Einstein manifolds with symmetry Lecture III

Ramiro A. Lafuente
The University of Queensland, Australia

Joint with Christoph Böhm (Münster).

Winter school on Geometry and Physics – Srní Jan 14 - 20, 2024

Supported by the Australian Research Council DECRA fellowship DE190101063.

Conjecture (Alekseevskii 1975) (M^n, g) homogeneous, $\text{Ric}_g = -g \implies M \simeq_{\text{Diff}} \mathbb{R}^n$.

Conjecture (Alekseevskii 1975) (M^n, g) homogeneous, $\operatorname{Ric}_g = -g \implies M \simeq_{\operatorname{Diff}} \mathbb{R}^n$.

Theorem A (Böhm, L. 2021) Conjecture holds. Moreover, $(M^n, g) \simeq_{iso}$ Einstein solvmanifold.

Conjecture (Alekseevskii 1975) (M^n, g) homogeneous, $\operatorname{Ric}_g = -g \implies M \simeq_{\operatorname{Diff}} \mathbb{R}^n$.

Theorem A (Böhm, L. 2021) Conjecture holds. Moreover, $(M^n, g) \simeq_{iso}$ Einstein solvmanifold.

(For simplicity, assume M = F Lie group, $\pi_1(F) = 1$.)

Conjecture (Alekseevskii 1975) (M^n, g) homogeneous, $\operatorname{Ric}_g = -g \implies M \simeq_{\operatorname{Diff}} \mathbb{R}^n$.

Theorem A (Böhm, L. 2021) Conjecture holds. Moreover, $(M^n, g) \simeq_{iso}$ Einstein solvmanifold.

(For simplicity, assume M = F Lie group, $\pi_1(F) = 1$.)

Ricci curvature of left-invariant metrics:

$$\operatorname{\mathsf{Ric}}(g) = M_{\mu} - \frac{1}{2}B_{\mathfrak{f}} - \langle [H, \cdot], \cdot \rangle,$$

 M_{μ} moment map (real GIT), $\mu_{ij}^{k} = \langle [E_i, E_j], E_k \rangle$ structure coefficients of \mathfrak{f} , $B_{\mathfrak{f}}$ Killing form.

Conjecture (Alekseevskii 1975) (M^n, g) homogeneous, $\operatorname{Ric}_g = -g \implies M \simeq_{\operatorname{Diff}} \mathbb{R}^n$.

Theorem A (Böhm, L. 2021) Conjecture holds. Moreover, $(M^n, g) \simeq_{iso}$ Einstein solvmanifold.

(For simplicity, assume M = F Lie group, $\pi_1(F) = 1$.)

Ricci curvature of left-invariant metrics:

$$\operatorname{\mathsf{Ric}}(g) = M_{\mu} - \frac{1}{2}B_{\mathfrak{f}} - \langle [H, \cdot], \cdot \rangle,$$

 M_{μ} moment map (real GIT), $\mu_{ij}^{k} = \langle [E_i, E_j], E_k \rangle$ structure coefficients of \mathfrak{f} , $B_{\mathfrak{f}}$ Killing form.

• Very good understanding when F solvable. $F \simeq_{\text{Diff}} \mathbb{R}^n$

Conjecture (Alekseevskii 1975) (M^n, g) homogeneous, $\operatorname{Ric}_g = -g \implies M \simeq_{\operatorname{Diff}} \mathbb{R}^n$.

Theorem A (Böhm, L. 2021) Conjecture holds. Moreover, $(M^n, g) \simeq_{iso}$ Einstein solvmanifold.

(For simplicity, assume M = F Lie group, $\pi_1(F) = 1$.)

Ricci curvature of left-invariant metrics:

$$\operatorname{\mathsf{Ric}}(g) = M_{\mu} - \frac{1}{2}B_{\mathfrak{f}} - \langle [H, \cdot], \cdot \rangle,$$

 M_{μ} moment map (real GIT), $\mu_{ij}^{k} = \langle [E_i, E_j], E_k \rangle$ structure coefficients of \mathfrak{f} , $B_{\mathfrak{f}}$ Killing form.

- Very good understanding when F solvable. $F \simeq_{\text{Diff}} \mathbb{R}^n$
- Essentially nothing known when F semisimple. $F \simeq_{\text{Diff}} K \times \mathbb{R}^p$.

Theorem A (Böhm, L. 2021) $(M^n = F, g)$, $\operatorname{Ric}_g = -g \implies M^n \simeq_{\operatorname{Diff}} \mathbb{R}^n$.

Key idea Forget homogeneity. Study $Ric_g = -g$ using invariance under **non-transitive** group.

Theorem A (Böhm, L. 2021) $(M^n = F, g)$, $Ric_g = -g \implies M^n \simeq_{Diff} \mathbb{R}^n$.

Key idea Forget homogeneity. Study $Ric_g = -g$ using invariance under **non-transitive** group.

Assume $M^n = \operatorname{\mathsf{SL}}_m(\mathbb{R})$

Theorem A (Böhm, L. 2021) $(M^n = F, g)$, $\text{Ric}_g = -g \implies M^n \simeq_{\text{Diff}} \mathbb{R}^n$.

Key idea Forget homogeneity. Study $Ric_g = -g$ using invariance under **non-transitive** group.

Assume $M^n = \mathsf{SL}_m(\mathbb{R}) \simeq_{\mathrm{Diff}} \mathsf{SO}(m) \times \mathbb{R}^p$ (i.e. $\mathsf{H} = \{e\}, \mathsf{K} = \mathsf{SO}(m)$). Must show: \nexists solution.

Theorem A (Böhm, L. 2021) $(M^n = F, g)$, $Ric_g = -g \implies M^n \simeq_{Diff} \mathbb{R}^n$.

Key idea Forget homogeneity. Study $Ric_g = -g$ using invariance under **non-transitive** group.

Assume $M^n = \operatorname{SL}_m(\mathbb{R}) \simeq_{\operatorname{Diff}} \operatorname{SO}(m) \times \mathbb{R}^p$ (i.e. $H = \{e\}, K = \operatorname{SO}(m)$). Must show: \sharp solution. Iwasawa decomposition $\operatorname{SL}_m(\mathbb{R}) = \operatorname{SO}(m)$ G, G = {upper triangular, diag > 0} Borel subgroup

Theorem A (Böhm, L. 2021) $(M^n = F, g)$, $Ric_g = -g \implies M^n \simeq_{Diff} \mathbb{R}^n$.

Key idea Forget homogeneity. Study $Ric_g = -g$ using invariance under **non-transitive** group.

