Sam Blitz Background Riemannian Conformal

A Holographic Approach to Submanifold Geometry

S. Blitz Joint work with Josef Šilhan

Masaryk University

Srní, 44th Winter School, January 2024

1/18

Sam Blitz Background Riemannian Conformal

Motivation:

• Conformal hypersurface geometry can be understood with holography.

Sam Blitz Background Riemannian Conformal

Motivation:

- Conformal hypersurface geometry can be understood with holography.
- Can a similar approach be used for conformal curves?

Sam Blitz Background Riemannian Conformal

Motivation:

- Conformal hypersurface geometry can be understood with holography.
- Can a similar approach be used for conformal curves?
 ⇒ Attempt to generalize holographic methods to arbitrary submanifold

Sam Blitz Background Riemannian

Motivation:

- Conformal hypersurface geometry can be understood with holography.
- Can a similar approach be used for conformal curves?
 ⇒ Attempt to generalize holographic methods to arbitrary submanifold

Roadblocks:

- Lacking uniqueness of normal frame
- Representation theory obstructions
- Combinatorial growth of cancellations required

Sam Blitz Background Riemannian

Motivation:

- Conformal hypersurface geometry can be understood with holography.
- Can a similar approach be used for conformal curves?
 ⇒ Attempt to generalize holographic methods to arbitrary submanifold

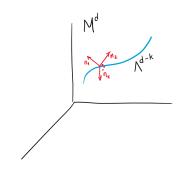
Roadblocks:

- Lacking uniqueness of normal frame
- Representation theory obstructions
- Combinatorial growth of cancellations required
- Q: Can we find any new invariants this way?

Context Smooth manifolds

Sam Blitz Background Riemannian Conformal

$$\iota: \Lambda^{d-k} \hookrightarrow M^d \text{ smooth}$$



(Always working locally, so assume triviality)

Basic Structure

Sam Blitz Background Riemannian Attach a metric: $\Lambda^{d-k} \hookrightarrow (M^d, g)$ $(\Rightarrow TM|_{\Lambda} \cong T\Lambda \oplus N\Lambda$, similarly $T^*M|_{\Lambda}$.)

пешапшап

Conformal

Basic Structure

Sam Blitz Background Riemannian Attach a metric: $\Lambda^{d-k} \hookrightarrow (M^d, g)$ $(\Rightarrow TM|_{\Lambda} \cong T\Lambda \oplus N\Lambda$, similarly $T^*M|_{\Lambda}$.)

Levi-Civita connection $\nabla \Rightarrow$ Normal connection:

$$\begin{array}{ccc} D: \Gamma(T\Lambda) \times \Gamma(N\Lambda) & \to & \Gamma(N\Lambda) \\ (v,n) & \mapsto & D_v n := \bot \left(\nabla_{\iota_* v} n \right). \end{array}$$

Basic Structure

Sam Blitz Background **Riemannian** Attach a metric: $\Lambda^{d-k} \hookrightarrow (M^d, g)$ $(\Rightarrow TM|_{\Lambda} \cong T\Lambda \oplus N\Lambda$, similarly $T^*M|_{\Lambda}$.)

Levi-Civita connection $\nabla \Rightarrow$ Normal connection:

$$\begin{array}{ccc} D: \Gamma(T\Lambda) \times \Gamma(N\Lambda) & \to & \Gamma(N\Lambda) \\ (v,n) & \mapsto & D_v n := \bot (\nabla_{\iota_* v} n) \, . \end{array}$$

Let $\{n_{\alpha}\}_{\alpha=1}^{k}$ be an orthonormal frame for $N\Lambda$: Connection coefficients: $\langle n_{\alpha}, D_{v}n_{\beta} \rangle = v^{a}\beta_{a\alpha\beta}$

Basic Structure

Sam Blitz Background **Riemannian** Attach a metric: $\Lambda^{d-k} \hookrightarrow (M^d, g)$ $(\Rightarrow TM|_{\Lambda} \cong T\Lambda \oplus N\Lambda$, similarly $T^*M|_{\Lambda}$.)

Levi-Civita connection $\nabla \Rightarrow$ Normal connection:

$$\begin{array}{ccc} D: \Gamma(T\Lambda) \times \Gamma(N\Lambda) & \to & \Gamma(N\Lambda) \\ (v,n) & \mapsto & D_v n := \bot \left(\nabla_{\iota_* v} n \right). \end{array}$$

Let $\{n_{\alpha}\}_{\alpha=1}^{k}$ be an orthonormal frame for $N\Lambda$: Connection coefficients: $\langle n_{\alpha}, D_{v}n_{\beta} \rangle = v^{a}\beta_{a\alpha\beta}$

"Normal fundamental forms"

Basic Structure

Sam Blitz Background Riemannian Attach a metric: $\Lambda^{d-k} \hookrightarrow (M^d, g)$ $(\Rightarrow TM|_{\Lambda} \cong T\Lambda \oplus N\Lambda$, similarly $T^*M|_{\Lambda}$.)

Levi-Civita connection $\nabla \Rightarrow$ Normal connection:

$$\begin{array}{ccc} D: \Gamma(T\Lambda) \times \Gamma(N\Lambda) & \to & \Gamma(N\Lambda) \\ (v,n) & \mapsto & D_v n := \bot (\nabla_{\iota_* v} n) \, . \end{array}$$

Let $\{n_{\alpha}\}_{\alpha=1}^{k}$ be an orthonormal frame for $N\Lambda$: Connection coefficients: $\langle n_{\alpha}, D_{v}n_{\beta} \rangle = v^{a}\beta_{a\alpha\beta}$

"Normal fundamental forms"

Curvature: $\mathcal{R}(u, v)n := D_u(D_v n) - D_v(D_u n) - D_{[u,v]}n$

An Orthonormal Frame?

Sam Blitz Background Riemannian **Goal:** Study "canonical extension" of orthonormal frame $\{n_{\alpha}\}_{\alpha=1}^{k}$ away from Λ .

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

5/18

An Orthonormal Frame?

Sam Blitz Background Riemannian **Goal:** Study "canonical extension" of orthonormal frame $\{n_{\alpha}\}_{\alpha=1}^{k}$ away from Λ .

Problem: Which orthonormal frame?

An Orthonormal Frame?

Sam Blitz Background **Riemannian** Conformal **Goal:** Study "canonical extension" of orthonormal frame $\{n_{\alpha}\}_{\alpha=1}^{k}$ away from Λ .

Problem: Which orthonormal frame? For $k = 1, \exists!$ unit normal vector (up to orientation).

An Orthonormal Frame?

Sam Blitz Background **Riemannian** Conformal **Goal:** Study "canonical extension" of orthonormal frame $\{n_{\alpha}\}_{\alpha=1}^{k}$ away from Λ .

Problem: Which orthonormal frame? For k = 1, \exists ! unit normal vector (up to orientation). Not true for k > 1:

An Orthonormal Frame?

Sam Blitz Background **Riemannian** Conformal **Goal:** Study "canonical extension" of orthonormal frame $\{n_{\alpha}\}_{\alpha=1}^{k}$ away from Λ .

Problem: Which orthonormal frame? For k = 1, \exists ! unit normal vector (up to orientation). Not true for k > 1: For $m_{\alpha\beta} \in SO(k)$,

$$\{n_{\alpha}\} \mapsto \{m_{\alpha\beta}n_{\beta}\}$$

is just as good.

Can we find a geometric condition that fixes $\{n_{\alpha}\}$?

An Orthonormal Frame?

Sam Blitz Background **Riemannian** Conformal **Goal:** Study "canonical extension" of orthonormal frame $\{n_{\alpha}\}_{\alpha=1}^{k}$ away from Λ .

Problem: Which orthonormal frame? For k = 1, \exists ! unit normal vector (up to orientation). Not true for k > 1: For $m_{\alpha\beta} \in SO(k)$,

$$\{n_{\alpha}\} \mapsto \{m_{\alpha\beta}n_{\beta}\}$$

is just as good.

Can we find a geometric condition that fixes $\{n_{\alpha}\}$? \Rightarrow "Gauge Fixing"

Gauge Fixing

Theorem

Simplest case:

Sam Blitz

Background Riemannian Conformal

If $\Lambda^{d-k} \hookrightarrow (M,g)$ has $\mathcal{R} = 0$, then $\{n_{\alpha}\}$ is uniquely fixed (up to constant sections of O(k)) by fixing $\beta = 0$.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

6/18

Gauge Fixing

Sam Blitz Background Riemannian Simplest case:

Theorem

If $\Lambda^{d-k} \hookrightarrow (M,g)$ has $\mathcal{R} = 0$, then $\{n_{\alpha}\}$ is uniquely fixed (up to constant sections of O(k)) by fixing $\beta = 0$.

