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St iz Motivation:

Background m Conformal hypersurface geometry can be understood
with holography.

m Can a similar approach be used for conformal curves?
= Attempt to generalize holographic methods to
arbitrary submanifold

Roadblocks:
m Lacking uniqueness of normal frame
m Representation theory obstructions

m Combinatorial growth of cancellations required

Q: Can we find any new invariants this way?
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Context

Smooth manifolds

L AR < M smooth

Sam Blitz

Background

(Always working locally, so assume triviality)
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Levi-Civita connection V = Normal connection:

Riemannian

D :T(TA) x T(NA) — T(NA)
(v,n) —  Dyn:=1(V,n).

Let {nq}*_, be an orthonormal frame for NA:
Connection coefficients: (nq, Dyng) = v*Baap
“Normal fundamental forms”

Curvature: R(u,v)n := Dy(Dyn) — Dy(Dyn) — Dy pn
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Riemannian Submanifolds

Y, - QG
Gauge Fixing

Simplest case:

Theorem

If A%k < (M, g) has R =0, then {ny} is uniquely fized (up
to constant sections of O(k)) by fizing B = 0.

These are rotation minimizing frames (RMFs), by analogy
with spacecurves:
For A' < R3 in the Frenet frame {T, N, B}, we have

BaBN =T.

Torsion tells you how much one normal vector rotates into
another.

For R # 0: impossible? = Assume some {n,} going

forward.
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Submanifolds: Extend {nq,} off A by solving
Gapg = g(na,ng) = 6ap. Want s, € (COOM)k s.t. ng = dsq.
Not always possible: Frobenius theorem.

= Solve order by order for defining map sq

Order 0: Pick s, s.t. dsq|p = nq-

= Gaﬁ == 50[[3 + C(tﬁ)’y

(orthonormality)
Order 1: Correct s, at second order:

1) (1) 1) (1)
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Riemannian Submanifolds

Interlude: An Extension Problem

St bz Problem

Let f € C°A and A — (M, g) have defining map with
AN G = 0ap + O(s™). Find a formal power series for
f e C®M solving

vnafzo(sn)a f‘A:fT

Label the problem parametrized by (m,n) by P(m,n).
Results:

m P(2,1) always has a solution.
m R =0 = P(2,2) has a solution (in RMF).

m R =0 and (M, g) flat = For m > 3, P(m,m) has a
solution (in RMF).
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Riemannian Submanifolds

Higher Orders

Order 2:
m Fix AW using P(2,1)
m Find A@mw with 54 := sq + A(@wﬂ?) S+, 8455 that
makes F(? = 0. «< Not always possible.
Representations:

FOcmome o vs. A®D e @ om
Obstruction — new invariant:

(2) A c 1
PBH afyive 500&(71 ~2)8 SRn’nn(a”B)”w

Similarly, if R = 0 gives a new obstruction at Order 3.

Order oo: If R = R = 0, no obstructions, ds, s.t.
Gag = 5aﬂ + O(SOO).
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Conformal m “Conformally invariant” = Riemannian invariant I[g]
with the property that I[Q%g] = Q“I[g]
Write: T = [g;39] = [Q%g; Q¥i9] € T(EM[w)).
“Conformal densities”

m e.g. Conformal metric: g = [g; g] € T(O*T*M[2])

m Need a conformal calculus in analogy with Ricci
calculus: “Tractor calculus.”

m For g € ¢, define “tractor bundle”:
g
TM = EM[1] @ TM[-1] @ EM[—1] with g — Q%g
transformation law.
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Conformal Submanifolds

Conformal Geometry Review, Continued

Conformal

m Tractor connection:

VT D(TM) = T(T*M @ TM)

Vo™ — 17,4
T8 VITE L | Vo + ghr™ + (P95 ) .
Vo~ — beﬂ'b
m Thomas-D operator:
Da:D(T*M[w]) = D(T*M @ T Mw — 1))
(d 4 2w — 2)wT®
T® s DAT? L | (d+ 20w —2)V]T? |,
—(AT +wJNT?®
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Conformal Submanifolds

Frame-valued density

Conformal structure preserves directions = for g € ¢, pick
{na} and promote to density:

ng = [g; (n?)5] € T(TM[=1])[a

Conformal Observe: g(na,ng)|a = dap and Buap € T'(T7X[0] ®5)

= R is conformally invariant

= If there exists g € ¢ that picks out a special {n,}, that
choice is conformally invariant.