Assume $M^n = \operatorname{SL}_m(\mathbb{R}) \simeq_{\operatorname{Diff}} \operatorname{SO}(m) \times \mathbb{R}^p$ (i.e. $H = \{e\}, K = \operatorname{SO}(m)$). Must show: \nexists solution. Iwasawa decomposition $\operatorname{SL}_m(\mathbb{R}) = \operatorname{SO}(m)$ G, $G = \{\text{upper triangular, diag} > 0\}$ Borel subgroup G solvable, acts on (M^n, g) isometrically, properly and cocompactly. $M/G \simeq \operatorname{SO}(m)$

Theorem A (Böhm, L. 2021) $(M^n = F, g)$, $\text{Ric}_g = -g \implies M^n \simeq_{\text{Diff}} \mathbb{R}^n$.

Key idea Forget homogeneity. Study $Ric_g = -g$ using invariance under **non-transitive** group.

Assume $M^n = \operatorname{SL}_m(\mathbb{R}) \simeq_{\operatorname{Diff}} \operatorname{SO}(m) \times \mathbb{R}^p$ (i.e. $H = \{e\}, K = \operatorname{SO}(m)$). Must show: \nexists solution. Iwasawa decomposition $\operatorname{SL}_m(\mathbb{R}) = \operatorname{SO}(m)$ G, $G = \{\text{upper triangular, diag} > 0\}$ Borel subgroup G solvable, acts on (M^n, g) isometrically, properly and cocompactly. $M/G \simeq \operatorname{SO}(m)$

 $\pi: M \to M/G$ G – principal bundle

Theorem A (Böhm, L. 2021) $(M^n = F, g)$, $Ric_g = -g \implies M^n \simeq_{Diff} \mathbb{R}^n$.

Key idea Forget homogeneity. Study $Ric_g = -g$ using invariance under **non-transitive** group.

Assume $M^n = \operatorname{SL}_m(\mathbb{R}) \simeq_{\operatorname{Diff}} \operatorname{SO}(m) \times \mathbb{R}^p$ (i.e. $H = \{e\}, K = \operatorname{SO}(m)$). Must show: \nexists solution. Iwasawa decomposition $\operatorname{SL}_m(\mathbb{R}) = \operatorname{SO}(m)\operatorname{G}$, $\operatorname{G} = \{\text{upper triangular, diag} > 0\}$ Borel subgroup G solvable, acts on (M^n, g) isometrically, properly and cocompactly. $M/\operatorname{G} \simeq \operatorname{SO}(m)$

 $\pi: M \to M/G$ G – principal bundle

Drawback G-invariant Einstein equation is now a PDE.

Theorem A (Böhm, L. 2021) $(M^n = F, g)$, $\text{Ric}_g = -g \implies M^n \simeq_{\text{Diff}} \mathbb{R}^n$.

Key idea Forget homogeneity. Study $Ric_g = -g$ using invariance under **non-transitive** group.

Assume $M^n = \operatorname{SL}_m(\mathbb{R}) \simeq_{\operatorname{Diff}} \operatorname{SO}(m) \times \mathbb{R}^p$ (i.e. $H = \{e\}, K = \operatorname{SO}(m)$). Must show: \nexists solution. Iwasawa decomposition $\operatorname{SL}_m(\mathbb{R}) = \operatorname{SO}(m)\operatorname{G}$, $\operatorname{G} = \{\text{upper triangular, diag} > 0\}$ Borel subgroup G solvable, acts on (M^n, g) isometrically, properly and cocompactly. $M/\operatorname{G} \simeq \operatorname{SO}(m)$

 $\pi: M \to M/G$ G – principal bundle

Drawback G-invariant Einstein equation is now a **PDE**.

Gain PDE on a compact manifold, involving algebraic data from Ric of G-orbits.

Setup (M^n, g) , $\text{Ric}_g = -g$, G acts freely, properly and isometrically, B := M/G compact.

Setup (M^n, g) , $\text{Ric}_g = -g$, G acts freely, properly and isometrically, B := M/G compact.

 $\pi: M \to M/G$ G-principal bundle

Setup (M^n, g) , $\text{Ric}_g = -g$, G acts freely, properly and isometrically, B := M/G compact.

 $\pi: M \to M/G$ G-principal bundle and a Riemannian submersion for some g^B on B

Setup (M^n, g) , $\text{Ric}_g = -g$, G acts freely, properly and isometrically, B := M/G compact.

 $\pi: M \to M/G$ G-principal bundle and a Riemannian submersion for some g^B on B

$$TM = \mathcal{H} \oplus^{\perp} \mathcal{V}, \qquad \mathcal{V} := \ker d\pi$$

Setup (M^n, g) , $\text{Ric}_g = -g$, G acts freely, properly and isometrically, B := M/G compact.

 $\pi: M \to M/G$ G-principal bundle and a Riemannian submersion for some g^B on B

$$TM = \mathcal{H} \oplus^{\perp} \mathcal{V}, \qquad \mathcal{V} := \ker d\pi$$

G-invariant metric on $M \iff$

Setup (M^n, g) , $\text{Ric}_g = -g$, **G** acts freely, properly and isometrically, B := M/G compact.

 $\pi: M \to M/G$ G-principal bundle and a Riemannian submersion for some g^B on B

$$TM = \mathcal{H} \oplus^{\perp} \mathcal{V}, \qquad \mathcal{V} := \ker d\pi$$

- G-invariant metric on $M \iff$
 - \mathcal{H} , principal connection

Setup (M^n, g) , $\text{Ric}_g = -g$, **G** acts freely, properly and isometrically, B := M/G compact.

 $\pi: M \to M/G$ G-principal bundle and a Riemannian submersion for some g^B on B

$$TM = \mathcal{H} \oplus^{\perp} \mathcal{V}, \qquad \mathcal{V} := \ker d\pi$$

G-invariant metric on $M \iff$

- \mathcal{H} , principal connection
- $(h_b)_{b \in B}$ family of left-invariant metrics on G

Setup (M^n, g) , $\text{Ric}_g = -g$, G acts freely, properly and isometrically, B := M/G compact.

 $\pi: M \to M/G$ G-principal bundle and a Riemannian submersion for some g^B on B

$$TM = \mathcal{H} \oplus^{\perp} \mathcal{V}, \qquad \mathcal{V} := \ker d\pi$$

G-invariant metric on $M \iff$

- \mathcal{H} , principal connection
- $(h_b)_{b \in B}$ family of left-invariant metrics on G
- g^B , metric on B.

Setup (M^n, g) , $\text{Ric}_g = -g$, G acts freely, properly and isometrically, B := M/G compact.

 $\pi: M \to M/G$ G-principal bundle and a Riemannian submersion for some g^B on B

$$TM = \mathcal{H} \oplus^{\perp} \mathcal{V}, \qquad \mathcal{V} := \ker d\pi$$

G-invariant metric on $M \iff$

- \mathcal{H} , principal connection
- $(h_b)_{b \in B}$ family of left-invariant metrics on G
- g^B , metric on B.

Rmk May view $h: B \to GL(\mathfrak{g})/SO(\mathfrak{g})$.

Recall: the nilradical N of a Lie group G is the maximal connected nilpotent normal subgroup.