These are *rotation minimizing frames* (RMFs), by analogy with spacecurves:

Gauge Fixing

Sam Blitz Background Riemannian Simplest case:

Theorem

If $\Lambda^{d-k} \hookrightarrow (M,g)$ has $\mathcal{R} = 0$, then $\{n_{\alpha}\}$ is uniquely fixed (up to constant sections of O(k)) by fixing $\beta = 0$.

These are rotation minimizing frames (RMFs), by analogy with spacecurves: $T_{1} = T_{1}^{3}$

For $\Lambda^1 \hookrightarrow \mathbb{R}^3$ in the Frenet frame $\{T, N, B\}$, we have

$$\beta_{aBN} = \tau \,.$$

Gauge Fixing

Sam Blitz Background **Riemannian** Conformal

Simplest case:

Theorem

If $\Lambda^{d-k} \hookrightarrow (M,g)$ has $\mathcal{R} = 0$, then $\{n_{\alpha}\}$ is uniquely fixed (up to constant sections of O(k)) by fixing $\beta = 0$.

These are rotation minimizing frames (RMFs), by analogy with spacecurves: For $\Lambda^1 \hookrightarrow \mathbb{R}^3$ in the Frenet frame $\{T, N, B\}$, we have

$$\beta_{aBN}=\tau\,.$$

Torsion tells you how much one normal vector **rotates** into another.

Gauge Fixing

Sam Blitz Background **Riemannian** Conformal

Simplest case:

Theorem

If $\Lambda^{d-k} \hookrightarrow (M,g)$ has $\mathcal{R} = 0$, then $\{n_{\alpha}\}$ is uniquely fixed (up to constant sections of O(k)) by fixing $\beta = 0$.

These are rotation minimizing frames (RMFs), by analogy with spacecurves: For $\Lambda^1 \hookrightarrow \mathbb{R}^3$ in the Frenet frame $\{T, N, B\}$, we have

$$\beta_{aBN}=\tau\,.$$

Torsion tells you how much one normal vector **rotates** into another.

For $\mathcal{R} \neq 0$: **impossible**?

イロト (日本 (日本 (日本)) 日 うのの

Gauge Fixing

Sam Blitz Background **Riemannian** Conformal Simplest case:

Theorem

If $\Lambda^{d-k} \hookrightarrow (M,g)$ has $\mathcal{R} = 0$, then $\{n_{\alpha}\}$ is uniquely fixed (up to constant sections of O(k)) by fixing $\beta = 0$.

These are rotation minimizing frames (RMFs), by analogy with spacecurves: For $\Lambda^1 \hookrightarrow \mathbb{R}^3$ in the Frenet frame $\{T, N, B\}$, we have

$$\beta_{aBN}=\tau\,.$$

Torsion tells you how much one normal vector **rotates** into another.

For $\mathcal{R} \neq 0$: **impossible**? \Rightarrow Assume some $\{n_{\alpha}\}$ going forward.

Sam Blitz Background **Riemannian** **Submanifolds:** Extend $\{n_{\alpha}\}$ off Λ by solving $G_{\alpha\beta} := g(n_{\alpha}, n_{\beta}) = \delta_{\alpha\beta}.$

<ロト <回 > < 注 > < 注 > 注 > うへで 7/18

Sam Blitz Background Riemannian **Submanifolds:** Extend $\{n_{\alpha}\}$ off Λ by solving $G_{\alpha\beta} := g(n_{\alpha}, n_{\beta}) = \delta_{\alpha\beta}$. Want $s_{\alpha} \in (C^{\infty}M)^k$ s.t. $n_{\alpha} = ds_{\alpha}$.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

7/18

Sam Blitz Background Riemannian **Submanifolds:** Extend $\{n_{\alpha}\}$ off Λ by solving $G_{\alpha\beta} := g(n_{\alpha}, n_{\beta}) = \delta_{\alpha\beta}$. Want $s_{\alpha} \in (C^{\infty}M)^k$ s.t. $n_{\alpha} = ds_{\alpha}$. Not always possible: Frobenius theorem.

Sam Blitz Background **Riemannian** Conformal Submanifolds: Extend $\{n_{\alpha}\}$ off Λ by solving $G_{\alpha\beta} := g(n_{\alpha}, n_{\beta}) = \delta_{\alpha\beta}$. Want $s_{\alpha} \in (C^{\infty}M)^k$ s.t. $n_{\alpha} = ds_{\alpha}$. Not always possible: Frobenius theorem.

 \Rightarrow Solve order by order for *defining map* s_{α}

Sam Blitz Background **Riemannian** Conformal Submanifolds: Extend $\{n_{\alpha}\}$ off Λ by solving $G_{\alpha\beta} := g(n_{\alpha}, n_{\beta}) = \delta_{\alpha\beta}$. Want $s_{\alpha} \in (C^{\infty}M)^k$ s.t. $n_{\alpha} = ds_{\alpha}$. Not always possible: Frobenius theorem.

 \Rightarrow Solve order by order for *defining map* s_{α}

Order 0: Pick s_{α} s.t. $ds_{\alpha}|_{\Lambda} = n_{\alpha}$.

Sam Blitz Background **Riemannian** Conformal Submanifolds: Extend $\{n_{\alpha}\}$ off Λ by solving $G_{\alpha\beta} := g(n_{\alpha}, n_{\beta}) = \delta_{\alpha\beta}$. Want $s_{\alpha} \in (C^{\infty}M)^k$ s.t. $n_{\alpha} = ds_{\alpha}$. Not always possible: Frobenius theorem.

 \Rightarrow Solve order by order for *defining map* s_{α}

Order 0: Pick s_{α} s.t. $ds_{\alpha}|_{\Lambda} = n_{\alpha}$. $\Rightarrow G_{\alpha\beta} = \delta_{\alpha\beta} + F^{(1)}_{\alpha\beta\gamma}s_{\gamma}$. (orthonormality)

Sam Blitz Background **Riemannian** Conformal Submanifolds: Extend $\{n_{\alpha}\}$ off Λ by solving $G_{\alpha\beta} := g(n_{\alpha}, n_{\beta}) = \delta_{\alpha\beta}$. Want $s_{\alpha} \in (C^{\infty}M)^k$ s.t. $n_{\alpha} = ds_{\alpha}$. Not always possible: Frobenius theorem.

 \Rightarrow Solve order by order for *defining map* s_{α}

Order 0: Pick s_{α} s.t. $ds_{\alpha}|_{\Lambda} = n_{\alpha}$. $\Rightarrow G_{\alpha\beta} = \delta_{\alpha\beta} + F^{(1)}_{\alpha\beta\gamma}s_{\gamma}$. (orthonormality)

Order 1: Correct s_{α} at second order:

Sam Blitz Background **Riemannian** Conformal Submanifolds: Extend $\{n_{\alpha}\}$ off Λ by solving $G_{\alpha\beta} := g(n_{\alpha}, n_{\beta}) = \delta_{\alpha\beta}$. Want $s_{\alpha} \in (C^{\infty}M)^k$ s.t. $n_{\alpha} = ds_{\alpha}$. Not always possible: Frobenius theorem.

 \Rightarrow Solve order by order for *defining map* s_{α}

Order 0: Pick s_{α} s.t. $ds_{\alpha}|_{\Lambda} = n_{\alpha}$. $\Rightarrow G_{\alpha\beta} = \delta_{\alpha\beta} + F^{(1)}_{\alpha\beta\gamma}s_{\gamma}$. (orthonormality)

Order 1: Correct s_{α} at second order: Let $A_{\alpha\beta\gamma}^{(1)} := -\frac{1}{2}(F_{\alpha\beta\gamma}^{(1)} + F_{\gamma\alpha\beta}^{(1)} - F_{\beta\gamma\alpha}^{(1)})$ and

Sam Blitz Background **Riemannian** Conformal Submanifolds: Extend $\{n_{\alpha}\}$ off Λ by solving $G_{\alpha\beta} := g(n_{\alpha}, n_{\beta}) = \delta_{\alpha\beta}$. Want $s_{\alpha} \in (C^{\infty}M)^k$ s.t. $n_{\alpha} = ds_{\alpha}$. Not always possible: Frobenius theorem.

