}$$

This follows from a theorem of Vigué-Poirrier and Burghelea (1985), which tells you how to produce $M(\mathcal{L}_c Z)$ from M(Z). Now we have

$$arphi_1: X^{11}/S^1 o \mathcal{L}_c S^4$$
 and $F_2:=arphi_1^*(w), \quad H_3:=arphi_1^*(sg_4), \quad F_4:=arphi_1^*(g_4), \quad H_7:=arphi_1^*(g_7).$

Equations of motion (EOMs) of 10d type-IIA supergravity:

$$dF_4 = H_3 \wedge F_2, \qquad dH_7 = -\frac{1}{2}F_4 \wedge F_4 + F_6 \wedge F_2,$$

$$dH_3 = 0, \qquad dF_6 = H_3 \wedge F_4, \qquad dF_2 = 0.$$

Further Dimensional Reductions

This pattern continues for all $k \ge 0$ with $\mathcal{L}_c^k S^4$ serving as a universal target space for (11-k)-dim supergravity.

The equations of motion of (11 - k)-dim supergravity are the equations for the differential in $M(\mathcal{L}_{c}^{k}S^{4})$.

Hypothesis H in all dimensions, as per Sati-V 2021

Hypothesis H

The dynamics of supergravity reduced to 11 - k dimensions is governed by the rational homotopy theory (RHT) of $\mathcal{L}_{c}^{k}S^{4}$.

Principle H

Any feature of or statement about the Sullivan minimal model $M(\mathcal{L}_c^k S^4)$ of the iterated cyclic loop space $\mathcal{L}_c^k S^4$ (or the rational homotopy type thereof) may be translated into a feature of or statement about the reduction of M-theory to 11 -k dimensions. Here $0 \le k \le 11$.