Recall: the nilradical N of a Lie group G is the maximal connected nilpotent normal subgroup. E.g. if $F = SL_3(\mathbb{R}) = SO(3)G$,

Recall: the nilradical N of a Lie group G is the maximal connected nilpotent normal subgroup. E.g. if $F = SL_3(\mathbb{R}) = SO(3)G$,

$$\mathsf{G} = \left\{ \left(\begin{array}{ccc} \mathsf{a} & * & * \\ \mathsf{0} & \mathsf{b} & * \\ \mathsf{0} & \mathsf{0} & \mathsf{c} \end{array} \right) \colon \mathsf{abc} = 1, \mathsf{a}, \mathsf{b}, \mathsf{c} > \mathsf{0} \right\}, \quad \mathsf{N} = \left\{ \left(\begin{array}{ccc} \mathsf{1} & * & * \\ \mathsf{0} & \mathsf{1} & * \\ \mathsf{0} & \mathsf{0} & \mathsf{1} \end{array} \right) \right\} \simeq H^3(\mathbb{R}),$$

Recall: the nilradical N of a Lie group G is the maximal connected nilpotent normal subgroup. E.g. if $F = SL_3(\mathbb{R}) = SO(3)G$,

$$\mathsf{G} = \left\{ \left(\begin{array}{ccc} a & * & * \\ 0 & b & * \\ 0 & 0 & c \end{array} \right) \colon abc = 1, a, b, c > 0 \right\}, \quad \mathsf{N} = \left\{ \left(\begin{array}{ccc} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{array} \right) \right\} \simeq H^3(\mathbb{R}),$$

N is trivial if and only if G is semisimple.

Recall: the nilradical N of a Lie group G is the maximal connected nilpotent normal subgroup. E.g. if $F = SL_3(\mathbb{R}) = SO(3)G$,

$$\mathsf{G} = \left\{ \left(\begin{array}{ccc} a & * & * \\ 0 & b & * \\ 0 & 0 & c \end{array} \right) \colon abc = 1, a, b, c > 0 \right\}, \quad \mathsf{N} = \left\{ \left(\begin{array}{ccc} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{array} \right) \right\} \simeq H^3(\mathbb{R}),$$

N is trivial if and only if G is semisimple.

Theorem B (Böhm, L. 2021) (M^n, g) G-principal bundle, $Ric_g = -g$, M/G compact.

Recall: the nilradical N of a Lie group G is the maximal connected nilpotent normal subgroup. E.g. if $F = SL_3(\mathbb{R}) = SO(3)G$,

$$\mathsf{G} = \left\{ \left(\begin{array}{ccc} a & * & * \\ 0 & b & * \\ 0 & 0 & c \end{array} \right) \colon abc = 1, a, b, c > 0 \right\}, \quad \mathsf{N} = \left\{ \left(\begin{array}{ccc} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{array} \right) \right\} \simeq H^3(\mathbb{R}),$$

N is trivial if and only if G is semisimple.

Theorem B (Böhm, L. 2021) (M^n, g) G-principal bundle, $\text{Ric}_g = -g$, M/G compact. Then, the corresponding N-principal bundle $M \to M/N$ satisfies:

Recall: the nilradical N of a Lie group G is the maximal connected nilpotent normal subgroup. E.g. if $F = SL_3(\mathbb{R}) = SO(3)G$,

$$\mathsf{G} = \left\{ \left(\begin{array}{ccc} a & * & * \\ 0 & b & * \\ 0 & 0 & c \end{array} \right) \colon abc = 1, a, b, c > 0 \right\}, \quad \mathsf{N} = \left\{ \left(\begin{array}{ccc} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{array} \right) \right\} \simeq H^3(\mathbb{R}),$$

N is trivial if and only if G is semisimple.

Theorem B (Böhm, L. 2021) (M^n, g) G-principal bundle, $\text{Ric}_g = -g$, M/G compact. Then, the corresponding N-principal bundle $M \to M/N$ satisfies:

 $lackbox{0} \ \mathcal{H}^{\mathsf{N}}$ is integrable; \iff the principal connection \mathcal{H}^{N} is flat

Recall: the nilradical N of a Lie group G is the maximal connected nilpotent normal subgroup. E.g. if $F = SL_3(\mathbb{R}) = SO(3)G$,

$$\mathsf{G} = \left\{ \left(\begin{array}{ccc} a & * & * \\ 0 & b & * \\ 0 & 0 & c \end{array} \right) \colon abc = 1, a, b, c > 0 \right\}, \quad \mathsf{N} = \left\{ \left(\begin{array}{ccc} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{array} \right) \right\} \simeq H^3(\mathbb{R}),$$

N is trivial if and only if G is semisimple.

Theorem B (Böhm, L. 2021) (M^n, g) G-principal bundle, $\text{Ric}_g = -g$, M/G compact. Then, the corresponding N-principal bundle $M \to M/N$ satisfies:

1 \mathcal{H}^{N} is integrable; \iff the principal connection \mathcal{H}^{N} is flat \iff N-action is polar

Recall: the nilradical N of a Lie group G is the maximal connected nilpotent normal subgroup. E.g. if $F = SL_3(\mathbb{R}) = SO(3)G$,

$$\mathsf{G} = \left\{ \left(\begin{array}{ccc} a & * & * \\ 0 & b & * \\ 0 & 0 & c \end{array} \right) \colon abc = 1, a, b, c > 0 \right\}, \quad \mathsf{N} = \left\{ \left(\begin{array}{ccc} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{array} \right) \right\} \simeq H^3(\mathbb{R}),$$

N is trivial if and only if G is semisimple.

Theorem B (Böhm, L. 2021) (M^n, g) G-principal bundle, $\text{Ric}_g = -g$, M/G compact. Then, the corresponding N-principal bundle $M \to M/N$ satisfies:

- $lackbox{0} \ \mathcal{H}^{N}$ is integrable; \iff the principal connection \mathcal{H}^{N} is flat \iff N-action is polar
- ② The N-orbits are Ricci solitons; $Ric_{h_b} = -h_b + \mathcal{L}_X h_b$

Recall: the nilradical N of a Lie group G is the maximal connected nilpotent normal subgroup. E.g. if $F = SL_3(\mathbb{R}) = SO(3)G$,

$$\mathsf{G} = \left\{ \left(\begin{array}{ccc} \mathsf{a} & * & * \\ \mathsf{0} & \mathsf{b} & * \\ \mathsf{0} & \mathsf{0} & \mathsf{c} \end{array} \right) \colon \mathsf{abc} = \mathsf{1}, \mathsf{a}, \mathsf{b}, \mathsf{c} > \mathsf{0} \right\}, \quad \mathsf{N} = \left\{ \left(\begin{array}{ccc} \mathsf{1} & * & * \\ \mathsf{0} & \mathsf{1} & * \\ \mathsf{0} & \mathsf{0} & \mathsf{1} \end{array} \right) \right\} \simeq H^3(\mathbb{R}),$$

N is trivial if and only if G is semisimple.

