A Holographic Approach to Submanifold Geometry

S. Blitz
Joint work with Josef Šilhan

Masaryk University
Srní, 44th Winter School, January 2024

Story

What not to do

Sam Blitz

Background Riemannian

Motivation:
■ Conformal hypersurface geometry can be understood with holography.

Story

What not to do

Motivation:
■ Conformal hypersurface geometry can be understood with holography.

- Can a similar approach be used for conformal curves?

Story

What not to do

Motivation:
■ Conformal hypersurface geometry can be understood with holography.
■ Can a similar approach be used for conformal curves? \Rightarrow Attempt to generalize holographic methods to arbitrary submanifold

Story

Motivation:
■ Conformal hypersurface geometry can be understood with holography.

- Can a similar approach be used for conformal curves?
\Rightarrow Attempt to generalize holographic methods to arbitrary submanifold
Roadblocks:
■ Lacking uniqueness of normal frame
- Representation theory obstructions

■ Combinatorial growth of cancellations required

Motivation:
■ Conformal hypersurface geometry can be understood with holography.

- Can a similar approach be used for conformal curves? \Rightarrow Attempt to generalize holographic methods to arbitrary submanifold
Roadblocks:
■ Lacking uniqueness of normal frame
- Representation theory obstructions
- Combinatorial growth of cancellations required

Q: Can we find any new invariants this way?

Context

Smooth manifolds

Riemannian Submanifolds

Basic Structure

Attach a metric: $\Lambda^{d-k} \hookrightarrow\left(M^{d}, g\right)$
$\left(\left.\Rightarrow T M\right|_{\Lambda} \cong T \Lambda \oplus N \Lambda\right.$, similarly $\left.\left.T^{*} M\right|_{\Lambda}.\right)$

Riemannian Submanifolds

Basic Structure

Attach a metric: $\Lambda^{d-k} \hookrightarrow\left(M^{d}, g\right)$
$\left(\left.\Rightarrow T M\right|_{\Lambda} \cong T \Lambda \oplus N \Lambda\right.$, similarly $\left.\left.T^{*} M\right|_{\Lambda}.\right)$
Levi-Civita connection $\nabla \Rightarrow$ Normal connection:

$$
\begin{array}{clc}
D: \Gamma(T \Lambda) \times \Gamma(N \Lambda) & \rightarrow & \Gamma(N \Lambda) \\
(v, n) & \mapsto & D_{v} n:=\perp\left(\nabla_{\iota_{*} v} n\right) .
\end{array}
$$

Riemannian Submanifolds

Basic Structure

Attach a metric: $\Lambda^{d-k} \hookrightarrow\left(M^{d}, g\right)$
$\left(\left.\Rightarrow T M\right|_{\Lambda} \cong T \Lambda \oplus N \Lambda\right.$, similarly $\left.\left.T^{*} M\right|_{\Lambda}.\right)$
Levi-Civita connection $\nabla \Rightarrow$ Normal connection:

$$
\begin{array}{clc}
D: \Gamma(T \Lambda) \times \Gamma(N \Lambda) & \rightarrow & \Gamma(N \Lambda) \\
(v, n) & \mapsto & D_{v} n:=\perp\left(\nabla_{\iota_{*} v} n\right) .
\end{array}
$$

Let $\left\{n_{\alpha}\right\}_{\alpha=1}^{k}$ be an orthonormal frame for $N \Lambda$:
Connection coefficients: $\left\langle n_{\alpha}, D_{v} n_{\beta}\right\rangle=v^{a} \beta_{a \alpha \beta}$

Riemannian Submanifolds

Basic Structure

Attach a metric: $\Lambda^{d-k} \hookrightarrow\left(M^{d}, g\right)$
$\left(\left.\Rightarrow T M\right|_{\Lambda} \cong T \Lambda \oplus N \Lambda\right.$, similarly $\left.\left.T^{*} M\right|_{\Lambda}.\right)$
Levi-Civita connection $\nabla \Rightarrow$ Normal connection:

$$
\begin{array}{ccc}
D: \Gamma(T \Lambda) \times \Gamma(N \Lambda) & \rightarrow & \Gamma(N \Lambda) \\
(v, n) & \mapsto & D_{v} n:=\perp\left(\nabla_{\iota_{*} v} n\right) .
\end{array}
$$

Let $\left\{n_{\alpha}\right\}_{\alpha=1}^{k}$ be an orthonormal frame for $N \Lambda$:
Connection coefficients: $\left\langle n_{\alpha}, D_{v} n_{\beta}\right\rangle=v^{a} \beta_{a \alpha \beta}$
"Normal fundamental forms"

Riemannian Submanifolds

Basic Structure

Attach a metric: $\Lambda^{d-k} \hookrightarrow\left(M^{d}, g\right)$
$\left(\left.\Rightarrow T M\right|_{\Lambda} \cong T \Lambda \oplus N \Lambda\right.$, similarly $\left.\left.T^{*} M\right|_{\Lambda}.\right)$
Levi-Civita connection $\nabla \Rightarrow$ Normal connection:

$$
\begin{array}{ccc}
D: \Gamma(T \Lambda) \times \Gamma(N \Lambda) & \rightarrow & \Gamma(N \Lambda) \\
(v, n) & \mapsto & D_{v} n:=\perp\left(\nabla_{\iota_{*} v} n\right) .
\end{array}
$$

Let $\left\{n_{\alpha}\right\}_{\alpha=1}^{k}$ be an orthonormal frame for $N \Lambda$:
Connection coefficients: $\left\langle n_{\alpha}, D_{v} n_{\beta}\right\rangle=v^{a} \beta_{a \alpha \beta}$
"Normal fundamental forms"
Curvature: $\mathcal{R}(u, v) n:=D_{u}\left(D_{v} n\right)-D_{v}\left(D_{u} n\right)-D_{[u, v]} n$

Riemannian Submanifolds

An Orthonormal Frame?

Goal: Study "canonical extension" of orthonormal frame $\left\{n_{\alpha}\right\}_{\alpha=1}^{k}$ away from Λ.

Riemannian Submanifolds

An Orthonormal Frame?

Goal: Study "canonical extension" of orthonormal frame $\left\{n_{\alpha}\right\}_{\alpha=1}^{k}$ away from Λ.

Problem: Which orthonormal frame?

Riemannian Submanifolds

An Orthonormal Frame?

Goal: Study "canonical extension" of orthonormal frame $\left\{n_{\alpha}\right\}_{\alpha=1}^{k}$ away from Λ.

Problem: Which orthonormal frame?
For $k=1, \exists$! unit normal vector (up to orientation).

Riemannian Submanifolds

An Orthonormal Frame?

Goal: Study "canonical extension" of orthonormal frame $\left\{n_{\alpha}\right\}_{\alpha=1}^{k}$ away from Λ.

Problem: Which orthonormal frame?
For $k=1, \exists$! unit normal vector (up to orientation). Not true for $k>1$:

Riemannian Submanifolds

An Orthonormal Frame?

Goal: Study "canonical extension" of orthonormal frame $\left\{n_{\alpha}\right\}_{\alpha=1}^{k}$ away from Λ.

Problem: Which orthonormal frame?
For $k=1, \exists$! unit normal vector (up to orientation). Not true for $k>1$:
For $m_{\alpha \beta} \in S O(k)$,

$$
\left\{n_{\alpha}\right\} \mapsto\left\{m_{\alpha \beta} n_{\beta}\right\}
$$

is just as good.
Can we find a geometric condition that fixes $\left\{n_{\alpha}\right\}$?

Riemannian Submanifolds

An Orthonormal Frame?

Goal: Study "canonical extension" of orthonormal frame $\left\{n_{\alpha}\right\}_{\alpha=1}^{k}$ away from Λ.

Problem: Which orthonormal frame?
For $k=1, \exists$! unit normal vector (up to orientation). Not true for $k>1$:
For $m_{\alpha \beta} \in S O(k)$,

$$
\left\{n_{\alpha}\right\} \mapsto\left\{m_{\alpha \beta} n_{\beta}\right\}
$$

is just as good.
Can we find a geometric condition that fixes $\left\{n_{\alpha}\right\}$?
\Rightarrow "Gauge Fixing"

Riemannian Submanifolds

Gauge Fixing

Simplest case:

Theorem

If $\Lambda^{d-k} \hookrightarrow(M, g)$ has $\mathcal{R}=0$, then $\left\{n_{\alpha}\right\}$ is uniquely fixed (up to constant sections of $O(k)$) by fixing $\beta=0$.

Riemannian Submanifolds

Gauge Fixing

Simplest case:

Theorem

If $\Lambda^{d-k} \hookrightarrow(M, g)$ has $\mathcal{R}=0$, then $\left\{n_{\alpha}\right\}$ is uniquely fixed (up to constant sections of $O(k)$) by fixing $\beta=0$.