 \Rightarrow Solve order by order for *defining map* s_{α}

Order 0: Pick s_{α} s.t. $ds_{\alpha}|_{\Lambda} = n_{\alpha}$. $\Rightarrow G_{\alpha\beta} = \delta_{\alpha\beta} + F^{(1)}_{\alpha\beta\gamma}s_{\gamma}$. (orthonormality)

Order 1: Correct s_{α} at second order: Let $A_{\alpha\beta\gamma}^{(1)} := -\frac{1}{2}(F_{\alpha\beta\gamma}^{(1)} + F_{\gamma\alpha\beta}^{(1)} - F_{\beta\gamma\alpha}^{(1)})$ and $\tilde{s}_{\alpha} := s_{\alpha} + A_{\alpha\beta\gamma}^{(1)}s_{\beta}s_{\gamma}$

Sam Blitz Background **Riemannian** Conformal Submanifolds: Extend $\{n_{\alpha}\}$ off Λ by solving $G_{\alpha\beta} := g(n_{\alpha}, n_{\beta}) = \delta_{\alpha\beta}$. Want $s_{\alpha} \in (C^{\infty}M)^k$ s.t. $n_{\alpha} = ds_{\alpha}$. Not always possible: Frobenius theorem.

 \Rightarrow Solve order by order for *defining map* s_{α}

Order 0: Pick s_{α} s.t. $ds_{\alpha}|_{\Lambda} = n_{\alpha}$. $\Rightarrow G_{\alpha\beta} = \delta_{\alpha\beta} + F^{(1)}_{\alpha\beta\gamma}s_{\gamma}$. (orthonormality)

Order 1: Correct s_{α} at second order: Let $A_{\alpha\beta\gamma}^{(1)} := -\frac{1}{2}(F_{\alpha\beta\gamma}^{(1)} + F_{\gamma\alpha\beta}^{(1)} - F_{\beta\gamma\alpha}^{(1)})$ and $\tilde{s}_{\alpha} := s_{\alpha} + A_{\alpha\beta\gamma}^{(1)}s_{\beta}s_{\gamma}$

$$\Rightarrow \tilde{G}_{\alpha\beta} = \delta_{\alpha\beta} + F^{(2)}_{\alpha\beta\gamma_1\gamma_2}\tilde{s}_{\gamma_1}\tilde{s}_{\gamma_2} \,.$$

Interlude: An Extension Problem

Problem

Sam Blitz Background Riemannian

Conformal

Let $\overline{f} \in C^{\infty}\Lambda$ and $\Lambda \hookrightarrow (M,g)$ have defining map with $G_{\alpha\beta} = \delta_{\alpha\beta} + \mathcal{O}(s^m)$. Find a formal power series for $f \in C^{\infty}M$ solving

$$\nabla_{n_{\alpha}} f = \mathcal{O}(s^n), \qquad f|_{\Lambda} = \bar{f}.$$

Label the problem parametrized by (m, n) by P(m, n).

Interlude: An Extension Problem

Problem

Sam Blitz Background Riemannian

Let $\overline{f} \in C^{\infty}\Lambda$ and $\Lambda \hookrightarrow (M,g)$ have defining map with $G_{\alpha\beta} = \delta_{\alpha\beta} + \mathcal{O}(s^m)$. Find a formal power series for $f \in C^{\infty}M$ solving

$$\nabla_{n_{\alpha}} f = \mathcal{O}(s^n), \qquad f|_{\Lambda} = \bar{f}.$$

Label the problem parametrized by (m, n) by P(m, n). Results:

Interlude: An Extension Problem

Problem

Sam Blitz Background Riemannian

Let $\overline{f} \in C^{\infty}\Lambda$ and $\Lambda \hookrightarrow (M,g)$ have defining map with $G_{\alpha\beta} = \delta_{\alpha\beta} + \mathcal{O}(s^m)$. Find a formal power series for $f \in C^{\infty}M$ solving

$$\nabla_{n_{\alpha}} f = \mathcal{O}(s^n), \qquad f|_{\Lambda} = \bar{f}.$$

Label the problem parametrized by (m, n) by P(m, n). Results:

• P(2,1) always has a solution.

Interlude: An Extension Problem

Problem

Sam Blitz Background Riemannian

Let $\overline{f} \in C^{\infty}\Lambda$ and $\Lambda \hookrightarrow (M,g)$ have defining map with $G_{\alpha\beta} = \delta_{\alpha\beta} + \mathcal{O}(s^m)$. Find a formal power series for $f \in C^{\infty}M$ solving

$$\nabla_{n_{\alpha}} f = \mathcal{O}(s^n), \qquad f|_{\Lambda} = \bar{f}.$$

Label the problem parametrized by (m, n) by P(m, n). Results:

- P(2,1) always has a solution.
- $\mathcal{R} = 0 \Rightarrow P(2, 2)$ has a solution (in RMF).

Interlude: An Extension Problem

Problem

Sam Blitz Background Riemannian

Let $\overline{f} \in C^{\infty}\Lambda$ and $\Lambda \hookrightarrow (M,g)$ have defining map with $G_{\alpha\beta} = \delta_{\alpha\beta} + \mathcal{O}(s^m)$. Find a formal power series for $f \in C^{\infty}M$ solving

$$\nabla_{n_{\alpha}} f = \mathcal{O}(s^n), \qquad f|_{\Lambda} = \bar{f}.$$

Label the problem parametrized by (m, n) by P(m, n). Results:

- P(2,1) always has a solution.
- $\mathcal{R} = 0 \Rightarrow P(2, 2)$ has a solution (in RMF).
- $\mathcal{R} = 0$ and (M, g) flat \Rightarrow For $m \ge 3$, P(m, m) has a solution (in RMF).

イロト (日本 (日本 (日本)) 日 うのの

Higher Orders

Sam Blitz Background Riemannian Order 2:

<ロト <回ト < 目ト < 目ト < 目ト 目 のQで 9/18

Higher Orders

Sam Blitz Background **Riemannian** **Order 2:** ■ Fix *A*⁽¹⁾ using *P*(2,1)

> < □ ト < 団 ト < 亘 ト < 亘 ト ミ の Q (~ 9 / 18

Higher Orders

Order 2:

Sam Blitz Background **Riemannian**

Conformal

Fix A⁽¹⁾ using P(2, 1)
 Find A⁽²⁾_{αγ1γ2γ3} with š_α := s_α + A⁽²⁾_{αγ1γ2γ3}s_{γ1}s_{γ2}s_{γ3} that makes F⁽²⁾ = 0.

Riemannian Submanifolds Higher Orders

Background

Order 2:

- Fix $A^{(1)}$ using P(2,1)
- Find $A^{(2)}_{\alpha\gamma_1\gamma_2\gamma_3}$ with $\tilde{s}_{\alpha} := s_{\alpha} + A^{(2)}_{\alpha\gamma_1\gamma_2\gamma_3}s_{\gamma_1}s_{\gamma_2}s_{\gamma_3}$ that makes $\tilde{F}^{(2)} = 0$. \Leftarrow Not always possible.

Riemannian Submanifolds Higher Orders

Sam Blitz

Riemannian

Conformal

Order 2:

- Fix $A^{(1)}$ using P(2,1)
- Find $A^{(2)}_{\alpha\gamma_1\gamma_2\gamma_3}$ with $\tilde{s}_{\alpha} := s_{\alpha} + A^{(2)}_{\alpha\gamma_1\gamma_2\gamma_3}s_{\gamma_1}s_{\gamma_2}s_{\gamma_3}$ that makes $\tilde{F}^{(2)} = 0$. \Leftarrow Not always possible.

Representations:

 $F^{(2)} \in \boxplus \oplus \boxplus \oplus \boxplus \oplus$ vs. $A^{(2)} \in \boxplus \oplus \boxplus$

Higher Orders

Sam Blitz Background

Riemannian

Conformal

Order 2:

- Fix $A^{(1)}$ using P(2,1)
- Find $A^{(2)}_{\alpha\gamma_1\gamma_2\gamma_3}$ with $\tilde{s}_{\alpha} := s_{\alpha} + A^{(2)}_{\alpha\gamma_1\gamma_2\gamma_3}s_{\gamma_1}s_{\gamma_2}s_{\gamma_3}$ that makes $\tilde{F}^{(2)} = 0. \Leftarrow$ Not always possible.