Theorem B (Böhm, L. 2021) (M^n, g) G-principal bundle, $\text{Ric}_g = -g$, M/G compact. Then, the corresponding N-principal bundle $M \to M/N$ satisfies:

- **1** \mathcal{H}^{N} is integrable; \iff the principal connection \mathcal{H}^{N} is flat \iff N-action is polar
- ② The N-orbits are Ricci solitons; $Ric_{h_b} = -h_b + \mathcal{L}_X h_b$
- 3 $h: M/N \to GL(n)/SO(n)$ is a harmonic map.

Recall: the nilradical N of a Lie group G is the maximal connected nilpotent normal subgroup. E.g. if $F = SL_3(\mathbb{R}) = SO(3)G$,

$$\mathbf{G} = \left\{ \begin{pmatrix} a & * & * \\ 0 & b & * \\ 0 & 0 & c \end{pmatrix} : abc = 1, a, b, c > 0 \right\}, \quad \mathbf{N} = \left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix} \right\} \simeq H^3(\mathbb{R}),$$

N is trivial if and only if G is semisimple.

Theorem B (Böhm, L. 2021) (M^n, g) G-principal bundle, $\text{Ric}_g = -g$, M/G compact. Then, the corresponding N-principal bundle $M \to M/N$ satisfies:

- **1** \mathcal{H}^{N} is integrable; \iff the principal connection \mathcal{H}^{N} is flat \iff N-action is polar
- **2** The N-orbits are Ricci solitons; $Ric_{h_b} = -h_b + \mathcal{L}_X h_b$
- **③** $h: M/N \rightarrow GL(n)/SO(n)$ is a harmonic map.

Rmk If M/G = pt, G solvable, **Thm B** (1) says Einstein solvmanifolds are *standard* (Lauret '10).

Proof sketch of Theorem B

Theorem B (Böhm, L. 2021) (M^n, g) G-principal bundle, $\text{Ric}_g = -g$, M/G compact. Then, the corresponding N-principal bundle $M \to M/N$ satisfies:

- **1** \mathcal{H}^{N} is integrable; \iff the principal connection \mathcal{H}^{N} is flat \iff N-action is polar
- **②** The N-orbits are Ricci solitons; $Ric_{h_b} = -h_b + \mathcal{L}_X h_b$
- **3** $h: M/\mathbb{N} \to GL(\mathfrak{n})/SO(\mathfrak{n})$ is a harmonic map.

Theorem B (Böhm, L. 2021) (M^n, g) G-principal bundle, $\text{Ric}_g = -g$, M/G compact. Then, the corresponding N-principal bundle $M \to M/N$ satisfies:

- **1** \mathcal{H}^{N} is integrable; \iff the principal connection \mathcal{H}^{N} is flat \iff N-action is polar
- **②** The N-orbits are Ricci solitons; $\mathrm{Ric}_{h_b} = -h_b + \mathcal{L}_X h_b$
- **3** $h: M/\mathbb{N} \to GL(\mathfrak{n})/SO(\mathfrak{n})$ is a harmonic map.

(O'Neill) Riemannian submersion: $Rm_g \leftrightarrow Rm_{h_b}, Rm_B, A, T$

Theorem B (Böhm, L. 2021) (M^n, g) G-principal bundle, $\text{Ric}_g = -g$, M/G compact. Then, the corresponding N-principal bundle $M \to M/N$ satisfies:

- **1** \mathcal{H}^{N} is integrable; \iff the principal connection \mathcal{H}^{N} is flat \iff N-action is polar
- ② The N-orbits are Ricci solitons; $Ric_{h_b} = -h_b + \mathcal{L}_X h_b$
- \bullet $h: M/N \to GL(\mathfrak{n})/SO(\mathfrak{n})$ is a harmonic map.

(O'Neill) Riemannian submersion: $\operatorname{Rm}_g \longleftrightarrow \operatorname{Rm}_{h_b}, \operatorname{Rm}_B, A, T$ $\langle A_X Y, U \rangle = \frac{1}{2} \langle [X, Y], U \rangle, \qquad X, Y \in \Gamma(\mathcal{H}),$ $\langle T_U V, X \rangle = \langle \nabla_U X, V \rangle, \qquad U, V \in \Gamma(\mathcal{V}).$

Theorem B (Böhm, L. 2021) (M^n, g) G-principal bundle, $Ric_g = -g$, M/G compact. Then, the corresponding N-principal bundle $M \to M/N$ satisfies:

- \bullet \mathcal{H}^{N} is integrable; \iff the principal connection \mathcal{H}^{N} is flat \iff N-action is polar
- 2 The N-orbits are Ricci solitons; $Ric_{h_b} = -h_b + \mathcal{L}_X h_b$
- \bullet h: $M/N \to GL(\mathfrak{n})/SO(\mathfrak{n})$ is a harmonic map.

(O'Neill) Riemannian submersion:
$$Rm_g \leftrightarrow Rm_{h_b}, Rm_B, A, T$$

$$\langle A_X Y, U \rangle = \frac{1}{2} \langle [X, Y], U \rangle, \qquad X, Y \in \Gamma(\mathcal{H}),$$

 $\langle T_U V, X \rangle = \langle \nabla_U X, V \rangle, \qquad U, V \in \Gamma(\mathcal{V}),$

$$\label{eq:total_def} \langle T_U V, X \rangle = \langle \nabla_U X, V \rangle, \qquad U, V \in \Gamma(\mathcal{V}).$$

Mean curvature vector $H = T_{U_i}U_i = -\nabla \log \sqrt{\det \hat{g}_{ii}}, \quad \hat{g}_{ii} := g(U_i, U_i).$

Theorem B (Böhm, L. 2021) (M^n, g) G-principal bundle, $Ric_g = -g$, M/G compact, ...

(O'Neill) Riemannian submersion: $Rm_g \leftrightarrow Rm_{h_b}$, Rm_B , A, T

$$\langle A_X Y, U \rangle = \frac{1}{2} \langle [X, Y], U \rangle, \qquad X, Y \in \Gamma(\mathcal{H}),$$

 $\langle T_U V, X \rangle = \langle \nabla_U X, V \rangle, \qquad U, V \in \Gamma(\mathcal{V}).$

 $\text{Mean curvature vector } H = T_{U_i}U_i = -\nabla\log\sqrt{\text{det }\hat{g}_{ij}}, \quad \hat{g}_{ij} := g(\textcolor{red}{U_i},\textcolor{blue}{U_j}).$

Theorem B (Böhm, L. 2021) (M^n, g) G-principal bundle, $Ric_g = -g$, M/G compact, ...