These are rotation minimizing frames (RMFs), by analogy with spacecurves:

Riemannian Submanifolds

Gauge Fixing

Simplest case:

Theorem

If $\Lambda^{d-k} \hookrightarrow(M, g)$ has $\mathcal{R}=0$, then $\left\{n_{\alpha}\right\}$ is uniquely fixed (up to constant sections of $O(k)$) by fixing $\beta=0$.

These are rotation minimizing frames (RMFs), by analogy with spacecurves:
For $\Lambda^{1} \hookrightarrow \mathbb{R}^{3}$ in the Frenet frame $\{T, N, B\}$, we have

$$
\beta_{a B N}=\tau
$$

Riemannian Submanifolds

Gauge Fixing

Simplest case:

Theorem

If $\Lambda^{d-k} \hookrightarrow(M, g)$ has $\mathcal{R}=0$, then $\left\{n_{\alpha}\right\}$ is uniquely fixed (up to constant sections of $O(k)$) by fixing $\beta=0$.

These are rotation minimizing frames (RMFs), by analogy with spacecurves:
For $\Lambda^{1} \hookrightarrow \mathbb{R}^{3}$ in the Frenet frame $\{T, N, B\}$, we have

$$
\beta_{a B N}=\tau
$$

Torsion tells you how much one normal vector rotates into another.

Riemannian Submanifolds

Gauge Fixing

Simplest case:

Theorem

If $\Lambda^{d-k} \hookrightarrow(M, g)$ has $\mathcal{R}=0$, then $\left\{n_{\alpha}\right\}$ is uniquely fixed (up to constant sections of $O(k)$) by fixing $\beta=0$.

These are rotation minimizing frames (RMFs), by analogy with spacecurves:
For $\Lambda^{1} \hookrightarrow \mathbb{R}^{3}$ in the Frenet frame $\{T, N, B\}$, we have

$$
\beta_{a B N}=\tau
$$

Torsion tells you how much one normal vector rotates into another.

For $\mathcal{R} \neq 0$: impossible?

Riemannian Submanifolds

Gauge Fixing

Simplest case:

Theorem

If $\Lambda^{d-k} \hookrightarrow(M, g)$ has $\mathcal{R}=0$, then $\left\{n_{\alpha}\right\}$ is uniquely fixed (up to constant sections of $O(k)$) by fixing $\beta=0$.

These are rotation minimizing frames (RMFs), by analogy with spacecurves:
For $\Lambda^{1} \hookrightarrow \mathbb{R}^{3}$ in the Frenet frame $\{T, N, B\}$, we have

$$
\beta_{a B N}=\tau
$$

Torsion tells you how much one normal vector rotates into another.

For $\mathcal{R} \neq 0$: impossible? \Rightarrow Assume some $\left\{n_{\alpha}\right\}$ going forward.

Riemannian Submanifolds

Holography

Submanifolds: Extend $\left\{n_{\alpha}\right\}$ off Λ by solving
$G_{\alpha \beta}:=g\left(n_{\alpha}, n_{\beta}\right)=\delta_{\alpha \beta}$.

Riemannian Submanifolds

Holography

Submanifolds: Extend $\left\{n_{\alpha}\right\}$ off Λ by solving
$G_{\alpha \beta}:=g\left(n_{\alpha}, n_{\beta}\right)=\delta_{\alpha \beta}$. Want $s_{\alpha} \in\left(C^{\infty} M\right)^{k}$ s.t. $n_{\alpha}=d s_{\alpha}$.

Riemannian Submanifolds

Holography

Submanifolds: Extend $\left\{n_{\alpha}\right\}$ off Λ by solving
$G_{\alpha \beta}:=g\left(n_{\alpha}, n_{\beta}\right)=\delta_{\alpha \beta}$. Want $s_{\alpha} \in\left(C^{\infty} M\right)^{k}$ s.t. $n_{\alpha}=d s_{\alpha}$. Not always possible: Frobenius theorem.

Riemannian Submanifolds

Holography

Submanifolds: Extend $\left\{n_{\alpha}\right\}$ off Λ by solving
$G_{\alpha \beta}:=g\left(n_{\alpha}, n_{\beta}\right)=\delta_{\alpha \beta}$. Want $s_{\alpha} \in\left(C^{\infty} M\right)^{k}$ s.t. $n_{\alpha}=d s_{\alpha}$. Not always possible: Frobenius theorem.
\Rightarrow Solve order by order for defining map s_{α}

Riemannian Submanifolds

Holography

Submanifolds: Extend $\left\{n_{\alpha}\right\}$ off Λ by solving
$G_{\alpha \beta}:=g\left(n_{\alpha}, n_{\beta}\right)=\delta_{\alpha \beta}$. Want $s_{\alpha} \in\left(C^{\infty} M\right)^{k}$ s.t. $n_{\alpha}=d s_{\alpha}$.
Not always possible: Frobenius theorem.
\Rightarrow Solve order by order for defining map s_{α}
Order 0: Pick s_{α} s.t. $\left.d s_{\alpha}\right|_{\Lambda}=n_{\alpha}$.

Riemannian Submanifolds

Holography

Submanifolds: Extend $\left\{n_{\alpha}\right\}$ off Λ by solving
$G_{\alpha \beta}:=g\left(n_{\alpha}, n_{\beta}\right)=\delta_{\alpha \beta}$. Want $s_{\alpha} \in\left(C^{\infty} M\right)^{k}$ s.t. $n_{\alpha}=d s_{\alpha}$.
Not always possible: Frobenius theorem.
\Rightarrow Solve order by order for defining map s_{α}
Order 0: Pick s_{α} s.t. $\left.d s_{\alpha}\right|_{\Lambda}=n_{\alpha}$.
$\Rightarrow G_{\alpha \beta}=\delta_{\alpha \beta}+F_{\alpha \beta \gamma}^{(1)} s_{\gamma}$. (orthonormality)

Riemannian Submanifolds

Holography

Submanifolds: Extend $\left\{n_{\alpha}\right\}$ off Λ by solving
$G_{\alpha \beta}:=g\left(n_{\alpha}, n_{\beta}\right)=\delta_{\alpha \beta}$. Want $s_{\alpha} \in\left(C^{\infty} M\right)^{k}$ s.t. $n_{\alpha}=d s_{\alpha}$.
Not always possible: Frobenius theorem.
\Rightarrow Solve order by order for defining map s_{α}
Order 0: Pick s_{α} s.t. $\left.d s_{\alpha}\right|_{\Lambda}=n_{\alpha}$.
$\Rightarrow G_{\alpha \beta}=\delta_{\alpha \beta}+F_{\alpha \beta \gamma}^{(1)} s_{\gamma}$. (orthonormality)
Order 1: Correct s_{α} at second order:

Riemannian Submanifolds

Holography

Submanifolds: Extend $\left\{n_{\alpha}\right\}$ off Λ by solving
$G_{\alpha \beta}:=g\left(n_{\alpha}, n_{\beta}\right)=\delta_{\alpha \beta}$. Want $s_{\alpha} \in\left(C^{\infty} M\right)^{k}$ s.t. $n_{\alpha}=d s_{\alpha}$.
Not always possible: Frobenius theorem.
\Rightarrow Solve order by order for defining map s_{α}
Order 0: Pick s_{α} s.t. $\left.d s_{\alpha}\right|_{\Lambda}=n_{\alpha}$.
$\Rightarrow G_{\alpha \beta}=\delta_{\alpha \beta}+F_{\alpha \beta \gamma}^{(1)} s_{\gamma}$. (orthonormality)
Order 1: Correct s_{α} at second order:
Let $A_{\alpha \beta \gamma}^{(1)}:=-\frac{1}{2}\left(F_{\alpha \beta \gamma}^{(1)}+F_{\gamma \alpha \beta}^{(1)}-F_{\beta \gamma \alpha}^{(1)}\right)$ and

Riemannian Submanifolds

Holography

Submanifolds: Extend $\left\{n_{\alpha}\right\}$ off Λ by solving
$G_{\alpha \beta}:=g\left(n_{\alpha}, n_{\beta}\right)=\delta_{\alpha \beta}$. Want $s_{\alpha} \in\left(C^{\infty} M\right)^{k}$ s.t. $n_{\alpha}=d s_{\alpha}$.
Not always possible: Frobenius theorem.
\Rightarrow Solve order by order for defining map s_{α}
Order 0: Pick s_{α} s.t. $\left.d s_{\alpha}\right|_{\Lambda}=n_{\alpha}$.
$\Rightarrow G_{\alpha \beta}=\delta_{\alpha \beta}+F_{\alpha \beta \gamma}^{(1)} s_{\gamma}$. (orthonormality)
Order 1: Correct s_{α} at second order:
Let $A_{\alpha \beta \gamma}^{(1)}:=-\frac{1}{2}\left(F_{\alpha \beta \gamma}^{(1)}+F_{\gamma \alpha \beta}^{(1)}-F_{\beta \gamma \alpha}^{(1)}\right)$ and
$\tilde{s}_{\alpha}:=s_{\alpha}+A_{\alpha \beta \gamma}^{(1)} s_{\beta} s_{\gamma}$