Representations:

 $F^{(2)} \in \boxplus \oplus \boxplus \oplus \boxplus \oplus \dots$ vs. $A^{(2)} \in \boxplus \oplus \boxplus$

 $\mathbf{Obstruction} \rightarrow \mathbf{new} \ \mathbf{invariant:}$

$$P_{\boxplus} F^{(2)}_{\alpha\beta\gamma_1\gamma_2} \stackrel{\Lambda}{=} -\beta_{c\alpha(\gamma_1}\beta^c_{\gamma_2)\beta} - \frac{1}{3}R_{n_{\gamma_1}n_{(\alpha}n_{\beta)}n_{\gamma_2}}$$

Higher Orders

Sam Blitz Background

Riemannian

Conformal

Order 2:

- Fix $A^{(1)}$ using P(2,1)
- Find $A^{(2)}_{\alpha\gamma_1\gamma_2\gamma_3}$ with $\tilde{s}_{\alpha} := s_{\alpha} + A^{(2)}_{\alpha\gamma_1\gamma_2\gamma_3}s_{\gamma_1}s_{\gamma_2}s_{\gamma_3}$ that makes $\tilde{F}^{(2)} = 0. \Leftarrow$ Not always possible.

Representations:

 $F^{(2)} \in \boxplus \oplus \boxplus \oplus \boxplus \oplus \dots$ vs. $A^{(2)} \in \boxplus \oplus \boxplus$

 $\mathbf{Obstruction} \rightarrow \mathbf{new\ invariant:}$

$$P_{\boxplus} F^{(2)}_{\alpha\beta\gamma_1\gamma_2} \stackrel{\Lambda}{=} -\beta_{c\alpha(\gamma_1}\beta^c_{\gamma_2)\beta} - \frac{1}{3}R_{n_{\gamma_1}n_{(\alpha}n_{\beta)}n_{\gamma_2}}$$

Similarly, if $\mathcal{R} = 0$ gives a new obstruction at **Order 3**.

Higher Orders

Order 2:

Sam Blitz Background Riemannian

r (remannia)

Fix A⁽¹⁾ using P(2, 1)
Find A⁽²⁾_{αγ1γ2γ3} with š_α := s_α + A⁽²⁾_{αγ1γ2γ3}s_{γ1}s_{γ2}s_{γ3} that makes F⁽²⁾ = 0. ⇐ Not always possible.

Representations: (a)

 $F^{(2)} \in \boxplus \oplus \boxplus \oplus \boxplus \oplus \dots$ vs. $A^{(2)} \in \boxplus \oplus \boxplus$

 $\mathbf{Obstruction} \rightarrow \mathbf{new\ invariant:}$

$$P_{\boxplus} F^{(2)}_{\alpha\beta\gamma_1\gamma_2} \stackrel{\Lambda}{=} -\beta_{c\alpha(\gamma_1}\beta^c_{\gamma_2)\beta} - \frac{1}{3}R_{n_{\gamma_1}n_{(\alpha}n_{\beta)}n_{\gamma_2}}$$

Similarly, if $\mathcal{R} = 0$ gives a new obstruction at **Order 3**. **Order** ∞ : If $\mathcal{R} = R = 0$, no obstructions, $\exists s_{\alpha}$ s.t. $G_{\alpha\beta} = \delta_{\alpha\beta} + \mathcal{O}(s^{\infty})$.

Conformal Geometry Review

Sam Blitz Background Riemanniar

Conformal

Attach a conformal class of metrics $\Lambda \hookrightarrow (M, \mathbf{c})$ $(\mathbf{c} = [g] = [\Omega^2 g])$

> <ロト <回ト < 言ト < 言ト < 言ト 目 の Q (* 10 / 18

Conformal Geometry Review

Sam Blitz Background Riemannian Conformal Attach a conformal class of metrics $\Lambda \hookrightarrow (M, \mathbf{c})$ $(\mathbf{c} = [g] = [\Omega^2 g])$

Lightning review of conformal geometry:

Conformal Geometry Review

Sam Blitz Background Riemannian Conformal Attach a conformal class of metrics $\Lambda \hookrightarrow (M, \mathbf{c})$ $(\mathbf{c} = [g] = [\Omega^2 g])$

Lightning review of conformal geometry:

• "Conformally invariant" = Riemannian invariant I[g]with the property that $I[\Omega^2 g] = \Omega^w I[g]$

Conformal Geometry Review

Sam Blitz Background Riemannian Conformal Attach a conformal class of metrics $\Lambda \hookrightarrow (M, \mathbf{c})$ $(\mathbf{c} = [g] = [\Omega^2 g])$

Lightning review of conformal geometry:

• "Conformally invariant" = Riemannian invariant I[g]with the property that $I[\Omega^2 g] = \Omega^w I[g]$ Write: $I = [g; i^g] = [\Omega^2 g; \Omega^w i^g] \in \Gamma(\mathcal{E}M[w]).$

Conformal Geometry Review

Sam Blitz Background Riemannian Conformal Attach a conformal class of metrics $\Lambda \hookrightarrow (M, \mathbf{c})$ $(\mathbf{c} = [g] = [\Omega^2 g])$

Lightning review of conformal geometry:

• "Conformally invariant" = Riemannian invariant I[g]with the property that $I[\Omega^2 g] = \Omega^w I[g]$ Write: $I = [g; i^g] = [\Omega^2 g; \Omega^w i^g] \in \Gamma(\mathcal{E}M[w])$. "Conformal densities"

Conformal Geometry Review

Sam Blitz Background Riemannian Conformal Attach a conformal class of metrics $\Lambda \hookrightarrow (M, \mathbf{c})$ $(\mathbf{c} = [g] = [\Omega^2 g])$

Lightning review of conformal geometry:

- "Conformally invariant" = Riemannian invariant I[g]with the property that $I[\Omega^2 g] = \Omega^w I[g]$ Write: $I = [g; i^g] = [\Omega^2 g; \Omega^w i^g] \in \Gamma(\mathcal{E}M[w])$. "Conformal densities"
- e.g. Conformal metric: $\boldsymbol{g} = [g;g] \in \Gamma(\odot^2 T^*M[2])$

Conformal Geometry Review

Sam Blitz Background Riemannian Conformal Attach a conformal class of metrics $\Lambda \hookrightarrow (M, \mathbf{c})$ $(\mathbf{c} = [g] = [\Omega^2 g])$

Lightning review of conformal geometry:

- "Conformally invariant" = Riemannian invariant I[g]with the property that $I[\Omega^2 g] = \Omega^w I[g]$ Write: $I = [g; i^g] = [\Omega^2 g; \Omega^w i^g] \in \Gamma(\mathcal{E}M[w])$. "Conformal densities"
- e.g. Conformal metric: $\boldsymbol{g} = [g;g] \in \Gamma(\odot^2 T^*M[2])$
- Need a conformal calculus in analogy with Ricci calculus: "Tractor calculus."

Conformal Geometry Review

Sam Blitz Background Riemannian Conformal Attach a conformal class of metrics $\Lambda \hookrightarrow (M, \mathbf{c})$ $(\mathbf{c} = [g] = [\Omega^2 g])$

Lightning review of conformal geometry:

- "Conformally invariant" = Riemannian invariant I[g]with the property that $I[\Omega^2 g] = \Omega^w I[g]$ Write: $I = [g; i^g] = [\Omega^2 g; \Omega^w i^g] \in \Gamma(\mathcal{E}M[w])$. "Conformal densities"
- e.g. Conformal metric: $\boldsymbol{g} = [g;g] \in \Gamma(\odot^2 T^*M[2])$
- Need a conformal calculus in analogy with Ricci calculus: "Tractor calculus."
- For $g \in c$, define "tractor bundle": $\mathcal{T}M \stackrel{g}{\cong} \mathcal{E}M[1] \oplus TM[-1] \oplus \mathcal{E}M[-1]$ with $g \mapsto \Omega^2 g$ transformation law.

Conformal Submanifolds

Conformal Geometry Review, Continued

• Tractor metric:
$$h_{AB} \stackrel{g}{=} \begin{pmatrix} 0 & 0 & 1 \\ 0 & \boldsymbol{g}_{ab} & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
.

11/18

Conformal Submanifolds

Conformal Geometry Review, Continued

• Tractor metric:
$$h_{AB} \stackrel{g}{=} \begin{pmatrix} 0 & 0 & 1 \\ 0 & \boldsymbol{g}_{ab} & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
.