(O'Neill) Riemannian submersion: $Rm_g \leftrightarrow Rm_{h_b}$, Rm_B , A, T

$$\begin{split} \langle A_XY,U\rangle &= \tfrac{1}{2}\langle [X,Y],U\rangle, & X,Y\in \Gamma(\mathcal{H}),\\ \langle T_UV,X\rangle &= \langle \nabla_UX,V\rangle, & U,V\in \Gamma(\mathcal{V}). \end{split}$$

 $\text{Mean curvature vector } H = T_{U_i}U_i = -\nabla\log\sqrt{\text{det}\,\hat{g}_{ij}}, \quad \hat{g}_{ij} := g(U_i,U_j).$

$$\begin{split} \operatorname{Ric}_{\mathbf{g}} &= -\mathbf{g} \ + \ \operatorname{N-inv.} \iff \begin{cases} 0 = \operatorname{Ric}(\mathbf{h})_{ij} + \mathbf{h}_{ij} - \operatorname{H}^{\gamma} \operatorname{T}_{\mathbf{i} \mathbf{j} \gamma} + 2 \, T_{i}^{k\alpha} \, T_{jk\alpha} - \frac{1}{2} \Delta_{B} \, \mathbf{h}_{ij} + A_{i}^{\alpha \gamma} \, A_{\alpha \gamma j} \\ 0 = \cdots & \mathcal{H} - \mathcal{V} \\ 0 = \operatorname{Ric}(\mathbf{g}^{B})_{\alpha \beta} + \mathbf{g}_{\alpha \beta}^{B} + \frac{1}{2} \mathcal{L}_{H} \mathbf{g}_{\alpha \beta}^{B} - A_{\alpha}^{\gamma k} A_{\gamma \beta k} - T_{\alpha}^{kl} \, T_{kl\beta}, \end{cases} \end{split}$$

Theorem B (Böhm, L. 2021) (M^n, g) G-principal bundle, $Ric_g = -g$, M/G compact, ...

(O'Neill) Riemannian submersion: $Rm_g \leftrightarrow Rm_{h_b}$, Rm_B , A, T

$$\begin{split} \langle A_XY,U\rangle &= \tfrac{1}{2}\langle [X,Y],U\rangle, & X,Y\in \Gamma(\mathcal{H}),\\ \langle T_UV,X\rangle &= \langle \nabla_UX,V\rangle, & U,V\in \Gamma(\mathcal{V}). \end{split}$$

 $\text{Mean curvature vector } H = T_{U_i}U_i = -\nabla\log\sqrt{\text{det}\,\hat{g}_{ij}}, \quad \hat{g}_{ij} := g(U_i,U_j).$

$$\begin{split} \operatorname{Ric}_{\mathbf{g}} &= -\mathbf{g} \ + \ \operatorname{N-inv.} \iff \begin{cases} 0 = \operatorname{Ric}(h)_{ij} + h_{ij} - \operatorname{H}^{\gamma} \operatorname{T}_{\mathbf{i} \mathbf{j} \gamma} + 2 \, T_{i}^{k \alpha} \, T_{jk \alpha} - \frac{1}{2} \Delta_{B} \, h_{ij} + A_{i}^{\alpha \gamma} \, A_{\alpha \gamma j} \\ 0 = \cdots & \mathcal{H} - \mathcal{V} \\ 0 = \operatorname{Ric}(\mathbf{g}^{B})_{\alpha \beta} + \mathbf{g}_{\alpha \beta}^{B} + \frac{1}{2} \mathcal{L}_{H} \mathbf{g}_{\alpha \beta}^{B} - A_{\alpha}^{\gamma k} A_{\gamma \beta k} - T_{\alpha}^{k l} \, T_{k l \beta}, \end{cases} \end{split}$$

Ricci soliton, Harmonic map, \mathcal{H} integrable.

Setup
$$Ric_g = -g + N$$
-invariance

Setup
$$Ric_g = -g + N$$
-invariance

(X. Rong '98) Ric < 0, G = N abelian;

Setup
$$Ric_g = -g + N$$
-invariance

(X. Rong '98) Ric < 0, G = N abelian; (Naber - Tian '18) Ric = 0, G = N nilpotent;

```
Setup Ric_g = -g + N-invariance
```

```
(X. Rong '98) Ric < 0, G = N abelian;
(Naber - Tian '18) Ric = 0, G = N nilpotent;
(Lott '20) Ric = 0, G = N abelian.
```

Setup
$$Ric_g = -g + N$$
-invariance

```
(X. Rong '98) Ric < 0, G = N abelian;
```

(Naber - Tian '18) Ric =
$$0$$
, $G = N$ nilpotent;

(Lott '20) Ric =
$$0$$
, $G = N$ abelian.

Key ingredient: Volume density
$$\log v^{\mathsf{N}}$$
 $(v^{\mathsf{N}} := \sqrt{\det h_{ij}} : M/\mathsf{G} \to \mathbb{R})$ satisfies

$$\Delta \log v^{\mathsf{N}} + \langle \nabla \log v^{\mathsf{N}}, X \rangle \geqslant 0, \qquad X \in \mathfrak{X}(M/\mathsf{G})$$

Setup
$$Ric_g = -g + N$$
-invariance

(X. Rong '98) Ric < 0, G = N abelian;

(Naber - Tian '18) Ric = 0, G = N nilpotent;

(Lott '20) Ric = 0, G = N abelian.

Key ingredient: Volume density $\log v^{\mathsf{N}}$ $(v^{\mathsf{N}} := \sqrt{\det h_{ij}} : M/\mathsf{G} \to \mathbb{R})$ satisfies

$$\Delta \log v^{\mathsf{N}} + \langle \nabla \log v^{\mathsf{N}}, X \rangle \geqslant 0, \qquad X \in \mathfrak{X}(M/\mathsf{G})$$

Maximum principle \implies log v^N constant and equality holds everywhere.

Setup
$$Ric_g = -g + N$$
-invariance

(X. Rong '98) Ric < 0, G = N abelian;

(Naber - Tian '18) Ric = 0, G = N nilpotent;

(Lott '20) Ric = 0, G = N abelian.

Key ingredient: Volume density $\log v^{\mathsf{N}}$ $(v^{\mathsf{N}} := \sqrt{\det h_{ij}} : M/\mathsf{G} \to \mathbb{R})$ satisfies

$$\Delta \log v^{\mathsf{N}} + \langle \nabla \log v^{\mathsf{N}}, X \rangle \geqslant 0, \qquad X \in \mathfrak{X}(M/\mathsf{G})$$

Maximum principle \implies log $v^{\mathbb{N}}$ constant and equality holds everywhere.

Issue 1 If N non-abelian, curvature of the orbits appears in the formulas.

Setup
$$Ric_g = -g + N$$
-invariance

(X. Rong '98) Ric < 0, G = N abelian;

(Naber - Tian '18) Ric = 0, G = N nilpotent;

(Lott '20) Ric = 0, G = N abelian.