Riemannian Submanifolds

Holography

Submanifolds: Extend $\left\{n_{\alpha}\right\}$ off Λ by solving
$G_{\alpha \beta}:=g\left(n_{\alpha}, n_{\beta}\right)=\delta_{\alpha \beta}$. Want $s_{\alpha} \in\left(C^{\infty} M\right)^{k}$ s.t. $n_{\alpha}=d s_{\alpha}$.
Not always possible: Frobenius theorem.
\Rightarrow Solve order by order for defining map s_{α}
Order 0: Pick s_{α} s.t. $\left.d s_{\alpha}\right|_{\Lambda}=n_{\alpha}$.
$\Rightarrow G_{\alpha \beta}=\delta_{\alpha \beta}+F_{\alpha \beta \gamma}^{(1)} s_{\gamma}$. (orthonormality)
Order 1: Correct s_{α} at second order:
Let $A_{\alpha \beta \gamma}^{(1)}:=-\frac{1}{2}\left(F_{\alpha \beta \gamma}^{(1)}+F_{\gamma \alpha \beta}^{(1)}-F_{\beta \gamma \alpha}^{(1)}\right)$ and
$\tilde{s}_{\alpha}:=s_{\alpha}+A_{\alpha \beta \gamma}^{(1)} s_{\beta} s_{\gamma}$

$$
\Rightarrow \tilde{G}_{\alpha \beta}=\delta_{\alpha \beta}+F_{\alpha \beta \gamma_{1} \gamma_{2}}^{(2)} \tilde{s}_{\gamma_{1}} \tilde{s}_{\gamma_{2}} .
$$

Riemannian Submanifolds

Interlude: An Extension Problem

Problem

Let $\bar{f} \in C^{\infty} \Lambda$ and $\Lambda \hookrightarrow(M, g)$ have defining map with $G_{\alpha \beta}=\delta_{\alpha \beta}+\mathcal{O}\left(s^{m}\right)$. Find a formal power series for $f \in C^{\infty} M$ solving

$$
\nabla_{n_{\alpha}} f=\mathcal{O}\left(s^{n}\right),\left.\quad f\right|_{\Lambda}=\bar{f}
$$

Label the problem parametrized by (m, n) by $P(m, n)$.

Riemannian Submanifolds

Interlude: An Extension Problem

Problem

Let $\bar{f} \in C^{\infty} \Lambda$ and $\Lambda \hookrightarrow(M, g)$ have defining map with $G_{\alpha \beta}=\delta_{\alpha \beta}+\mathcal{O}\left(s^{m}\right)$. Find a formal power series for $f \in C^{\infty} M$ solving

$$
\nabla_{n_{\alpha}} f=\mathcal{O}\left(s^{n}\right),\left.\quad f\right|_{\Lambda}=\bar{f}
$$

Label the problem parametrized by (m, n) by $P(m, n)$. Results:

Riemannian Submanifolds

Interlude: An Extension Problem

Problem

Let $\bar{f} \in C^{\infty} \Lambda$ and $\Lambda \hookrightarrow(M, g)$ have defining map with $G_{\alpha \beta}=\delta_{\alpha \beta}+\mathcal{O}\left(s^{m}\right)$. Find a formal power series for $f \in C^{\infty} M$ solving

$$
\nabla_{n_{\alpha}} f=\mathcal{O}\left(s^{n}\right),\left.\quad f\right|_{\Lambda}=\bar{f}
$$

Label the problem parametrized by (m, n) by $P(m, n)$. Results:

- $P(2,1)$ always has a solution.

Riemannian Submanifolds

Interlude: An Extension Problem

Problem

Let $\bar{f} \in C^{\infty} \Lambda$ and $\Lambda \hookrightarrow(M, g)$ have defining map with $G_{\alpha \beta}=\delta_{\alpha \beta}+\mathcal{O}\left(s^{m}\right)$. Find a formal power series for $f \in C^{\infty} M$ solving

$$
\nabla_{n_{\alpha}} f=\mathcal{O}\left(s^{n}\right),\left.\quad f\right|_{\Lambda}=\bar{f}
$$

Label the problem parametrized by (m, n) by $P(m, n)$. Results:

- $P(2,1)$ always has a solution.
- $\mathcal{R}=0 \Rightarrow P(2,2)$ has a solution (in RMF).

Riemannian Submanifolds

Interlude: An Extension Problem

Problem

Let $\bar{f} \in C^{\infty} \Lambda$ and $\Lambda \hookrightarrow(M, g)$ have defining map with $G_{\alpha \beta}=\delta_{\alpha \beta}+\mathcal{O}\left(s^{m}\right)$. Find a formal power series for $f \in C^{\infty} M$ solving

$$
\nabla_{n_{\alpha}} f=\mathcal{O}\left(s^{n}\right),\left.\quad f\right|_{\Lambda}=\bar{f}
$$

Label the problem parametrized by (m, n) by $P(m, n)$. Results:

- $P(2,1)$ always has a solution.

■ $\mathcal{R}=0 \Rightarrow P(2,2)$ has a solution (in RMF).
■ $\mathcal{R}=0$ and (M, g) flat \Rightarrow For $m \geq 3, P(m, m)$ has a solution (in RMF).

Riemannian Submanifolds

Higher Orders

Order 2:

Background

Riemannian Submanifolds

Higher Orders

Order 2:

- Fix $A^{(1)}$ using $P(2,1)$

Riemannian Submanifolds

Higher Orders

Order 2:

- Fix $A^{(1)}$ using $P(2,1)$
\square Find $A_{\alpha \gamma_{1} \gamma_{2} \gamma_{3}}^{(2)}$ with $\tilde{s}_{\alpha}:=s_{\alpha}+A_{\alpha \gamma_{1} \gamma_{2} \gamma_{3}}^{(2)} s_{\gamma_{1}} s_{\gamma_{2}} s_{\gamma_{3}}$ that makes $\tilde{F}^{(2)}=0$.

Riemannian Submanifolds

Higher Orders

Order 2:

- Fix $A^{(1)}$ using $P(2,1)$
\square Find $A_{\alpha \gamma_{1} \gamma_{2} \gamma_{3}}^{(2)}$ with $\tilde{s}_{\alpha}:=s_{\alpha}+A_{\alpha \gamma_{1} \gamma_{2} \gamma_{3}}^{(2)} s_{\gamma_{1}} s_{\gamma_{2}} s_{\gamma_{3}}$ that makes $\tilde{F}^{(2)}=0 . \Leftarrow$ Not always possible.

Riemannian Submanifolds

Higher Orders

Order 2:

- Fix $A^{(1)}$ using $P(2,1)$

■ Find $A_{\alpha \gamma_{1} \gamma_{2} \gamma_{3}}^{(2)}$ with $\tilde{s}_{\alpha}:=s_{\alpha}+A_{\alpha \gamma_{1} \gamma_{2} \gamma_{3}}^{(2)} s_{\gamma_{1}} s_{\gamma_{2}} s_{\gamma_{3}}$ that makes $\tilde{F}^{(2)}=0 . \Leftarrow$ Not always possible.
Representations:
$F^{(2)} \in \boxplus \oplus \oplus \oplus \square$ vs. $A^{(2)} \in \oplus \oplus \square \square$

Riemannian Submanifolds

Higher Orders

Order 2:

- Fix $A^{(1)}$ using $P(2,1)$

■ Find $A_{\alpha \gamma_{1} \gamma_{2} \gamma_{3}}^{(2)}$ with $\tilde{s}_{\alpha}:=s_{\alpha}+A_{\alpha \gamma_{1} \gamma_{2} \gamma_{3}}^{(2)} s_{\gamma_{1}} s_{\gamma_{2}} s_{\gamma_{3}}$ that makes $\tilde{F}^{(2)}=0 . \Leftarrow$ Not always possible.
Representations:
$F^{(2)} \in \boxplus \oplus \boxplus \oplus \square$ vs. $A^{(2)} \in \boxplus \oplus \amalg$
Obstruction \rightarrow new invariant:

$$
P_{\boxplus} F_{\alpha \beta \gamma_{1} \gamma_{2}}^{(2)} \stackrel{\Lambda}{=}-\beta_{c \alpha\left(\gamma_{1}\right.} \beta_{\left.\gamma_{2}\right) \beta}^{c}-\frac{1}{3} R_{n_{\gamma_{1}} n_{(\alpha} n_{\beta)} n_{\gamma_{2}}}
$$

Riemannian Submanifolds

Higher Orders

Order 2:

- Fix $A^{(1)}$ using $P(2,1)$

■ Find $A_{\alpha \gamma_{1} \gamma_{2} \gamma_{3}}^{(2)}$ with $\tilde{s}_{\alpha}:=s_{\alpha}+A_{\alpha \gamma_{1} \gamma_{2} \gamma_{3}}^{(2)} s_{\gamma_{1}} s_{\gamma_{2}} s_{\gamma_{3}}$ that makes $\tilde{F}^{(2)}=0 . \Leftarrow$ Not always possible.
Representations:
$F^{(2)} \in \boxplus \oplus \oplus \oplus \square$ vs. $A^{(2)} \in \square \oplus \oplus$
Obstruction \rightarrow new invariant:

$$
P_{\boxplus} F_{\alpha \beta \gamma_{1} \gamma_{2}}^{(2)} \stackrel{\Lambda}{=}-\beta_{c \alpha\left(\gamma_{1}\right.} \beta_{\left.\gamma_{2}\right) \beta}^{c}-\frac{1}{3} R_{n_{\gamma_{1}} n_{(\alpha} n_{\beta)} n_{\gamma_{2}}}
$$

Similarly, if $\mathcal{R}=0$ gives a new obstruction at Order 3.