10

. \

• Canonical tractor: $X^A \stackrel{g}{=} (0, 0, 1) \in \Gamma(\mathcal{T}M[1]).$

Conformal Submanifolds

Conformal Geometry Review, Continued

• Tractor metric: $h_{AB} \stackrel{g}{=} \begin{pmatrix} 0 & 0 & 1 \\ 0 & \boldsymbol{g}_{ab} & 0 \\ 1 & 0 & 0 \end{pmatrix}$. • Canonical tractor: $X^A \stackrel{g}{=} (0, 0, 1) \in \Gamma(\mathcal{T}M[1])$. • Tractor connection:

$$\begin{split} \nabla^{\mathcal{T}} &: \Gamma(\mathcal{T}M) \to \Gamma(T^*M \otimes \mathcal{T}M) \\ T^B &\mapsto \nabla_a^{\mathcal{T}} T^B \stackrel{g}{=} \begin{pmatrix} \nabla_a \tau^b - \tau_a \\ \nabla_a \tau^b + \mathbf{g}_a^b \tau^- + (P^g)_a^b \tau^+ \\ \nabla_a \tau^- - P_{ab}^g \tau^b \end{pmatrix} \end{split}$$

Conformal Geometry Review, Continued

Conformal Submanifolds

• Tractor metric:
$$h_{AB} \stackrel{g}{=} \begin{pmatrix} 0 & 0 & 1 \\ 0 & \boldsymbol{g}_{ab} & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
.

Canonical tractor: X^A = (0, 0, 1) ∈ Γ(TM[1]).
 Tractor connection:

$$\nabla^{\mathcal{T}} : \Gamma(\mathcal{T}M) \to \Gamma(T^*M \otimes \mathcal{T}M)$$
$$T^B \mapsto \nabla^{\mathcal{T}}_a T^B \stackrel{g}{=} \begin{pmatrix} \nabla_a \tau^+ - \tau_a \\ \nabla_a \tau^b + \boldsymbol{g}_a^b \tau^- + (P^g)_a^b \tau^+ \\ \nabla_a \tau^- - P^g_{ab} \tau^b \end{pmatrix}$$

■ Thomas-D operator:

$$\begin{split} D_A : \Gamma(\mathcal{T}^{\Phi} M[w]) &\to \Gamma(\mathcal{T}^* M \otimes \mathcal{T}^{\Phi} M[w-1]) \\ T^{\Phi} &\mapsto D_A T^{\Phi} \stackrel{g}{=} \begin{pmatrix} (d+2w-2)wT^{\Phi} \\ (d+2w-2)\nabla_a^T T^{\Phi} \\ -(\Delta^T + wJ^g)T^{\Phi} \end{pmatrix}, \end{split}$$

Frame-valued density

Conformal structure preserves directions

<ロト <回ト < 目ト < 目ト < 目ト 目 の Q (* 12 / 18

Frame-valued density

Sam Blitz Background Riemannian Conformal Conformal structure preserves directions \Rightarrow for $g \in c$, pick $\{n_{\alpha}\}$ and promote to density: $\boldsymbol{n}_{\alpha}^{a} := [g; (n^{g})_{\alpha}^{a}] \in \Gamma(TM[-1])|_{\Lambda}$

イロト イロト イヨト イヨト 二日 二

12/18

Frame-valued density

Sam Blitz Background Riemannian Conformal Conformal structure preserves directions \Rightarrow for $g \in c$, pick $\{n_{\alpha}\}$ and promote to density: $\boldsymbol{n}_{\alpha}^{a} := [g; (n^{g})_{\alpha}^{a}] \in \Gamma(TM[-1])|_{\Lambda}$

Observe: $\boldsymbol{g}(\boldsymbol{n}_{\alpha}, \boldsymbol{n}_{\beta})|_{\Lambda} = \delta_{\alpha\beta}$ and $\beta_{a\alpha\beta} \in \Gamma(T^*\Sigma[0] \otimes B)$

Frame-valued density

Sam Blitz Background Riemannian Conformal Conformal structure preserves directions \Rightarrow for $g \in c$, pick $\{n_{\alpha}\}$ and promote to density: $\boldsymbol{n}_{\alpha}^{a} := [g; (n^{g})_{\alpha}^{a}] \in \Gamma(TM[-1])|_{\Lambda}$ Observe: $\boldsymbol{g}(\boldsymbol{n}_{\alpha}, \boldsymbol{n}_{\beta})|_{\Lambda} = \delta_{\alpha\beta}$ and $\beta_{a\alpha\beta} \in \Gamma(T^{*}\Sigma[0] \otimes \mathbb{H})$

 $\Rightarrow \mathcal{R}$ is conformally invariant

Frame-valued density

Sam Blitz Background Riemannian Conformal Conformal structure preserves directions \Rightarrow for $g \in c$, pick $\{n_{\alpha}\}$ and promote to density: $\boldsymbol{n}_{\alpha}^{a} := [g; (n^{g})_{\alpha}^{a}] \in \Gamma(TM[-1])|_{\Lambda}$

Observe: $\boldsymbol{g}(\boldsymbol{n}_{\alpha}, \boldsymbol{n}_{\beta})|_{\Lambda} = \delta_{\alpha\beta} \text{ and } \beta_{a\alpha\beta} \in \Gamma(T^{*}\Sigma[0] \otimes B)$

 $\Rightarrow \mathcal{R}$ is conformally invariant

⇒ If there exists $g \in c$ that picks out a special $\{n_{\alpha}\}$, that choice is conformally invariant.

Frame-valued density

Sam Blitz Background Riemannian Conformal Conformal structure preserves directions \Rightarrow for $g \in c$, pick $\{n_{\alpha}\}$ and promote to density: $\boldsymbol{n}_{\alpha}^{a} := [g; (n^{g})_{\alpha}^{a}] \in \Gamma(TM[-1])|_{\Lambda}$

Observe: $\boldsymbol{g}(\boldsymbol{n}_{\alpha}, \boldsymbol{n}_{\beta})|_{\Lambda} = \delta_{\alpha\beta} \text{ and } \beta_{a\alpha\beta} \in \Gamma(T^*\Sigma[0] \otimes B)$

 $\Rightarrow \mathcal{R}$ is conformally invariant

 \Rightarrow If there exists $g \in c$ that picks out a special $\{n_{\alpha}\}$, that choice is conformally invariant.

Assume a frame is chosen going forward.

Sam Blitz Background Riemannian Conformal

Note: For
$$g \in \mathbf{c}$$
 and $\sigma_{\alpha} = [g; s_{\alpha}] \in \Gamma(\mathcal{E}M[1])$,

$$g(ds_{\alpha}, ds_{\beta}) \stackrel{\Lambda}{=} h_{AB}(\hat{D}\sigma_{\alpha}, \hat{D}\sigma_{\beta}).$$

13/18

 $(\hat{D} := \frac{1}{d+2w-2}D.)$

Note: For $g \in \mathbf{c}$ and $\sigma_{\alpha} = [g; s_{\alpha}] \in \Gamma(\mathcal{E}M[1]),$

$$g(ds_{\alpha}, ds_{\beta}) \stackrel{\Lambda}{=} h_{AB}(\hat{D}\sigma_{\alpha}, \hat{D}\sigma_{\beta}).$$

Background Riemannian

Conformal $(\hat{D} := \frac{1}{d+2w-2}D.)$

Goal: Find σ_{α} s.t. $N_{A\alpha} := \hat{D}_A \sigma_{\alpha} \stackrel{\Lambda}{=} (0, \boldsymbol{n}_{a\alpha}, *)$ and $\boldsymbol{G}_{\alpha\beta} := h(N_{\alpha}, N_{\beta}) = \delta_{\alpha\beta}.$

Note: For $g \in c$ and $\sigma_{\alpha} = [g; s_{\alpha}] \in \Gamma(\mathcal{E}M[1]),$

$$g(ds_{\alpha}, ds_{\beta}) \stackrel{\Lambda}{=} h_{AB}(\hat{D}\sigma_{\alpha}, \hat{D}\sigma_{\beta}).$$

Background Riemanniar

 $\operatorname{Conformal}$

 $(\hat{D} := \frac{1}{d+2w-2}D.)$

Goal: Find σ_{α} s.t. $N_{A\alpha} := \hat{D}_A \sigma_{\alpha} \stackrel{\Lambda}{=} (0, \boldsymbol{n}_{a\alpha}, *)$ and $\boldsymbol{G}_{\alpha\beta} := h(N_{\alpha}, N_{\beta}) = \delta_{\alpha\beta}.$ **Order 0:** Pick σ_{α} s.t. $N_{A\alpha} \stackrel{\Lambda}{=} (0, \boldsymbol{n}_{a\alpha}, *)$