Key ingredient: Volume density $\log v^{\mathsf{N}}$ $(v^{\mathsf{N}} := \sqrt{\det h_{ij}} : M/\mathsf{G} \to \mathbb{R})$ satisfies

$$\Delta \log v^{\mathsf{N}} + \langle \nabla \log v^{\mathsf{N}}, X \rangle \geqslant 0, \qquad X \in \mathfrak{X}(M/\mathsf{G})$$

Maximum principle \implies log $v^{\mathbb{N}}$ constant and equality holds everywhere.

Issue 1 If N non-abelian, curvature of the orbits appears in the formulas.

Issue 2 If G non-unimodular, $\log v^{N}$ is not G-invariant.

Issue 1 If N non-abelian, curvature of the orbits appears in the formulas.

Issue 1 If N non-abelian, curvature of the orbits appears in the formulas.

(Heber'98) Link between Ricci of solvmanifolds and real Geometric Invariant Theory (GIT).

Issue 1 If N non-abelian, curvature of the orbits appears in the formulas.

(Heber'98) Link between Ricci of solvmanifolds and real Geometric Invariant Theory (GIT).

(Lauret'10) Given N, $\exists \beta \in \mathbb{Q}^r$ such that **for any** left-invariant h, there is a frame $\{E_i\}$ for which $\sum_i \operatorname{Ric}_h(E_i, E_i)(\beta^i + 1) \ge 0$,

Issue 1 If N non-abelian, curvature of the orbits appears in the formulas.

(Heber'98) Link between Ricci of solvmanifolds and real Geometric Invariant Theory (GIT).

(Lauret'10) Given N, $\exists \beta \in \mathbb{Q}^r$ such that **for any** left-invariant h, there is a frame $\{E_i\}$ for which $\sum_i \operatorname{Ric}_h(E_i, E_i)(\beta^i + 1) \ge 0$, sharp on solitons

Issue 1 If N non-abelian, curvature of the orbits appears in the formulas.

(Heber'98) Link between Ricci of solvmanifolds and real Geometric Invariant Theory (GIT).

(Lauret'10) Given N, $\exists \beta \in \mathbb{Q}^r$ such that **for any** left-invariant h, there is a frame $\{E_i\}$ for which $\sum_i \operatorname{Ric}_h(E_i, E_i)(\beta^i + 1) \ge 0$, sharp on solitons + many other remarkable properties.

Issue 1 If N non-abelian, curvature of the orbits appears in the formulas.

(Heber'98) Link between Ricci of solvmanifolds and real Geometric Invariant Theory (GIT).

(Lauret'10) Given N, $\exists \beta \in \mathbb{Q}^r$ such that **for any** left-invariant h, there is a frame $\{E_i\}$ for which $\sum_i \mathrm{Ric}_h(E_i, E_i)(\beta^i + 1) \ge 0$, sharp on solitons + many other remarkable properties.

(Böhm, L. '18) β -weighted volume density $v^{\beta}:=\prod_{i=1}^{r}h_{ii}^{\beta^{i}}$ \leadsto Lyapunov function for immortal homogeneous Ricci flow

Issue 1 If N non-abelian, curvature of the orbits appears in the formulas.

(Heber'98) Link between Ricci of solvmanifolds and real Geometric Invariant Theory (GIT).

(Lauret'10) Given N, $\exists \beta \in \mathbb{Q}^r$ such that **for any** left-invariant h, there is a frame $\{E_i\}$ for which $\sum_i \mathrm{Ric}_h(E_i, E_i)(\beta^i + 1) \ge 0$, sharp on solitons + many other remarkable properties.

(Böhm, L. '18) β -weighted volume density $v^{\beta}:=\prod_{i=1}^{r}h_{ii}^{\beta^{i}} \leadsto$ Lyapunov function for immortal homogeneous Ricci flow

 $\log v^{\beta}$ is G-invariant and satisfies an interesting PDE $\Delta \log v^{\beta} \geqslant \sum_{i} \operatorname{Ric}_{h}(E_{i}, E_{i})\beta^{i} + \cdots$

Issue 1 If N non-abelian, curvature of the orbits appears in the formulas.

(Heber'98) Link between Ricci of solvmanifolds and real Geometric Invariant Theory (GIT).

(Lauret'10) Given N, $\exists \beta \in \mathbb{Q}^r$ such that **for any** left-invariant h, there is a frame $\{E_i\}$ for which $\sum_i \mathrm{Ric}_h(E_i, E_i)(\beta^i + 1) \ge 0$, sharp on solitons + many other remarkable properties.

(Böhm, L. '18) β -weighted volume density $v^{\beta}:=\prod_{i=1}^r h_{ii}^{\beta^i} \leadsto$ Lyapunov function for immortal homogeneous Ricci flow

 $\log v^{\beta}$ is G-invariant and satisfies an interesting PDE $\Delta \log v^{\beta} \geqslant \sum_{i} \operatorname{Ric}_{h}(E_{i}, E_{i})\beta^{i} + \cdots$ To exploit Lauret's estimate we would like to consider $\log v^{\beta} + \log v^{N}$

Issue 1 If N non-abelian, curvature of the orbits appears in the formulas.

(Heber'98) Link between Ricci of solvmanifolds and real Geometric Invariant Theory (GIT).

(Lauret'10) Given N, $\exists \beta \in \mathbb{Q}^r$ such that **for any** left-invariant h, there is a frame $\{E_i\}$ for which $\sum_i \mathrm{Ric}_h(E_i, E_i)(\beta^i + 1) \ge 0$, sharp on solitons + many other remarkable properties.

(Böhm, L. '18) β -weighted volume density $v^{\beta}:=\prod_{i=1}^{r}h_{ii}^{\beta^{i}} \leadsto$ Lyapunov function for immortal homogeneous Ricci flow

 $\log v^{\beta}$ is G-invariant and satisfies an interesting PDE $\Delta \log v^{\beta} \geqslant \sum_{i} \operatorname{Ric}_{h}(E_{i}, E_{i})\beta^{i} + \cdots$ To exploit Lauret's estimate we would like to consider $\log v^{\beta} + \log v^{N}$

 \longrightarrow **Issue 2** If G non-unimodular, $\log v^{N}$ is not G-invariant.

Recall
$$v^{N} = \sqrt{\det h_{ij}}$$
, $H = -\nabla \log v^{N}$.

Recall $v^{N} = \sqrt{\det h_{ij}}$, $H = -\nabla \log v^{N}$. Since $N \triangleleft G$, H is G-invariant.

Recall $v^{N} = \sqrt{\det h_{ij}}$, $H = -\nabla \log v^{N}$. Since $N \triangleleft G$, H is G-invariant.

Idea Look for G-invariant v such that

$$H = -\nabla \log v + H_0, \qquad \text{div}(vH_0) = 0,$$

Recall $v^{N} = \sqrt{\det h_{ij}}$, $H = -\nabla \log v^{N}$. Since $N \triangleleft G$, H is G-invariant.