Riemannian Submanifolds

Higher Orders

Order 2:

- Fix $A^{(1)}$ using $P(2,1)$

■ Find $A_{\alpha \gamma_{1} \gamma_{2} \gamma_{3}}^{(2)}$ with $\tilde{s}_{\alpha}:=s_{\alpha}+A_{\alpha \gamma_{1} \gamma_{2} \gamma_{3}}^{(2)} s_{\gamma_{1}} s_{\gamma_{2}} s_{\gamma_{3}}$ that makes $\tilde{F}^{(2)}=0 . \Leftarrow$ Not always possible.
Representations:
$F^{(2)} \in \boxplus \oplus \oplus \oplus \square$ vs. $A^{(2)} \in \oplus \oplus \oplus$
Obstruction \rightarrow new invariant:

$$
P_{\boxplus} F_{\alpha \beta \gamma_{1} \gamma_{2}}^{(2)} \stackrel{\Lambda}{=}-\beta_{c \alpha\left(\gamma_{1}\right.} \beta_{\left.\gamma_{2}\right) \beta}^{c}-\frac{1}{3} R_{n_{\gamma_{1}} n_{(\alpha} n_{\beta)} n_{\gamma_{2}}}
$$

Similarly, if $\mathcal{R}=0$ gives a new obstruction at Order 3.
Order ∞ : If $\mathcal{R}=R=0$, no obstructions, $\exists s_{\alpha}$ s.t. $G_{\alpha \beta}=\delta_{\alpha \beta}+\mathcal{O}\left(s^{\infty}\right)$.

Conformal Submanifolds

Conformal Geometry Review

Sam Blitz
Attach a conformal class of metrics $\Lambda \hookrightarrow(M, \boldsymbol{c})$ $\left(\boldsymbol{c}=[g]=\left[\Omega^{2} g\right]\right)$

Conformal Submanifolds

Conformal Geometry Review

Attach a conformal class of metrics $\Lambda \hookrightarrow(M, \boldsymbol{c})$ $\left(\boldsymbol{c}=[g]=\left[\Omega^{2} g\right]\right)$
Lightning review of conformal geometry:

Conformal Submanifolds

Conformal Geometry Review

Attach a conformal class of metrics $\Lambda \hookrightarrow(M, \boldsymbol{c})$ $\left(\boldsymbol{c}=[g]=\left[\Omega^{2} g\right]\right)$
Lightning review of conformal geometry:
■ "Conformally invariant" = Riemannian invariant $I[g]$ with the property that $I\left[\Omega^{2} g\right]=\Omega^{w} I[g]$

Conformal Submanifolds

Conformal Geometry Review

Conformal

Attach a conformal class of metrics $\Lambda \hookrightarrow(M, \boldsymbol{c})$ $\left(\boldsymbol{c}=[g]=\left[\Omega^{2} g\right]\right)$
Lightning review of conformal geometry:
■ "Conformally invariant" $=$ Riemannian invariant $I[g]$ with the property that $I\left[\Omega^{2} g\right]=\Omega^{w} I[g]$ Write: $I=\left[g ; i^{g}\right]=\left[\Omega^{2} g ; \Omega^{w} i^{g}\right] \in \Gamma(\mathcal{E} M[w])$.

Conformal Submanifolds

Conformal Geometry Review

Attach a conformal class of metrics $\Lambda \hookrightarrow(M, \boldsymbol{c})$ $\left(\boldsymbol{c}=[g]=\left[\Omega^{2} g\right]\right)$
Lightning review of conformal geometry:
■ "Conformally invariant" $=$ Riemannian invariant $I[g]$ with the property that $I\left[\Omega^{2} g\right]=\Omega^{w} I[g]$ Write: $I=\left[g ; i^{g}\right]=\left[\Omega^{2} g ; \Omega^{w} i^{g}\right] \in \Gamma(\mathcal{E} M[w])$. "Conformal densities"

Conformal Submanifolds

Conformal Geometry Review

Attach a conformal class of metrics $\Lambda \hookrightarrow(M, \boldsymbol{c})$ $\left(\boldsymbol{c}=[g]=\left[\Omega^{2} g\right]\right)$
Lightning review of conformal geometry:
■ "Conformally invariant" $=$ Riemannian invariant $I[g]$ with the property that $I\left[\Omega^{2} g\right]=\Omega^{w} I[g]$ Write: $I=\left[g ; i^{g}\right]=\left[\Omega^{2} g ; \Omega^{w} i^{g}\right] \in \Gamma(\mathcal{E} M[w])$. "Conformal densities"
■ e.g. Conformal metric: $\boldsymbol{g}=[g ; g] \in \Gamma\left(\odot^{2} T^{*} M[2]\right)$

Conformal Submanifolds

Attach a conformal class of metrics $\Lambda \hookrightarrow(M, \boldsymbol{c})$

$$
\left(\boldsymbol{c}=[g]=\left[\Omega^{2} g\right]\right)
$$

Lightning review of conformal geometry:
■ "Conformally invariant" $=$ Riemannian invariant $I[g]$ with the property that $I\left[\Omega^{2} g\right]=\Omega^{w} I[g]$ Write: $I=\left[g ; i^{g}\right]=\left[\Omega^{2} g ; \Omega^{w} i^{g}\right] \in \Gamma(\mathcal{E} M[w])$. "Conformal densities"
■ e.g. Conformal metric: $\boldsymbol{g}=[g ; g] \in \Gamma\left(\odot^{2} T^{*} M[2]\right)$

- Need a conformal calculus in analogy with Ricci calculus: "Tractor calculus."

Conformal Submanifolds

Conformal Geometry Review

Attach a conformal class of metrics $\Lambda \hookrightarrow(M, \boldsymbol{c})$

$$
\left(\boldsymbol{c}=[g]=\left[\Omega^{2} g\right]\right)
$$

Lightning review of conformal geometry:

■ "Conformally invariant" $=$ Riemannian invariant $I[g]$ with the property that $I\left[\Omega^{2} g\right]=\Omega^{w} I[g]$
Write: $I=\left[g ; i^{g}\right]=\left[\Omega^{2} g ; \Omega^{w} i^{g}\right] \in \Gamma(\mathcal{E} M[w])$.
"Conformal densities"
■ e.g. Conformal metric: $\boldsymbol{g}=[g ; g] \in \Gamma\left(\odot^{2} T^{*} M[2]\right)$

- Need a conformal calculus in analogy with Ricci calculus:"Tractor calculus."
■ For $g \in \boldsymbol{c}$, define "tractor bundle":
$\mathcal{T} M \stackrel{g}{\approx} \mathcal{E} M[1] \oplus T M[-1] \oplus \mathcal{E} M[-1]$ with $g \mapsto \Omega^{2} g$ transformation law.

Conformal Submanifolds

Conformal Geometry Review, Continued

- Tractor metric: $h_{A B} \stackrel{g}{=}\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & \boldsymbol{g}_{a b} & 0 \\ 1 & 0 & 0\end{array}\right)$.

Conformal Submanifolds

Conformal Geometry Review, Continued

Sam Blitz

Background
Riemannian
Conformal

- Tractor metric: $h_{A B} \stackrel{g}{=}\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & \boldsymbol{g}_{a b} & 0 \\ 1 & 0 & 0\end{array}\right)$.

■ Canonical tractor: $X^{A} \stackrel{g}{\underline{g}}(0,0,1) \in \Gamma(\mathcal{T} M[1])$.