Assume a frame is chosen going forward.
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Holography

Note: For g € ¢ and 0, = [g; s4] € T(EM][1]),
g(dsq,dsg) A hag(Doa, Dog).

Conformal M . 1
(D T d+2w72D')

Goal: Find o s.t. Nag := Daoa A (0, mgq, *) and
Gaﬁ = h(Na,Ng) = 6a,8-
Order 0: Pick o, s.t. Nag A (0, nga, *)

:>Gaﬂ—5aﬁ+ ()

w0y - (orthonormality)
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Order 1:

If 6o, =00+ Aéw)wza’rl 0,,, then

Goas = dap + (Fg

afw

AL — $0,0AY) Jow+0(0?).

Conformal

Trace of AWM appears! Be careful....
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Order 1:
If 6o, =00+ Aéw)wza’rl 0,,, then

~ 1 1
Gop = 0ap + (Fop, + 440G, — 30,AY) )ow +0(0?).

Conformal

Trace of AWM appears! Be careful....
Trace-free part is the same as Riemannian case;

demand:
FN, +440, — 440 =0

FiB,+ 240, + 20 40 o

woox

Has solutions for k # d—we’re safe!

= Gog = 008 + 155,6’)7172071072 .
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Conformal Submanifolds

Interlude: An Extension Problem

Let f € T(EA[w]) and let A — (M, c) have defining densities
satisfying Gog = dap + O(0?). Find a formal power series
e for f € T(EM[w)]) solving No-Df =0 and f|p = f.
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Conformal Submanifolds

Interlude: An Extension Problem

Let f € T(EA[w]) and let A — (M, c) have defining densities
satisfying Gog = dap + O(0?). Find a formal power series
for f € T(EM[w)]) solving No-Df =0 and f|p = f.

Result:
= Can always solve N,-Df = O(0).
mIfw#1—(d—Fk)/2, =0, and Fﬁg%m
No-Df = O(c?).
m Any more requires trivial embeddings in
conformally-flat spaces.

This spells the end....

= 0, can solve
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Conformal Submanifolds

Order 2

2
Have G g = 0o + Fc(vﬂ)*rwz Oy Oy

FO=FH e H oo, &3, & e 2
Conformal

5. — 2)
If 6o = 00 + Apyi4pys 071 0205, then

A® =HD o 01, @ 2000, o He L.
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Conformal Submanifolds

Order 2
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Conformal If Onq = Og + A( )

a17273 071 T2 O3> then

ZBEOEBDEHOEBQDHOEBHEBI.

For k £ d — 2, can find F H} o M, ¢ 1.
Obstructions take the form aH2 +b3% 4 cW.

For k =d — QCanﬁndF H}@Dﬂ @B@l
) a
Unique invariant: F Bl = =V Baas-
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Conformal Submanifolds

Order 3 and the Willmore Invariant

Extension problem: require § =0 (= F? =0)
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Extension problem: require § =0 (= F? =0)
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If d — k = 4: Halt (with one exception).
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Conformal Submanifolds

Order 3 and the Willmore Invariant

Extension problem: require § =0 (= Fo(j%m] o,

If d — k = 4: Halt (with one exception).
Else: extend corrections A1) and A® appropriately to fix
F@).

=0)

For k # d — 2, cannot remove all traces from F ®): can only

3 3
remove Fv(v)p oo and F, é,y)w op-

For k = d — 2, cannot remove Fé{% op < True obstruction:

3 A 42 ab 1 fybe=ad d—2
thv)wp = =% Laplly’ = 305G Wapead — TG~V -

(Vo = Capp + HWagsp + 75=5V Wesa € T(EA[-3))]

This differs from the Willmore invariant by a factor
of 1/2.
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Thank you

Thank you!
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