Idea Look for G-invariant v such that

$$H = -\nabla \log v + H_0, \qquad \text{div}(vH_0) = 0,$$

$$0 = \operatorname{div}(\nabla v + vH) = \Delta v + \langle \nabla v, H \rangle + v \operatorname{div} H =: \mathcal{L}v.$$

Recall $v^{N} = \sqrt{\det h_{ij}}$, $H = -\nabla \log v^{N}$. Since $N \triangleleft G$, H is G-invariant.

Idea Look for G-invariant v such that

$$H = -\nabla \log v + H_0, \qquad \text{div}(vH_0) = 0,$$

$$0 = \operatorname{div}(\nabla v + vH) = \Delta v + \langle \nabla v, H \rangle + v \operatorname{div} H =: \mathcal{L}v.$$

Notice \mathcal{L}^* satisfies a maximum principle

Recall $v^{N} = \sqrt{\det h_{ij}}$, $H = -\nabla \log v^{N}$. Since $N \triangleleft G$, H is G-invariant.

Idea Look for G-invariant v such that

$$H = -\nabla \log v + H_0, \quad \operatorname{div}(vH_0) = 0,$$

$$0 = \operatorname{div}(\nabla v + vH) = \Delta v + \langle \nabla v, H \rangle + v \operatorname{div} H =: \mathcal{L}v.$$

Notice \mathcal{L}^* satisfies a maximum principle $\implies \cdots$

Recall $v^{N} = \sqrt{\det h_{ij}}$, $H = -\nabla \log v^{N}$. Since $N \triangleleft G$, H is G-invariant.

Idea Look for G-invariant v such that

$$H = -\nabla \log v + H_0, \qquad \text{div}(vH_0) = 0,$$

$$0 = \mathsf{div}(\nabla v + vH) = \Delta v + \langle \nabla v, H \rangle + v \ \mathsf{div}\, H =: \mathcal{L}v.$$

Notice \mathcal{L}^* satisfies a maximum principle $\implies \cdots \implies \exists !$ solution v > 0, $||v||_{L^2(M/\mathbb{G})} = 1$.

Recall $v^{N} = \sqrt{\det h_{ij}}$, $H = -\nabla \log v^{N}$. Since $N \triangleleft G$, H is G-invariant.

Idea Look for G-invariant v such that

$$H = -\nabla \log v + H_0, \qquad \text{div}(vH_0) = 0,$$

$$0 = \operatorname{div}(\nabla v + vH) = \Delta v + \langle \nabla v, H \rangle + v \operatorname{div} H =: \mathcal{L}v.$$

Notice \mathcal{L}^* satisfies a maximum principle $\implies \cdots \implies \exists !$ solution v > 0, $||v||_{L^2(M/\mathbb{G})} = 1$.

Finishing the proof of 1 Set $f = \log v^{\beta} + \log v + \frac{1}{2} |H_0|^2$, G-invariant. Then

$$\Delta f + \langle \nabla f, X \rangle \ge 0$$
 on M/G .

Recall $v^{N} = \sqrt{\det h_{ij}}$, $H = -\nabla \log v^{N}$. Since $N \triangleleft G$, H is G-invariant.

Idea Look for G-invariant v such that

$$H = -\nabla \log v + H_0, \qquad \text{div}(vH_0) = 0,$$

$$0 = \operatorname{div}(\nabla v + vH) = \Delta v + \langle \nabla v, H \rangle + v \operatorname{div} H =: \mathcal{L}v.$$

Notice \mathcal{L}^* satisfies a maximum principle $\implies \cdots \implies \exists !$ solution v > 0, $||v||_{L^2(M/\mathbb{G})} = 1$.

Finishing the proof of 1 Set $f = \log v^{\beta} + \log v + \frac{1}{2} |H_0|^2$, G-invariant. Then

$$\Delta f + \langle \nabla f, X \rangle \geqslant 0$$
 on M/G .

Maximum principle \implies equality, f constant

Recall $v^{N} = \sqrt{\det h_{ij}}$, $H = -\nabla \log v^{N}$. Since $N \triangleleft G$, H is G-invariant.

Idea Look for G-invariant v such that

$$H = -\nabla \log v + H_0, \quad \operatorname{div}(vH_0) = 0,$$

$$0 = \operatorname{div}(\nabla v + vH) = \Delta v + \langle \nabla v, H \rangle + v \operatorname{div} H =: \mathcal{L}v.$$

Notice \mathcal{L}^* satisfies a maximum principle $\implies \cdots \implies \exists !$ solution v > 0, $||v||_{L^2(M/\mathbb{G})} = 1$.

Finishing the proof of 1 Set $f = \log v^{\beta} + \log v + \frac{1}{2}|H_0|^2$, G-invariant. Then

$$\Delta f + \langle \nabla f, X \rangle \ge 0$$
 on M/G .

Maximum principle \implies equality, f constant \implies A=0 (i.e. \mathcal{H}^{N} integrable).

Recall $v^{N} = \sqrt{\det h_{ij}}$, $H = -\nabla \log v^{N}$. Since $N \triangleleft G$, H is G-invariant.

Idea Look for G-invariant v such that

$$H = -\nabla \log v + H_0, \quad \operatorname{div}(vH_0) = 0,$$

$$0 = \operatorname{div}(\nabla v + vH) = \Delta v + \langle \nabla v, H \rangle + v \operatorname{div} H =: \mathcal{L}v.$$

Notice \mathcal{L}^* satisfies a maximum principle $\implies \cdots \implies \exists !$ solution v > 0, $||v||_{L^2(M/\mathbb{G})} = 1$.

Finishing the proof of 1 Set $f = \log v^{\beta} + \log v + \frac{1}{2}|H_0|^2$, G-invariant. Then

$$\Delta f + \langle \nabla f, X \rangle \ge 0$$
 on M/G .

Maximum principle \implies equality, f constant \implies A = 0 (i.e. \mathcal{H}^{N} integrable).

Step 2 N-orbits are solitons:

Recall $v^{N} = \sqrt{\det h_{ij}}$, $H = -\nabla \log v^{N}$. Since $N \triangleleft G$, H is G-invariant.

Idea Look for G-invariant v such that

$$H = -\nabla \log v + H_0, \quad \operatorname{div}(vH_0) = 0,$$

$$0 = \operatorname{div}(\nabla v + vH) = \Delta v + \langle \nabla v, H \rangle + v \operatorname{div} H =: \mathcal{L}v.$$

Notice \mathcal{L}^* satisfies a maximum principle $\implies \cdots \implies \exists !$ solution v > 0, $||v||_{L^2(M/\mathbb{G})} = 1$.

Finishing the proof of 1 Set $f = \log v^{\beta} + \log v + \frac{1}{2}|H_0|^2$, G-invariant. Then

$$\Delta f + \langle \nabla f, X \rangle \ge 0$$
 on M/G .

Maximum principle \implies equality, f constant \implies A = 0 (i.e. \mathcal{H}^{N} integrable).

Step 2 N-orbits are solitons: use $f = \frac{1}{2}R(h) + \log v^{\beta}$.