Conformal Submanifolds

Conformal Geometry Review, Continued

Sam Blitz

Background
Riemannian
Conformal

- Tractor metric: $h_{A B} \stackrel{g}{=}\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & \boldsymbol{g}_{a b} & 0 \\ 1 & 0 & 0\end{array}\right)$.
- Canonical tractor: $X^{A} \stackrel{g}{\underline{g}}(0,0,1) \in \Gamma(\mathcal{T} M[1])$.
- Tractor connection:

$$
\begin{aligned}
& \nabla^{\mathcal{T}}: \Gamma(\mathcal{T} M) \rightarrow \Gamma\left(T^{*} M \otimes \mathcal{T} M\right) \\
& T^{B} \mapsto \nabla_{a}^{\mathcal{T}} T^{B} \stackrel{\underline{g}}{=}\left(\begin{array}{c}
\nabla_{a} \tau^{+}-\tau_{a} \\
\nabla_{a} \tau^{b}+\boldsymbol{g}_{a}^{b} \tau^{-}+\left(P^{g}\right)_{a}^{b} \tau^{+} \\
\nabla_{a} \tau^{-}-P_{a b}^{g} \tau^{b}
\end{array}\right) .
\end{aligned}
$$

Conformal Submanifolds

Conformal Geometry Review, Continued

- Tractor metric: $h_{A B} \stackrel{g}{=}\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & \boldsymbol{g}_{a b} & 0 \\ 1 & 0 & 0\end{array}\right)$.
- Canonical tractor: $X^{A} \stackrel{g}{\underline{g}}(0,0,1) \in \Gamma(\mathcal{T} M[1])$.
- Tractor connection:

$$
\begin{aligned}
\nabla^{\mathcal{T}}: \Gamma(\mathcal{T} M) & \rightarrow \Gamma\left(T^{*} M \otimes \mathcal{T} M\right) \\
T^{B} & \mapsto \nabla_{a}^{\mathcal{T}} T^{B} \underline{\underline{g}}\left(\begin{array}{c}
\nabla_{a} \tau^{+}-\tau_{a} \\
\nabla_{a} \tau^{b}+\boldsymbol{g}_{a}^{b} \tau^{-}+\left(P^{g}\right)_{a}^{b} \tau^{+} \\
\nabla_{a} \tau^{-}-P_{a b}^{g} \tau^{b}
\end{array}\right) .
\end{aligned}
$$

- Thomas-D operator:

$$
\begin{aligned}
& D_{A}: \Gamma\left(\mathcal{T}^{\Phi} M[w]\right) \rightarrow \Gamma\left(\mathcal{T}^{*} M \otimes \mathcal{T}^{\Phi} M[w-1]\right) \\
& T^{\Phi} \mapsto D_{A} T^{\Phi} \underline{\underline{g}}\left(\begin{array}{c}
(d+2 w-2) w T^{\Phi} \\
(d+2 w-2) \nabla_{a}^{\mathcal{T}} T^{\Phi} \\
-\left(\Delta^{\mathcal{T}}+w J^{g}\right) T^{\Phi}
\end{array}\right),
\end{aligned}
$$

Conformal Submanifolds

Frame-valued density

Conformal structure preserves directions

Conformal Submanifolds

Frame-valued density

Conformal structure preserves directions \Rightarrow for $g \in \boldsymbol{c}$, pick $\left\{n_{\alpha}\right\}$ and promote to density:

$$
\boldsymbol{n}_{\alpha}^{a}:=\left.\left[g ;\left(n^{g}\right)_{\alpha}^{a}\right] \in \Gamma(T M[-1])\right|_{\Lambda}
$$

Conformal Submanifolds

Frame-valued density

Conformal

Conformal structure preserves directions \Rightarrow for $g \in \boldsymbol{c}$, pick $\left\{n_{\alpha}\right\}$ and promote to density:
$\boldsymbol{n}_{\alpha}^{a}:=\left.\left[g ;\left(n^{g}\right)_{\alpha}^{a}\right] \in \Gamma(T M[-1])\right|_{\Lambda}$
Observe: $\left.\boldsymbol{g}\left(\boldsymbol{n}_{\alpha}, \boldsymbol{n}_{\beta}\right)\right|_{\Lambda}=\delta_{\alpha \beta}$ and $\beta_{a \alpha \beta} \in \Gamma\left(T^{*} \Sigma[0] \otimes \mathrm{E}\right)$

Conformal Submanifolds

Frame-valued density

Conformal

Conformal structure preserves directions \Rightarrow for $g \in \boldsymbol{c}$, pick $\left\{n_{\alpha}\right\}$ and promote to density:
$\boldsymbol{n}_{\alpha}^{a}:=\left.\left[g ;\left(n^{g}\right)_{\alpha}^{a}\right] \in \Gamma(T M[-1])\right|_{\Lambda}$
Observe: $\left.\boldsymbol{g}\left(\boldsymbol{n}_{\alpha}, \boldsymbol{n}_{\beta}\right)\right|_{\Lambda}=\delta_{\alpha \beta}$ and $\beta_{a \alpha \beta} \in \Gamma\left(T^{*} \Sigma[0] \otimes \theta\right)$
$\Rightarrow \mathcal{R}$ is conformally invariant

Conformal Submanifolds

Frame-valued density

Background Riemannian

Conformal

Conformal structure preserves directions \Rightarrow for $g \in \boldsymbol{c}$, pick $\left\{n_{\alpha}\right\}$ and promote to density:
$\boldsymbol{n}_{\alpha}^{a}:=\left.\left[g ;\left(n^{g}\right)_{\alpha}^{a}\right] \in \Gamma(T M[-1])\right|_{\Lambda}$
Observe: $\left.\boldsymbol{g}\left(\boldsymbol{n}_{\alpha}, \boldsymbol{n}_{\beta}\right)\right|_{\Lambda}=\delta_{\alpha \beta}$ and $\beta_{a \alpha \beta} \in \Gamma\left(T^{*} \Sigma[0] \otimes \theta\right)$
$\Rightarrow \mathcal{R}$ is conformally invariant
\Rightarrow If there exists $g \in \boldsymbol{c}$ that picks out a special $\left\{n_{\alpha}\right\}$, that choice is conformally invariant.

Conformal Submanifolds

Frame-valued density

Background Riemannian

Conformal

Conformal structure preserves directions \Rightarrow for $g \in \boldsymbol{c}$, pick $\left\{n_{\alpha}\right\}$ and promote to density:
$\boldsymbol{n}_{\alpha}^{a}:=\left.\left[g ;\left(n^{g}\right)_{\alpha}^{a}\right] \in \Gamma(T M[-1])\right|_{\Lambda}$
Observe: $\left.\boldsymbol{g}\left(\boldsymbol{n}_{\alpha}, \boldsymbol{n}_{\beta}\right)\right|_{\Lambda}=\delta_{\alpha \beta}$ and $\beta_{a \alpha \beta} \in \Gamma\left(T^{*} \Sigma[0] \otimes \theta\right)$
$\Rightarrow \mathcal{R}$ is conformally invariant
\Rightarrow If there exists $g \in \boldsymbol{c}$ that picks out a special $\left\{n_{\alpha}\right\}$, that choice is conformally invariant.

Assume a frame is chosen going forward.

Conformal Submanifolds

Holography

Sam Blitz

Background
Riemannian
Conformal

Note: For $g \in \boldsymbol{c}$ and $\sigma_{\alpha}=\left[g ; s_{\alpha}\right] \in \Gamma(\mathcal{E} M[1])$,

$$
g\left(d s_{\alpha}, d s_{\beta}\right) \stackrel{\Lambda}{=} h_{A B}\left(\hat{D} \sigma_{\alpha}, \hat{D} \sigma_{\beta}\right)
$$

$$
\left(\hat{D}:=\frac{1}{d+2 w-2} D .\right)
$$

Conformal Submanifolds

Holography

Sam Blitz

Background Riemannian

Conformal

Note: For $g \in \boldsymbol{c}$ and $\sigma_{\alpha}=\left[g ; s_{\alpha}\right] \in \Gamma(\mathcal{E} M[1])$,

$$
g\left(d s_{\alpha}, d s_{\beta}\right) \stackrel{\Lambda}{=} h_{A B}\left(\hat{D} \sigma_{\alpha}, \hat{D} \sigma_{\beta}\right)
$$

$\left(\hat{D}:=\frac{1}{d+2 w-2} D.\right)$
Goal: Find σ_{α} s.t. $N_{A \alpha}:=\hat{D}_{A} \sigma_{\alpha} \xlongequal{\Lambda}\left(0, \boldsymbol{n}_{a \alpha}, *\right)$ and $\boldsymbol{G}_{\alpha \beta}:=h\left(N_{\alpha}, N_{\beta}\right)=\delta_{\alpha \beta}$.