Note: For $g \in c$ and $\sigma_{\alpha} = [g; s_{\alpha}] \in \Gamma(\mathcal{E}M[1]),$

$$g(ds_{\alpha}, ds_{\beta}) \stackrel{\Lambda}{=} h_{AB}(\hat{D}\sigma_{\alpha}, \hat{D}\sigma_{\beta}).$$

Riemannia

Conformal

 $(\hat{D} := \frac{1}{d+2w-2}D.)$

Goal: Find σ_{α} s.t. $N_{A\alpha} := \hat{D}_A \sigma_{\alpha} \stackrel{\Lambda}{=} (0, \boldsymbol{n}_{a\alpha}, *)$ and $\boldsymbol{G}_{\alpha\beta} := h(N_{\alpha}, N_{\beta}) = \delta_{\alpha\beta}.$ **Order 0:** Pick σ_{α} s.t. $N_{A\alpha} \stackrel{\Lambda}{=} (0, \boldsymbol{n}_{a\alpha}, *)$ $\Rightarrow \boldsymbol{G}_{\alpha\beta} = \delta_{\alpha\beta} + F^{(1)}_{\alpha\beta\gamma}\sigma_{\gamma}.$ (orthonormality)

Conformal Submanifolds Order 1

Sam Blitz Background Riemannian

Conformal

Order 1:

<ロト < 回 ト < 画 ト < 画 ト < 画 ト < 画 ト 14 / 18

Conformal Submanifolds Order 1

Sam Blitz Background Riemannian Conformal

Order 1:

If
$$\tilde{\sigma}_{\alpha} = \sigma_{\alpha} + A^{(1)}_{\alpha\gamma_1\gamma_2}\sigma_{\gamma_1}\sigma_{\gamma_2}$$
, then

<ロト < 回 ト < 画 ト < 画 ト < 画 ト < 画 ト 14 / 18

Conformal Submanifolds Order 1

(1)

Sam Blitz Background Riemannian Conformal

Order 1:

If
$$\tilde{\sigma}_{\alpha} = \sigma_{\alpha} + A^{(1)}_{\alpha\gamma_1\gamma_2}\sigma_{\gamma_1}\sigma_{\gamma_2}$$
, then
 $\tilde{G}_{\alpha\beta} = \delta_{\alpha\beta} + (F^{(1)}_{\alpha\beta\omega} + 4A^{(1)}_{(\alpha\beta)\omega} - \frac{4}{d}\delta_{\omega(\alpha}A^{(1)}_{\beta)\gamma\gamma})\sigma_{\omega} + \mathcal{O}(\sigma^2)$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

14/18

Sam Blitz Background Riemannian Conformal

Order 1:

If
$$\tilde{\sigma}_{\alpha} = \sigma_{\alpha} + A^{(1)}_{\alpha\gamma_1\gamma_2}\sigma_{\gamma_1}\sigma_{\gamma_2}$$
, then

$$\tilde{\boldsymbol{G}}_{\alpha\beta} = \delta_{\alpha\beta} + (F^{(1)}_{\alpha\beta\omega} + 4A^{(1)}_{(\alpha\beta)\omega} - \frac{4}{d}\delta_{\omega(\alpha}A^{(1)}_{\beta)\gamma\gamma})\sigma_{\omega} + \mathcal{O}(\sigma^2).$$

Trace of $A^{(1)}$ appears! Be careful....

Sam Blitz Background Riemannian Conformal

Order 1:

If $\tilde{\sigma}_{\alpha} = \sigma_{\alpha} + A^{(1)}_{\alpha\gamma_1\gamma_2}\sigma_{\gamma_1}\sigma_{\gamma_2}$, then

 $\tilde{\boldsymbol{G}}_{\alpha\beta} = \delta_{\alpha\beta} + (F^{(1)}_{\alpha\beta\omega} + 4A^{(1)}_{(\alpha\beta)\omega} - \frac{4}{d}\delta_{\omega(\alpha}A^{(1)}_{\beta)\gamma\gamma})\sigma_{\omega} + \mathcal{O}(\sigma^2).$

Trace of $A^{(1)}$ appears! Be careful....

Trace-free part is the same as Riemannian case;

Sam Blitz Background Riemannian Conformal

Order 1:

If
$$\tilde{\sigma}_{\alpha} = \sigma_{\alpha} + A^{(1)}_{\alpha\gamma_1\gamma_2}\sigma_{\gamma_1}\sigma_{\gamma_2}$$
, then

$$\tilde{\boldsymbol{G}}_{\alpha\beta} = \delta_{\alpha\beta} + (F^{(1)}_{\alpha\beta\omega} + 4A^{(1)}_{(\alpha\beta)\omega} - \frac{4}{d}\delta_{\omega(\alpha}A^{(1)}_{\beta)\gamma\gamma})\sigma_{\omega} + \mathcal{O}(\sigma^2).$$

Trace of $A^{(1)}$ appears! Be careful....

Trace-free part is the same as Riemannian case; **demand:**

$$F^{(1)}_{\alpha\alpha\omega} + 4A^{(1)}_{\alpha\alpha\omega} - \frac{4}{d}A^{(1)}_{\omega\alpha\alpha} = 0$$

$$F^{(1)}_{\omega\alpha\alpha} + 2A^{(1)}_{\alpha\alpha\omega} + \frac{2(d-k-1)}{d}A^{(1)}_{\omega\alpha\alpha} = 0.$$

Sam Blitz Background Riemannian Conformal

Order 1:

If
$$\tilde{\sigma}_{\alpha} = \sigma_{\alpha} + A^{(1)}_{\alpha\gamma_1\gamma_2}\sigma_{\gamma_1}\sigma_{\gamma_2}$$
, then

 $\tilde{\boldsymbol{G}}_{\alpha\beta} = \delta_{\alpha\beta} + (F^{(1)}_{\alpha\beta\omega} + 4A^{(1)}_{(\alpha\beta)\omega} - \frac{4}{d}\delta_{\omega(\alpha}A^{(1)}_{\beta)\gamma\gamma})\sigma_{\omega} + \mathcal{O}(\sigma^2).$

Trace of $A^{(1)}$ appears! Be careful....

Trace-free part is the same as Riemannian case; **demand:**

$$F^{(1)}_{\alpha\alpha\omega} + 4A^{(1)}_{\alpha\alpha\omega} - \frac{4}{d}A^{(1)}_{\omega\alpha\alpha} = 0$$

$$F^{(1)}_{\omega\alpha\alpha} + 2A^{(1)}_{\alpha\alpha\omega} + \frac{2(d-k-1)}{d}A^{(1)}_{\omega\alpha\alpha} = 0.$$

Has solutions for $k \neq d$ —we're safe!

Sam Blitz Background Riemannian Conformal

Order 1:

If
$$\tilde{\sigma}_{\alpha} = \sigma_{\alpha} + A^{(1)}_{\alpha\gamma_1\gamma_2}\sigma_{\gamma_1}\sigma_{\gamma_2}$$
, then

$$\tilde{\boldsymbol{G}}_{\alpha\beta} = \delta_{\alpha\beta} + (F^{(1)}_{\alpha\beta\omega} + 4A^{(1)}_{(\alpha\beta)\omega} - \frac{4}{d}\delta_{\omega(\alpha}A^{(1)}_{\beta)\gamma\gamma})\sigma_{\omega} + \mathcal{O}(\sigma^2).$$

Trace of $A^{(1)}$ appears! Be careful....

Trace-free part is the same as Riemannian case; **demand:**

$$F^{(1)}_{\alpha\alpha\omega} + 4A^{(1)}_{\alpha\alpha\omega} - \frac{4}{d}A^{(1)}_{\omega\alpha\alpha} = 0$$

$$F^{(1)}_{\omega\alpha\alpha} + 2A^{(1)}_{\alpha\alpha\omega} + \frac{2(d-k-1)}{d}A^{(1)}_{\omega\alpha\alpha} = 0.$$

Has solutions for $k \neq d$ —we're safe!

$$\Rightarrow \boldsymbol{G}_{\alpha\beta} = \delta_{\alpha\beta} + F^{(2)}_{\alpha\beta\gamma_1\gamma_2} \sigma_{\gamma_1} \sigma_{\gamma_2} \,.$$

14/18

3

< ∃→

Interlude: An Extension Problem

Sam Blitz Background Riemannian Conformal

Problem

Let $\bar{f} \in \Gamma(\mathcal{E}\Lambda[w])$ and let $\Lambda \hookrightarrow (M, \mathbf{c})$ have defining densities satisfying $\mathbf{G}_{\alpha\beta} = \delta_{\alpha\beta} + \mathcal{O}(\sigma^2)$. Find a formal power series for $f \in \Gamma(\mathcal{E}M[w])$ solving $N_{\alpha} \cdot \hat{D}f = 0$ and $f|_{\Lambda} = \bar{f}$.