Thm B implies Thm A: the Alekseevskii conjecture

Theorem B (Böhm, L. 2021) (M^n, g) G-principal bundle, $\text{Ric}_g = -g$, M/G compact. Then, the corresponding N-principal bundle $M \to M/N$ satisfies:

- \mathcal{H}^{N} is integrable; $\iff A = 0$
- **2** The N-orbits are Ricci solitons; $Ric_{h_b} = -h_b + \mathcal{L}_X h_b$
- **3** $h: M/N \to GL(\mathfrak{n})/SO(\mathfrak{n})$ is a harmonic map.

Theorem A (Böhm, L. 2021) $(M^n = F/H, g)$, $Ric_g = -g \implies M \simeq_{Diff} \mathbb{R}^n$.

Thm B implies Thm A: the Alekseevskii conjecture

Theorem B (Böhm, L. 2021) (M^n, g) G-principal bundle, $\text{Ric}_g = -g$, M/G compact. Then, the corresponding N-principal bundle $M \to M/N$ satisfies:

- \mathcal{H}^{N} is integrable; $\iff A = 0$
- **2** The N-orbits are Ricci solitons; $Ric_{h_b} = -h_b + \mathcal{L}_X h_b$
- **③** $h: M/N \rightarrow GL(n)/SO(n)$ is a harmonic map.

Theorem A (Böhm, L. 2021) $(M^n = F/H, g)$, $Ric_g = -g \implies M \simeq_{Diff} \mathbb{R}^n$.

Remember homogeneity of M Using Killing fields from M, **Thm B** (1) and (2), plus some subtle new algebraic estimates, one shows $N_{\mathsf{F}}(\mathsf{G})$ acts transitively on $M = \mathsf{F}/\mathsf{H}$. **Thm A** then follows by (Jablonski, Petersen '17).

Splitting conjecture (M^n, g) , $\operatorname{Ric}_g = -g + \operatorname{cocompact}$ symmetry $\Longrightarrow M$ splits isometrically as a product of a compact Einstein manifold and an Einstein solvmanifold.

Splitting conjecture (M^n, g) , $\operatorname{Ric}_g = -g + \operatorname{cocompact}$ symmetry $\Longrightarrow M$ splits isometrically as a product of a compact Einstein manifold and an Einstein solvmanifold.

True if the isometry group is unimodular [Böhm, L. '23] arXiv:2307.13235.

Splitting conjecture (M^n, g) , $\operatorname{Ric}_g = -g + \operatorname{cocompact}$ symmetry $\Longrightarrow M$ splits isometrically as a product of a compact Einstein manifold and an Einstein solvmanifold.

True if the isometry group is unimodular [Böhm, L. '23] arXiv:2307.13235.

Dynamical Alekseevskii conjecture $\pi_1 M = 1$, $M \not\simeq \mathbb{R}^n$

Splitting conjecture (M^n, g) , $\operatorname{Ric}_g = -g + \operatorname{cocompact}$ symmetry $\Longrightarrow M$ splits isometrically as a product of a compact Einstein manifold and an Einstein solvmanifold.

True if the isometry group is unimodular [Böhm, L. '23] arXiv:2307.13235.

Dynamical Alekseevskii conjecture $\pi_1 M = 1$, $M \not\simeq \mathbb{R}^n \implies$ any homogeneous Ricci flow on M has a finite time singularity.

Splitting conjecture (M^n, g) , $\operatorname{Ric}_g = -g + \operatorname{cocompact}$ symmetry $\Longrightarrow M$ splits isometrically as a product of a compact Einstein manifold and an Einstein solvmanifold.

True if the isometry group is unimodular [Böhm, L. '23] arXiv:2307.13235.

Dynamical Alekseevskii conjecture $\pi_1 M = 1$, $M \not\simeq \mathbb{R}^n \implies$ any homogeneous Ricci flow on M has a finite time singularity.

The results discussed today are about **non-existence** of Einstein metrics.

Splitting conjecture (M^n, g) , $\operatorname{Ric}_g = -g + \operatorname{cocompact}$ symmetry $\Longrightarrow M$ splits isometrically as a product of a compact Einstein manifold and an Einstein solvmanifold.

True if the isometry group is unimodular [Böhm, L. '23] arXiv:2307.13235.

Dynamical Alekseevskii conjecture $\pi_1 M = 1$, $M \not\simeq \mathbb{R}^n \implies$ any homogeneous Ricci flow on M has a finite time singularity.

The results discussed today are about **non-existence** of Einstein metrics.

Question Can one produce new inhomogeneous examples of Einstein metrics with non-compact symmetry groups?

Splitting conjecture (M^n, g) , $\operatorname{Ric}_g = -g + \operatorname{cocompact}$ symmetry $\Longrightarrow M$ splits isometrically as a product of a compact Einstein manifold and an Einstein solvmanifold.

True if the isometry group is unimodular [Böhm, L. '23] arXiv:2307.13235.

Dynamical Alekseevskii conjecture $\pi_1 M = 1$, $M \not\simeq \mathbb{R}^n \implies$ any homogeneous Ricci flow on M has a finite time singularity.

The results discussed today are about **non-existence** of Einstein metrics.

Question Can one produce new inhomogeneous examples of Einstein metrics with non-compact symmetry groups?

Adam Thompson (UQ) was able to deal with the ODE case (dim B=1):

"Inhomogeneous deformations of Einstein solvmanifolds" [Thompson '23] arxiv:2305.05923.

Thank you!

References I

C. Böhm and R. A. Lafuente, Immortal homogeneous Ricci flows, Invent. Math. 212 (2018), no. 2, 461-529.

, Non-compact Einstein manifolds with symmetry, J. Amer. Math. Soc. 36 (2023), no. 3, 591-651.

, Non-compact Einstein manifolds with unimodular isometry group, arXiv:2307.13235v1, 2023.

J. Heber, Noncompact homogeneous Einstein spaces, Invent. Math. 133 (1998), no. 2, 279-352.

M. Jablonski, Strongly solvable spaces, Duke Math. J. 164 (2015), no. 2, 361-402.

M. Jablonski and P. Petersen, A step towards the Alekseevskii conjecture, Math. Ann. 368 (2017), no. 1-2, 197-212.

J. Lauret, Einstein solvmanifolds are standard, Ann. of Math. (2) 172 (2010), no. 3, 1859–1877.

J. Lott, The collapsing geometry of almost Ricci-flat 4-manifolds, Comment. Math. Helv. 95 (2020), no. 1, 79–98.

A. Naber and G. Tian, Geometric structures of collapsing Riemannian manifolds II, J. Reine Angew. Math. 744 (2018), 103–132.

X. Rong, A Bochner theorem and applications, Duke Math. J. 91 (1998), no. 2, 381-392.

A. Thompson, Inhomogeneous deformations of Einstein solvmanifolds, arXiv preprint arXiv:2305.05923 (2023).