Conformal Submanifolds

Holography

Sam Blitz

Background Riemannian

Conformal

Note: For $g \in \boldsymbol{c}$ and $\sigma_{\alpha}=\left[g ; s_{\alpha}\right] \in \Gamma(\mathcal{E} M[1])$,

$$
g\left(d s_{\alpha}, d s_{\beta}\right) \stackrel{\Lambda}{=} h_{A B}\left(\hat{D} \sigma_{\alpha}, \hat{D} \sigma_{\beta}\right)
$$

$\left(\hat{D}:=\frac{1}{d+2 w-2} D.\right)$
Goal: Find σ_{α} s.t. $N_{A \alpha}:=\hat{D}_{A} \sigma_{\alpha} \xlongequal{\Lambda}\left(0, \boldsymbol{n}_{a \alpha}, *\right)$ and $\boldsymbol{G}_{\alpha \beta}:=h\left(N_{\alpha}, N_{\beta}\right)=\delta_{\alpha \beta}$.
Order 0: Pick σ_{α} s.t. $N_{A \alpha} \xlongequal{\Lambda}\left(0, \boldsymbol{n}_{a \alpha}, *\right)$

Conformal Submanifolds

Holography

Sam Blitz

Background Riemannian

Conformal

Note: For $g \in \boldsymbol{c}$ and $\sigma_{\alpha}=\left[g ; s_{\alpha}\right] \in \Gamma(\mathcal{E} M[1])$,

$$
g\left(d s_{\alpha}, d s_{\beta}\right) \stackrel{\Lambda}{=} h_{A B}\left(\hat{D} \sigma_{\alpha}, \hat{D} \sigma_{\beta}\right)
$$

$\left(\hat{D}:=\frac{1}{d+2 w-2} D.\right)$
Goal: Find σ_{α} s.t. $N_{A \alpha}:=\hat{D}_{A} \sigma_{\alpha} \xlongequal{\Lambda}\left(0, \boldsymbol{n}_{a \alpha}, *\right)$ and $\boldsymbol{G}_{\alpha \beta}:=h\left(N_{\alpha}, N_{\beta}\right)=\delta_{\alpha \beta}$.
Order 0: Pick σ_{α} s.t. $N_{A \alpha} \xlongequal{\Lambda}\left(0, \boldsymbol{n}_{a \alpha}, *\right)$
$\Rightarrow \boldsymbol{G}_{\alpha \beta}=\delta_{\alpha \beta}+F_{\alpha \beta \gamma}^{(1)} \sigma_{\gamma}$. (orthonormality)

Conformal Submanifolds

Order 1

Conformal Submanifolds

Order 1

Sam Blitz

Background
Riemannian
Conformal

Order 1:

$$
\text { If } \tilde{\sigma}_{\alpha}=\sigma_{\alpha}+A_{\alpha \gamma_{1} \gamma_{2}}^{(1)} \sigma_{\gamma_{1}} \sigma_{\gamma_{2}}, \text { then }
$$

Conformal Submanifolds

Order 1

Sam Blitz

Background
Riemannian
Conformal

Order 1:

$$
\text { If } \tilde{\sigma}_{\alpha}=\sigma_{\alpha}+A_{\alpha \gamma_{1} \gamma_{2}}^{(1)} \sigma_{\gamma_{1}} \sigma_{\gamma_{2}} \text {, then }
$$

$$
\tilde{\boldsymbol{G}}_{\alpha \beta}=\delta_{\alpha \beta}+\left(F_{\alpha \beta \omega}^{(1)}+4 A_{(\alpha \beta) \omega}^{(1)}-\frac{4}{d} \delta_{\omega(\alpha} A_{\beta) \gamma \gamma}^{(1)}\right) \sigma_{\omega}+\mathcal{O}\left(\sigma^{2}\right) .
$$

Conformal Submanifolds

Order 1

Order 1:

If $\tilde{\sigma}_{\alpha}=\sigma_{\alpha}+A_{\alpha \gamma_{1} \gamma_{2}}^{(1)} \sigma_{\gamma_{1}} \sigma_{\gamma_{2}}$, then

$$
\tilde{\boldsymbol{G}}_{\alpha \beta}=\delta_{\alpha \beta}+\left(F_{\alpha \beta \omega}^{(1)}+4 A_{(\alpha \beta) \omega}^{(1)}-\frac{4}{d} \delta_{\omega(\alpha} A_{\beta) \gamma \gamma}^{(1)}\right) \sigma_{\omega}+\mathcal{O}\left(\sigma^{2}\right) .
$$

Trace of $A^{(1)}$ appears! Be careful....

Conformal Submanifolds

Order 1

Order 1:

If $\tilde{\sigma}_{\alpha}=\sigma_{\alpha}+A_{\alpha \gamma_{1} \gamma_{2}}^{(1)} \sigma_{\gamma_{1}} \sigma_{\gamma_{2}}$, then

$$
\tilde{\boldsymbol{G}}_{\alpha \beta}=\delta_{\alpha \beta}+\left(F_{\alpha \beta \omega}^{(1)}+4 A_{(\alpha \beta) \omega}^{(1)}-\frac{4}{d} \delta_{\omega(\alpha} A_{\beta) \gamma \gamma}^{(1)}\right) \sigma_{\omega}+\mathcal{O}\left(\sigma^{2}\right) .
$$

Trace of $A^{(1)}$ appears! Be careful....
Trace-free part is the same as Riemannian case;

Conformal Submanifolds

Order 1

Background
Riemannian
Conformal

Order 1:

If $\tilde{\sigma}_{\alpha}=\sigma_{\alpha}+A_{\alpha \gamma_{1} \gamma_{2}}^{(1)} \sigma_{\gamma_{1}} \sigma_{\gamma_{2}}$, then

$$
\tilde{\boldsymbol{G}}_{\alpha \beta}=\delta_{\alpha \beta}+\left(F_{\alpha \beta \omega}^{(1)}+4 A_{(\alpha \beta) \omega}^{(1)}-\frac{4}{d} \delta_{\omega(\alpha} A_{\beta) \gamma \gamma}^{(1)}\right) \sigma_{\omega}+\mathcal{O}\left(\sigma^{2}\right) .
$$

Trace of $A^{(1)}$ appears! Be careful....
Trace-free part is the same as Riemannian case; demand:

$$
\begin{aligned}
F_{\alpha \alpha \omega}^{(1)}+4 A_{\alpha \alpha \omega}^{(1)}-\frac{4}{d} A_{\omega \alpha \alpha}^{(1)} & =0 \\
F_{\omega \alpha \alpha}^{(1)}+2 A_{\alpha \alpha \omega}^{(1)}+\frac{2(d-k-1)}{d} A_{\omega \alpha \alpha}^{(1)} & =0 .
\end{aligned}
$$

Conformal Submanifolds

Order 1

Background Riemannian

Conformal

Order 1:

If $\tilde{\sigma}_{\alpha}=\sigma_{\alpha}+A_{\alpha \gamma_{1} \gamma_{2}}^{(1)} \sigma_{\gamma_{1}} \sigma_{\gamma_{2}}$, then

$$
\tilde{\boldsymbol{G}}_{\alpha \beta}=\delta_{\alpha \beta}+\left(F_{\alpha \beta \omega}^{(1)}+4 A_{(\alpha \beta) \omega}^{(1)}-\frac{4}{d} \delta_{\omega(\alpha} A_{\beta) \gamma \gamma}^{(1)}\right) \sigma_{\omega}+\mathcal{O}\left(\sigma^{2}\right) .
$$

Trace of $A^{(1)}$ appears! Be careful....
Trace-free part is the same as Riemannian case; demand:

$$
\begin{aligned}
F_{\alpha \alpha \omega}^{(1)}+4 A_{\alpha \alpha \omega}^{(1)}-\frac{4}{d} A_{\omega \alpha \alpha}^{(1)} & =0 \\
F_{\omega \alpha \alpha}^{(1)}+2 A_{\alpha \alpha \omega}^{(1)}+\frac{2(d-k-1)}{d} A_{\omega \alpha \alpha}^{(1)} & =0 .
\end{aligned}
$$

Has solutions for $k \neq d$-we're safe!

Conformal Submanifolds

Order 1

Background Riemannian

Conformal

Order 1:

If $\tilde{\sigma}_{\alpha}=\sigma_{\alpha}+A_{\alpha \gamma_{1} \gamma_{2}}^{(1)} \sigma_{\gamma_{1}} \sigma_{\gamma_{2}}$, then

$$
\tilde{\boldsymbol{G}}_{\alpha \beta}=\delta_{\alpha \beta}+\left(F_{\alpha \beta \omega}^{(1)}+4 A_{(\alpha \beta) \omega}^{(1)}-\frac{4}{d} \delta_{\omega(\alpha} A_{\beta) \gamma \gamma}^{(1)}\right) \sigma_{\omega}+\mathcal{O}\left(\sigma^{2}\right) .
$$

Trace of $A^{(1)}$ appears! Be careful....
Trace-free part is the same as Riemannian case; demand:

$$
\begin{aligned}
F_{\alpha \alpha \omega}^{(1)}+4 A_{\alpha \alpha \omega}^{(1)}-\frac{4}{d} A_{\omega \alpha \alpha}^{(1)} & =0 \\
F_{\omega \alpha \alpha}^{(1)}+2 A_{\alpha \alpha \omega}^{(1)}+\frac{2(d-k-1)}{d} A_{\omega \alpha \alpha}^{(1)} & =0 .
\end{aligned}
$$

Has solutions for $k \neq d$-we're safe!

$$
\Rightarrow \boldsymbol{G}_{\alpha \beta}=\delta_{\alpha \beta}+F_{\alpha \beta \gamma_{1} \gamma_{2}}^{(2)} \sigma_{\gamma_{1}} \sigma_{\gamma_{2}}
$$

Conformal Submanifolds

Interlude: An Extension Problem

Background

Conformal

Problem

Let $\bar{f} \in \Gamma(\mathcal{E} \Lambda[w])$ and let $\Lambda \hookrightarrow(M, \boldsymbol{c})$ have defining densities satisfying $\boldsymbol{G}_{\alpha \beta}=\delta_{\alpha \beta}+\mathcal{O}\left(\sigma^{2}\right)$. Find a formal power series for $f \in \Gamma(\mathcal{E} M[w])$ solving $N_{\alpha} \cdot \hat{D} f=0$ and $\left.f\right|_{\Lambda}=\bar{f}$.