Interlude: An Extension Problem

Sam Blitz Background Riemannian Conformal

Problem

Let $\overline{f} \in \Gamma(\mathcal{E}\Lambda[w])$ and let $\Lambda \hookrightarrow (M, \mathbf{c})$ have defining densities satisfying $\mathbf{G}_{\alpha\beta} = \delta_{\alpha\beta} + \mathcal{O}(\sigma^2)$. Find a formal power series for $f \in \Gamma(\mathcal{E}M[w])$ solving $N_{\alpha} \cdot \hat{D}f = 0$ and $f|_{\Lambda} = \overline{f}$.

Result:

• Can always solve $N_{\alpha} \cdot \hat{D}f = \mathcal{O}(\sigma)$.

Interlude: An Extension Problem

Sam Blitz Background Riemannian Conformal

Problem

Let $\overline{f} \in \Gamma(\mathcal{E}\Lambda[w])$ and let $\Lambda \hookrightarrow (M, \mathbf{c})$ have defining densities satisfying $\mathbf{G}_{\alpha\beta} = \delta_{\alpha\beta} + \mathcal{O}(\sigma^2)$. Find a formal power series for $f \in \Gamma(\mathcal{E}M[w])$ solving $N_{\alpha} \cdot \hat{D}f = 0$ and $f|_{\Lambda} = \overline{f}$.

Result:

Can always solve N_α·D̂f = O(σ).
If w ≠ 1 − (d − k)/2, β = 0, and F⁽²⁾_{α[βγ1]γ2} = 0, can solve N_α·D̂f = O(σ²).

Interlude: An Extension Problem

Sam Blitz Background Riemannian Conformal

Problem

Let $\overline{f} \in \Gamma(\mathcal{E}\Lambda[w])$ and let $\Lambda \hookrightarrow (M, \mathbf{c})$ have defining densities satisfying $\mathbf{G}_{\alpha\beta} = \delta_{\alpha\beta} + \mathcal{O}(\sigma^2)$. Find a formal power series for $f \in \Gamma(\mathcal{E}M[w])$ solving $N_{\alpha} \cdot \hat{D}f = 0$ and $f|_{\Lambda} = \overline{f}$.

Result:

- Can always solve $N_{\alpha} \cdot \hat{D}f = \mathcal{O}(\sigma)$.
- If $w \neq 1 (d k)/2$, $\beta = 0$, and $F_{\alpha[\beta\gamma_1]\gamma_2}^{(2)} = 0$, can solve $N_{\alpha} \cdot \hat{D}f = \mathcal{O}(\sigma^2)$.
- Any more requires trivial embeddings in conformally-flat spaces.

Interlude: An Extension Problem

Sam Blitz Background Riemannian Conformal

Problem

Let $\overline{f} \in \Gamma(\mathcal{E}\Lambda[w])$ and let $\Lambda \hookrightarrow (M, \mathbf{c})$ have defining densities satisfying $\mathbf{G}_{\alpha\beta} = \delta_{\alpha\beta} + \mathcal{O}(\sigma^2)$. Find a formal power series for $f \in \Gamma(\mathcal{E}M[w])$ solving $N_{\alpha} \cdot \hat{D}f = 0$ and $f|_{\Lambda} = \overline{f}$.

Result:

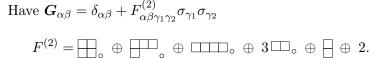
- Can always solve $N_{\alpha} \cdot \hat{D}f = \mathcal{O}(\sigma)$.
- If $w \neq 1 (d k)/2$, $\beta = 0$, and $F_{\alpha[\beta\gamma_1]\gamma_2}^{(2)} = 0$, can solve $N_{\alpha} \cdot \hat{D}f = \mathcal{O}(\sigma^2)$.
- Any more requires trivial embeddings in conformally-flat spaces.

This spells the end....

Sam Blitz Background Riemannian Conformal

Have $\boldsymbol{G}_{\alpha\beta} = \delta_{\alpha\beta} + F^{(2)}_{\alpha\beta\gamma_1\gamma_2}\sigma_{\gamma_1}\sigma_{\gamma_2}$

Sam Blitz Background Riemanniar Conformal



Sam Blitz Background Riemannian Conformal

Have
$$G_{\alpha\beta} = \delta_{\alpha\beta} + F^{(2)}_{\alpha\beta\gamma_1\gamma_2}\sigma_{\gamma_1}\sigma_{\gamma_2}$$

 $F^{(2)} = \bigoplus_{\circ} \oplus \bigoplus_{\circ} \oplus \bigoplus_{\circ} \oplus 3 \bigoplus_{\circ} \oplus \bigoplus 2.$
If $\tilde{\sigma}_{\alpha} = \sigma_{\alpha} + A^{(2)}_{\alpha\gamma_1\gamma_2\gamma_3}\sigma_{\gamma_1}\sigma_{\gamma_2}\sigma_{\gamma_3}$, then
 $A^{(2)} = \bigoplus_{\circ} \oplus \bigoplus_{\circ} \oplus 2 \bigoplus_{\circ} \oplus \bigoplus 0 \oplus 1.$

<ロト <回ト <国ト <目ト <目ト 目 のQで 16/18

Sam Blitz Background Riemannian Conformal

Have
$$G_{\alpha\beta} = \delta_{\alpha\beta} + F^{(2)}_{\alpha\beta\gamma_1\gamma_2}\sigma_{\gamma_1}\sigma_{\gamma_2}$$

 $F^{(2)} = \bigoplus_{\circ} \oplus \bigoplus_{\circ} \oplus \bigoplus_{\circ} \oplus 3 \bigoplus_{\circ} \oplus \bigoplus 2.$
If $\tilde{\sigma}_{\alpha} = \sigma_{\alpha} + A^{(2)}_{\alpha\gamma_1\gamma_2\gamma_3}\sigma_{\gamma_1}\sigma_{\gamma_2}\sigma_{\gamma_3}$, then
 $A^{(2)} = \bigoplus_{\circ} \oplus \bigoplus_{\circ} \oplus 2 \bigoplus_{\circ} \oplus \bigoplus 1.$
For $k \neq d-2$, can find $F^{(2)} = \bigoplus_{\circ} \oplus \bigoplus_{\circ} \oplus 1.$

Sam Blitz Background Riemannian Conformal

Have
$$G_{\alpha\beta} = \delta_{\alpha\beta} + F^{(2)}_{\alpha\beta\gamma_1\gamma_2}\sigma_{\gamma_1}\sigma_{\gamma_2}$$

 $F^{(2)} = \bigoplus_{\circ} \oplus \bigoplus_{\circ} \oplus \bigoplus_{\circ} \oplus 3 \bigoplus_{\circ} \oplus \bigoplus 2.$
If $\tilde{\sigma}_{\alpha} = \sigma_{\alpha} + A^{(2)}_{\alpha\gamma_1\gamma_2\gamma_3}\sigma_{\gamma_1}\sigma_{\gamma_2}\sigma_{\gamma_3}$, then
 $A^{(2)} = \bigoplus_{\circ} \oplus \bigoplus_{\circ} \oplus 2 \bigoplus_{\circ} \oplus \bigoplus \oplus 1.$
For $k \neq d-2$, can find $F^{(2)} = \bigoplus_{\circ} \oplus \bigoplus_{\circ} \oplus 1.$
Obstructions take the form $a \mathring{\parallel}^2 + b\beta^2 + cW.$

<ロ > < 回 > < 目 > < 目 > < 目 > 目 の Q (~ 16 / 18

Sam Blitz Background Riemannian Conformal

Have
$$G_{\alpha\beta} = \delta_{\alpha\beta} + F^{(2)}_{\alpha\beta\gamma_1\gamma_2}\sigma_{\gamma_1}\sigma_{\gamma_2}$$