Conformal Submanifolds

Interlude: An Extension Problem

Background

Problem

Let $\bar{f} \in \Gamma(\mathcal{E} \Lambda[w])$ and let $\Lambda \hookrightarrow(M, \boldsymbol{c})$ have defining densities satisfying $\boldsymbol{G}_{\alpha \beta}=\delta_{\alpha \beta}+\mathcal{O}\left(\sigma^{2}\right)$. Find a formal power series for $f \in \Gamma(\mathcal{E} M[w])$ solving $N_{\alpha} \cdot \hat{D} f=0$ and $\left.f\right|_{\Lambda}=\bar{f}$.

Result:
■ Can always solve $N_{\alpha} \cdot \hat{D} f=\mathcal{O}(\sigma)$.

Conformal Submanifolds

Interlude: An Extension Problem

Background Riemannian
Conformal

Problem

Let $\bar{f} \in \Gamma(\mathcal{E} \Lambda[w])$ and let $\Lambda \hookrightarrow(M, \boldsymbol{c})$ have defining densities satisfying $\boldsymbol{G}_{\alpha \beta}=\delta_{\alpha \beta}+\mathcal{O}\left(\sigma^{2}\right)$. Find a formal power series for $f \in \Gamma(\mathcal{E} M[w])$ solving $N_{\alpha} \cdot \hat{D} f=0$ and $\left.f\right|_{\Lambda}=\bar{f}$.

Result:
■ Can always solve $N_{\alpha} \cdot \hat{D} f=\mathcal{O}(\sigma)$.
■ If $w \neq 1-(d-k) / 2, \beta=0$, and $F_{\alpha\left[\beta \gamma_{1}\right] \gamma_{2}}^{(2)}=0$, can solve $N_{\alpha} \cdot \hat{D} f=\mathcal{O}\left(\sigma^{2}\right)$.

Conformal Submanifolds

Interlude: An Extension Problem

Problem

Let $\bar{f} \in \Gamma(\mathcal{E} \Lambda[w])$ and let $\Lambda \hookrightarrow(M, \boldsymbol{c})$ have defining densities satisfying $\boldsymbol{G}_{\alpha \beta}=\delta_{\alpha \beta}+\mathcal{O}\left(\sigma^{2}\right)$. Find a formal power series for $f \in \Gamma(\mathcal{E} M[w])$ solving $N_{\alpha} \cdot \hat{D} f=0$ and $\left.f\right|_{\Lambda}=\bar{f}$.

Result:
■ Can always solve $N_{\alpha} \cdot \hat{D} f=\mathcal{O}(\sigma)$.
■ If $w \neq 1-(d-k) / 2, \beta=0$, and $F_{\alpha\left[\beta \gamma_{1}\right] \gamma_{2}}^{(2)}=0$, can solve $N_{\alpha} \cdot \hat{D} f=\mathcal{O}\left(\sigma^{2}\right)$.

- Any more requires trivial embeddings in conformally-flat spaces.

Conformal Submanifolds

Interlude: An Extension Problem

Problem

Let $\bar{f} \in \Gamma(\mathcal{E} \Lambda[w])$ and let $\Lambda \hookrightarrow(M, \boldsymbol{c})$ have defining densities satisfying $\boldsymbol{G}_{\alpha \beta}=\delta_{\alpha \beta}+\mathcal{O}\left(\sigma^{2}\right)$. Find a formal power series for $f \in \Gamma(\mathcal{E} M[w])$ solving $N_{\alpha} \cdot \hat{D} f=0$ and $\left.f\right|_{\Lambda}=\bar{f}$.

Result:
■ Can always solve $N_{\alpha} \cdot \hat{D} f=\mathcal{O}(\sigma)$.
■ If $w \neq 1-(d-k) / 2, \beta=0$, and $F_{\alpha\left[\beta \gamma_{1}\right] \gamma_{2}}^{(2)}=0$, can solve $N_{\alpha} \cdot \hat{D} f=\mathcal{O}\left(\sigma^{2}\right)$.

- Any more requires trivial embeddings in conformally-flat spaces.
This spells the end....

Conformal Submanifolds

Order 2

Have $\boldsymbol{G}_{\alpha \beta}=\delta_{\alpha \beta}+F_{\alpha \beta \gamma_{1} \gamma_{2}}^{(2)} \sigma_{\gamma_{1}} \sigma_{\gamma_{2}}$

Conformal Submanifolds

Order 2

Sam Blitz

Background

Riemannian

Conformal

Have $\boldsymbol{G}_{\alpha \beta}=\delta_{\alpha \beta}+F_{\alpha \beta \gamma_{1} \gamma_{2}}^{(2)} \sigma_{\gamma_{1}} \sigma_{\gamma_{2}}$

$$
F^{(2)}=\square_{\circ} \oplus \square \square_{\circ} \oplus \square \square \square \circ \oplus 3 \square \square_{\circ} \oplus \boxminus \oplus 2
$$

Conformal Submanifolds

Order 2

Sam Blitz

Background

Riemannian

Conformal

Have $\boldsymbol{G}_{\alpha \beta}=\delta_{\alpha \beta}+F_{\alpha \beta \gamma_{1} \gamma_{2}}^{(2)} \sigma_{\gamma_{1}} \sigma_{\gamma_{2}}$

$$
F^{(2)}=\square_{\circ} \oplus \square \square_{\circ} \oplus \square \square \square \circ \oplus 3 \square \circ \oplus \boxminus \oplus 2
$$

If $\tilde{\sigma}_{\alpha}=\sigma_{\alpha}+A_{\alpha \gamma_{1} \gamma_{2} \gamma_{3}}^{(2)} \sigma_{\gamma_{1}} \sigma_{\gamma_{2}} \sigma_{\gamma_{3}}$, then

$$
A^{(2)}=\square \square_{\circ} \oplus \square \square \square \circ \oplus 2 \square \square_{\circ} \oplus \boxminus \oplus 1
$$

Conformal Submanifolds

Order 2

Sam Blitz

Background
Riemannian
Conformal

Have $\boldsymbol{G}_{\alpha \beta}=\delta_{\alpha \beta}+F_{\alpha \beta \gamma_{1} \gamma_{2}}^{(2)} \sigma_{\gamma_{1}} \sigma_{\gamma_{2}}$

$$
F^{(2)}=\square_{\circ} \oplus \square \square_{\circ} \oplus \square \square \square \circ \oplus 3 \square \circ \oplus \boxminus \oplus 2
$$

If $\tilde{\sigma}_{\alpha}=\sigma_{\alpha}+A_{\alpha \gamma_{1} \gamma_{2} \gamma_{3}}^{(2)} \sigma_{\gamma_{1}} \sigma_{\gamma_{2}} \sigma_{\gamma_{3}}$, then

$$
A^{(2)}=\square \square_{\circ} \oplus \square \square \square \circ \oplus 2 \square \square_{\circ} \oplus \boxminus \oplus 1
$$

For $k \neq d-2$, can find $F^{(2)}=\square 。 \oplus \square_{\circ} \oplus 1$.

Conformal Submanifolds

Order 2

Sam Blitz

Background

Riemannian

Conformal

Have $\boldsymbol{G}_{\alpha \beta}=\delta_{\alpha \beta}+F_{\alpha \beta \gamma_{1} \gamma_{2}}^{(2)} \sigma_{\gamma_{1}} \sigma_{\gamma_{2}}$

$$
F^{(2)}=\square_{\circ} \oplus \square \square_{\circ} \oplus \square \square \square \circ \oplus 3 \square \circ \oplus \boxminus \oplus 2
$$

If $\tilde{\sigma}_{\alpha}=\sigma_{\alpha}+A_{\alpha \gamma_{1} \gamma_{2} \gamma_{3}}^{(2)} \sigma_{\gamma_{1}} \sigma_{\gamma_{2}} \sigma_{\gamma_{3}}$, then

$$
A^{(2)}=\square \square_{\circ} \oplus \square \square \square \circ \oplus 2 \square \square_{\circ} \oplus \boxminus \oplus 1
$$

For $k \neq d-2$, can find $F^{(2)}=\square 。 \oplus \square \square \oplus 1$. Obstructions take the form $a \Pi^{2}+b \beta^{2}+c W$.

Conformal Submanifolds

Order 2

Sam Blitz

Background Riemannian
Conformal

Have $\boldsymbol{G}_{\alpha \beta}=\delta_{\alpha \beta}+F_{\alpha \beta \gamma_{1} \gamma_{2}}^{(2)} \sigma_{\gamma_{1}} \sigma_{\gamma_{2}}$

$$
F^{(2)}=\square_{\circ} \oplus \square \square_{\circ} \oplus \square \square \square \circ \oplus 3 \square \circ \oplus \boxminus \oplus 2
$$

If $\tilde{\sigma}_{\alpha}=\sigma_{\alpha}+A_{\alpha \gamma_{1} \gamma_{2} \gamma_{3}}^{(2)} \sigma_{\gamma_{1}} \sigma_{\gamma_{2}} \sigma_{\gamma_{3}}$ ，then

$$
A^{(2)}=\square \square_{\circ} \oplus \square \square \square \circ \oplus 2 \square \square_{\circ} \oplus \boxminus \oplus 1
$$

For $k \neq d-2$ ，can find $F^{(2)}=\square 。 \oplus \square \square \oplus 1$ ． Obstructions take the form $a \Pi^{2}+b \beta^{2}+c W$ ．

For $k=d-2$ ，can find $F^{(2)}=\square 。 \oplus \square$ 。 $\square \boxminus \oplus 1$ ．

Conformal Submanifolds

Order 2

Sam Blitz

Background Riemannian
Conformal

Have $\boldsymbol{G}_{\alpha \beta}=\delta_{\alpha \beta}+F_{\alpha \beta \gamma_{1} \gamma_{2}}^{(2)} \sigma_{\gamma_{1}} \sigma_{\gamma_{2}}$

$$
F^{(2)}=\square_{\circ} \oplus \square \square_{\circ} \oplus \square \square \square \circ \oplus 3 \square \circ \oplus \boxminus \oplus 2
$$

If $\tilde{\sigma}_{\alpha}=\sigma_{\alpha}+A_{\alpha \gamma_{1} \gamma_{2} \gamma_{3}}^{(2)} \sigma_{\gamma_{1}} \sigma_{\gamma_{2}} \sigma_{\gamma_{3}}$ ，then

$$
A^{(2)}=\square \square_{\circ} \oplus \square \square \square \circ \oplus 2 \square \square_{\circ} \oplus \boxminus \oplus 1
$$

For $k \neq d-2$ ，can find $F^{(2)}=\square 。 \oplus \square \square_{\circ} \oplus 1$ ．
Obstructions take the form $a \Pi^{2}+b \beta^{2}+c W$ ．
For $k=d-2$ ，can find $F^{(2)}=\square 。 \oplus \square$ 。 $\oplus \boxminus \oplus 1$ ． Unique invariant：$F_{\gamma[\alpha \beta] \gamma}^{(2)}=\bar{\nabla}^{a} \beta_{a \alpha \beta}$ ．

Conformal Submanifolds

Order 3 and the Willmore Invariant

Extension problem: require $\beta=0\left(\Rightarrow F_{\alpha\left[\beta \gamma_{1}\right] \gamma_{2}}^{(2)}=0\right)$

Conformal Submanifolds

Order 3 and the Willmore Invariant

Sam Blitz

Background Riemannian

Conformal

Extension problem: require $\beta=0\left(\Rightarrow F_{\alpha\left[\beta \gamma_{1}\right] \gamma_{2}}^{(2)}=0\right)$
If $d-k=4$: Halt (with one exception).

Conformal Submanifolds

Order 3 and the Willmore Invariant

Conformal

Extension problem: require $\beta=0\left(\Rightarrow F_{\alpha\left[\beta \gamma_{1}\right] \gamma_{2}}^{(2)}=0\right)$
If $d-k=4$: Halt (with one exception).
Else: extend corrections $A^{(1)}$ and $A^{(2)}$ appropriately to fix $F^{(2)}$.

Conformal Submanifolds

Order 3 and the Willmore Invariant

Extension problem: require $\beta=0\left(\Rightarrow F_{\alpha\left[\beta \gamma_{1}\right] \gamma_{2}}^{(2)}=0\right)$
If $d-k=4$: Halt (with one exception).
Else: extend corrections $A^{(1)}$ and $A^{(2)}$ appropriately to fix $F^{(2)}$.

For $k \neq d-2$, cannot remove all traces from $F^{(3)}$:

Conformal Submanifolds

Order 3 and the Willmore Invariant

Extension problem: require $\beta=0\left(\Rightarrow F_{\alpha\left[\beta \gamma_{1}\right] \gamma_{2}}^{(2)}=0\right)$
If $d-k=4$: Halt (with one exception).
Else: extend corrections $A^{(1)}$ and $A^{(2)}$ appropriately to fix $F^{(2)}$.

For $k \neq d-2$, cannot remove all traces from $F^{(3)}$: can only remove $F_{\gamma \gamma \rho \rho \alpha}^{(3)}$ and $F_{\alpha \gamma \gamma \rho \rho}^{(3)}$.

Conformal Submanifolds

Order 3 and the Willmore Invariant

Extension problem: require $\beta=0\left(\Rightarrow F_{\alpha\left[\beta \gamma_{1}\right] \gamma_{2}}^{(2)}=0\right)$
If $d-k=4$: Halt (with one exception).
Else: extend corrections $A^{(1)}$ and $A^{(2)}$ appropriately to fix $F^{(2)}$.

For $k \neq d-2$, cannot remove all traces from $F^{(3)}$: can only remove $F_{\gamma \gamma \rho \rho \alpha}^{(3)}$ and $F_{\alpha \gamma \gamma \rho \rho}^{(3)}$.
For $k=d-2$, cannot remove $F_{\alpha \gamma \gamma \rho \rho}^{(3)} \leftarrow$ True obstruction:

Conformal Submanifolds

Order 3 and the Willmore Invariant

Extension problem: require $\beta=0\left(\Rightarrow F_{\alpha\left[\beta \gamma_{1}\right] \gamma_{2}}^{(2)}=0\right)$
If $d-k=4$: Halt (with one exception).
Else: extend corrections $A^{(1)}$ and $A^{(2)}$ appropriately to fix $F^{(2)}$.

For $k \neq d-2$, cannot remove all traces from $F^{(3)}$: can only remove $F_{\gamma \gamma \rho \rho \alpha}^{(3)}$ and $F_{\alpha \gamma \gamma \rho \rho}^{(3)}$.
For $k=d-2$, cannot remove $F_{\alpha \gamma \gamma \rho \rho}^{(3)} \leftarrow$ True obstruction:

$$
\begin{gathered}
F_{\alpha \gamma \gamma \rho \rho}^{(3)} \stackrel{\Lambda}{=}-\frac{d-2}{6} L_{a b} \check{\Pi}_{\alpha}^{a b}-\frac{1}{3} \stackrel{\Pi}{\alpha}_{\alpha}^{b c} \bar{g}^{a d} W_{a b c d}-\frac{d-2}{6} \mathrm{IV}_{\alpha} \\
{\left[\mathrm{IV}_{\alpha}=C_{\alpha \beta \beta}+H_{\rho} W_{\alpha \beta \beta \rho}+\frac{1}{d-k-3} \bar{\nabla}^{c} W_{c \beta \beta \alpha}^{\top} \in \Gamma(\mathcal{E} \Lambda[-3])\right]}
\end{gathered}
$$

Conformal Submanifolds

Order 3 and the Willmore Invariant

Extension problem: require $\beta=0\left(\Rightarrow F_{\alpha\left[\beta \gamma_{1}\right] \gamma_{2}}^{(2)}=0\right)$
If $d-k=4$: Halt (with one exception).
Else: extend corrections $A^{(1)}$ and $A^{(2)}$ appropriately to fix $F^{(2)}$.

For $k \neq d-2$, cannot remove all traces from $F^{(3)}$: can only remove $F_{\gamma \gamma \rho \rho \alpha}^{(3)}$ and $F_{\alpha \gamma \gamma \rho \rho}^{(3)}$.
For $k=d-2$, cannot remove $F_{\alpha \gamma \gamma \rho \rho}^{(3)} \leftarrow$ True obstruction:

$$
\begin{gathered}
F_{\alpha \gamma \gamma \rho \rho}^{(3)} \stackrel{\Lambda}{=}-\frac{d-2}{6} L_{a b} \check{\Pi}_{\alpha}^{a b}-\frac{1}{3} \check{\Pi}_{\alpha}^{b c} \bar{g}^{a d} W_{a b c d}-\frac{d-2}{6} \mathrm{IV} \\
{\left[\mathrm{IV}_{\alpha}=C_{\alpha \beta \beta}+H_{\rho} W_{\alpha \beta \beta \rho}+\frac{1}{d-k-3} \bar{\nabla}^{c} W_{c \beta \beta \alpha}^{\top} \in \Gamma(\mathcal{E} \Lambda[-3])\right]}
\end{gathered}
$$

This differs from the Willmore invariant by a factor of $1 / 2$.

Thank you

Sam Blitz

Background
Riemannian
Conformal
Thank you!