 $F^{(2)} = \bigoplus_{\circ} \oplus \bigoplus_{\circ} \oplus \bigoplus_{\circ} \oplus 3 \bigoplus_{\circ} \oplus \bigoplus 2.$
If $\tilde{\sigma}_{\alpha} = \sigma_{\alpha} + A^{(2)}_{\alpha\gamma_1\gamma_2\gamma_3}\sigma_{\gamma_1}\sigma_{\gamma_2}\sigma_{\gamma_3}$, then
 $A^{(2)} = \bigoplus_{\circ} \oplus \bigoplus_{\circ} \oplus 2 \bigoplus_{\circ} \oplus \bigoplus \oplus 1.$
For $k \neq d-2$, can find $F^{(2)} = \bigoplus_{\circ} \oplus \bigoplus_{\circ} \oplus 1.$
Obstructions take the form $a \, \mathring{\mathrm{I}}^2 + b\beta^2 + cW.$
For $k = d-2$, can find $F^{(2)} = \bigoplus_{\circ} \oplus \bigoplus_{\circ} \oplus \bigoplus_{\circ} \oplus 1.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Sam Blitz Background Riemannian Conformal

Have
$$G_{\alpha\beta} = \delta_{\alpha\beta} + F^{(2)}_{\alpha\beta\gamma_1\gamma_2}\sigma_{\gamma_1}\sigma_{\gamma_2}$$

 $F^{(2)} = \bigoplus_{\circ} \oplus \bigoplus_{\circ} \oplus \bigoplus_{\circ} \oplus 3 \bigoplus_{\circ} \oplus \bigoplus 2.$
If $\tilde{\sigma}_{\alpha} = \sigma_{\alpha} + A^{(2)}_{\alpha\gamma_1\gamma_2\gamma_3}\sigma_{\gamma_1}\sigma_{\gamma_2}\sigma_{\gamma_3}$, then
 $A^{(2)} = \bigoplus_{\circ} \oplus \bigoplus_{\circ} \oplus 2 \bigoplus_{\circ} \oplus \bigoplus \oplus 1.$
For $k \neq d-2$, can find $F^{(2)} = \bigoplus_{\circ} \oplus \bigoplus_{\circ} \oplus 1.$
Obstructions take the form $a \, \mathring{\mathrm{I}}^2 + b \beta^2 + c W.$
For $k = d-2$ can find $F^{(2)} = \bigoplus_{\circ} \oplus \bigoplus_{\circ} \oplus \bigoplus_{\circ} \oplus 1.$

Unique invariant: $F_{\gamma[\alpha\beta]\gamma}^{(2)} = \overline{\nabla}^a \beta_{a\alpha\beta}.$

Order 3 and the Willmore Invariant

Sam Blitz Background Riemannian Conformal Extension problem: require $\beta = 0 \ (\Rightarrow F_{\alpha[\beta\gamma_1]\gamma_2}^{(2)} = 0)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sam Blitz Background Riemannian Conformal Extension problem: require $\beta = 0 \ (\Rightarrow F_{\alpha[\beta\gamma_1]\gamma_2}^{(2)} = 0)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = つへ⊙

17/18

If d - k = 4: Halt (with one exception).

Sam Blitz Background Riemannian Conformal Extension problem: require $\beta = 0 \ (\Rightarrow F_{\alpha[\beta\gamma_1]\gamma_2}^{(2)} = 0)$

If d - k = 4: Halt (with one exception). Else: extend corrections $A^{(1)}$ and $A^{(2)}$ appropriately to fix $F^{(2)}$.

Sam Blitz Background Riemannian Conformal Extension problem: require $\beta = 0 \ (\Rightarrow F_{\alpha[\beta\gamma_1]\gamma_2}^{(2)} = 0)$

If d - k = 4: Halt (with one exception). Else: extend corrections $A^{(1)}$ and $A^{(2)}$ appropriately to fix $F^{(2)}$.

For $k \neq d-2$, cannot remove all traces from $F^{(3)}$:

Sam Blitz Background Riemannian Conformal Extension problem: require $\beta = 0 \ (\Rightarrow F_{\alpha[\beta\gamma_1]\gamma_2}^{(2)} = 0)$

If d - k = 4: Halt (with one exception). Else: extend corrections $A^{(1)}$ and $A^{(2)}$ appropriately to fix $F^{(2)}$.

For $k \neq d-2$, cannot remove all traces from $F^{(3)}$: can only remove $F^{(3)}_{\gamma\gamma\rho\rho\alpha}$ and $F^{(3)}_{\alpha\gamma\gamma\rho\rho}$.

Sam Blitz Background Riemannian Conformal Extension problem: require $\beta = 0 \ (\Rightarrow F_{\alpha[\beta\gamma_1]\gamma_2}^{(2)} = 0)$

If d - k = 4: Halt (with one exception). Else: extend corrections $A^{(1)}$ and $A^{(2)}$ appropriately to fix $F^{(2)}$.

For $k \neq d-2$, cannot remove all traces from $F^{(3)}$: can only remove $F^{(3)}_{\gamma\gamma\rho\rho\alpha}$ and $F^{(3)}_{\alpha\gamma\gamma\rho\rho}$.

For k = d - 2, cannot remove $F_{\alpha\gamma\gamma\rho\rho}^{(3)} \leftarrow$ True obstruction:

Sam Blitz Background Riemannian Conformal Extension problem: require $\beta = 0 \ (\Rightarrow F_{\alpha[\beta\gamma_1]\gamma_2}^{(2)} = 0)$

If d - k = 4: Halt (with one exception). Else: extend corrections $A^{(1)}$ and $A^{(2)}$ appropriately to fix $F^{(2)}$.

For $k \neq d-2$, cannot remove all traces from $F^{(3)}$: can only remove $F^{(3)}_{\gamma\gamma\rho\rho\alpha}$ and $F^{(3)}_{\alpha\gamma\gamma\rho\rho}$.

For k = d - 2, cannot remove $F^{(3)}_{\alpha\gamma\gamma\rho\rho} \leftarrow$ True obstruction:

$$F^{(3)}_{\alpha\gamma\gamma\rho\rho} \stackrel{\Lambda}{=} -\frac{d-2}{6} L_{ab} \,\mathring{\Pi}^{ab}_{\alpha} - \frac{1}{3} \,\mathring{\Pi}^{bc}_{\alpha} \bar{g}^{ad} W_{abcd} - \frac{d-2}{6} \mathrm{IV}_{\alpha} \,.$$
$$[\mathrm{IV}_{\alpha} = C_{\alpha\beta\beta} + H_{\rho} W_{\alpha\beta\beta\rho} + \frac{1}{d-k-3} \bar{\nabla}^{c} W^{\top}_{c\beta\beta\alpha} \in \Gamma(\mathcal{E}\Lambda[-3])]$$

Sam Blitz Background Riemannian Conformal Extension problem: require $\beta = 0 \ (\Rightarrow F_{\alpha[\beta\gamma_1]\gamma_2}^{(2)} = 0)$

If d - k = 4: Halt (with one exception). Else: extend corrections $A^{(1)}$ and $A^{(2)}$ appropriately to fix $F^{(2)}$.

For $k \neq d-2$, cannot remove all traces from $F^{(3)}$: can only remove $F^{(3)}_{\gamma\gamma\rho\rho\alpha}$ and $F^{(3)}_{\alpha\gamma\gamma\rho\rho}$.

For k = d - 2, cannot remove $F_{\alpha\gamma\gamma\rho\rho}^{(3)} \leftarrow$ True obstruction:

$$\begin{split} F^{(3)}_{\alpha\gamma\gamma\rho\rho} &\stackrel{\Lambda}{=} -\frac{d-2}{6} L_{ab} \mathring{\Pi}^{ab}_{\alpha} - \frac{1}{3} \mathring{\Pi}^{bc}_{\alpha} \bar{g}^{ad} W_{abcd} - \frac{d-2}{6} \mathrm{IV}_{\alpha} \,. \\ [\mathrm{IV}_{\alpha} &= C_{\alpha\beta\beta} + H_{\rho} W_{\alpha\beta\beta\rho} + \frac{1}{d-k-3} \bar{\nabla}^{c} W^{\top}_{c\beta\beta\alpha} \in \Gamma(\mathcal{E}\Lambda[-3])] \\ \text{This differs from the Willmore invariant by a factor} \end{split}$$

This differs from the Willmore invariant by a factor of 1/2.

Thank you

Sam Blitz Background Riemannian Conformal

Thank you!