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Courant algebroids

The generalised tangent bundle, TM ⊕ T ∗M, can be equipped
with a pairing and a bracket, H ∈ Ω3

cl(M):

⟨X + ξ, Y + η⟩ = ιX η + ιY ξ,

[X + ξ, Y + η]H = [X , Y ] + LX η − ιY dξ + ιY ιX H.

In general, an exact Courant algebroid (CA) is a vector bundle E
over M with a pairing and a bracket of sections fitting the sequence

0 → T ∗M → E → TM → 0. (E ∼= TM ⊕ T ∗M)

CAs are classified by their Ševera class [H] ∈ H3
cl(M), with H given

by a splitting s : TM → E

H(X , Y , Z ) = ⟨[s(X ), s(Y )]E , s(Z )⟩E .
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Sigma-models in generalised geometry

Consider maps f from a worldsheet surface Σ to a target space M.

Sigma-Model Geometry
Wess-Zumino term SH [f ] =

∫
V f ∗H Courant algebroid EH over M

δSH = 0 X + ξ such that ιX H = dξ

Generalised metric V+ ⊂ EH
Polyakov term Sg [f ] =

∫
Σ ∥df ∥2

gdµg equiv. τ ∈ End(EH), τ2 = 1
equiv. g ∈ Riem(M)

δSg = 0 LX g = 0

The data of the full action S = SH + Sg is encoded in a CA
equipped with a positive definite subbundle, (E , V+).
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Courant algebroid relations

Isomorphism Φ: E1 → E2 of CAs covering a diffeomorphism
φ : M1 → M2 preserve all CA structure, hence the Sigma-models
over M1 and M2 have the same equations of motion.
T-duality is an equivalence of Sigma-models on different target
manifolds M1 and M2, though these are not necessarily
diffeomorphic. A CA isomorphisms Φ: E1 → E2 must cover a
diffeomorphism, so we seek to generalise the notion of
isomorphism.
Consider the graph gr(Φ) ⊂ E1 × E2. One sees that

[Φ·, Φ·]2 = Φ([·, ·]1) ⇐⇒ gr(Φ) is involutive in E1 × E2

⟨Φ·, Φ·⟩2 = ⟨·, ·⟩1 ⇐⇒ gr(Φ) is isotropic in E1 × E2
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Isometry and Composition

A CA relation R : E1 99K E2 is an isotropic, involutive subbundle
of E1 × E2, supported on a submanifold C ⊂ M1 × M2.
If R : (E1, τ1) 99K (E2, τ2), then R is a generalised isometry if

(τ1 × τ2)(R) = R.

Contingent on some smoothness conditions [Vysoký, 1], one can
compose two relations R : E1 99K E2, R̃ : E2 → E3

R̃ ◦ R = {(e1, e3) : (e1, e2) ∈ R and (e2, e3) ∈ R̃} ⊂ E1 × E 3,
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T-duality
T-dual spaces M1, M2 may be fibre bundles over a common base B

M1 M2

/F2/F1

B

M

/F2 /F1
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The T-duality relation I

Want to form a CA relation R : E1 99K E2 between CAs Ei over
Mi . Need to know how to form CAs on a quotient manifold:
M is foliated by F2. If E is an exact CA over M, then E/F2 will
not be an exact CA over M1 = M/F2.
Take K2 = TF2 ⊂ E , then

E = K⊥
2

K2

/
F2

is an exact CA over M1 [2,3].
Can form the CA relation Q(K2), supported on gr(q2) ⊂ M × M1,

Q(K2) = {(e, ♮2(e)) : e ∈ K⊥
2 } ⊂ E × E1

where ♮2 : K⊥
2 → E1 is the quotient map [1].
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The T-duality relation II
The T-duality relation R : E → E ′ is then the composition of CA
relations:

E E

E1 E2

Φ = φ∗ ◦ eF

Q(K2)T Q(K1)

R

Theorem (DF, Marotta, Szabo [4])
Let g1 be a Riemannian metric on M1. If LX g = LX F = 0,
∀X ∈ F2, then TFAE

1 K⊥
1 ∩ Φ(K2) ⊆ K1 .

2 There exists a unique Riemannian metric g2 on M2 such that
R is a generalised isometry.
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Application: T-dualities for Torus bundles

Cavalcanti-Gualitieri [5] formulate the correspondence space
picture for T-dual torus bundles over a base B:
Endow Mi with H-flux Hi . Take M = M1 ×B ×M2 and
q1 : M → M2 etc. Then M1 is T-dual to M2 if

q∗
2H1 − q∗

1H2 = dF ,

with F : t1 ⊗ t2 → R invariant and non-degenerate.
The condition LX F = 0 gives requisite invariance, and item (1)
gives non-degeneracy.
The resulting Riemannian metrics g1, g2 satisfy the Buscher rules.
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Application: Doubled Geometry

Instead of M being the fibred product space, we can consider it
being the simultaneous doubled space of M1 and M2.
From a generalised metric (g1, b1) on E1, one can form a
Riemannian metric G1 on M.
Let X1, ..., XN be coordinate vector fields on M, and X1, ..., Xn
generate the foliation TF2 (with n = N/2).
Now pick k < n and a diffeomorphism φ, and define a foliation by
TF1 generated by the following n vector fields:

φ∗(Xi) for i = k + 1, ..., n, φ∗(Xp) for p = n + 1, ..., n + k.

Upon forming the T-duality relation R : E1 → E2, one has the
following results for the metrics:

φ∗G2 = G1.
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Outlook

1 Fit Poisson-Lie T-duality into this framework.
2 Add more structure: divergences (or CA connections),

allowing to incorporate the dilaton, generalised Ricci tensors
and Ricci flow; generalised complex structures, allowing
incorporation of branes.
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End

Thanks you for listening! Questions?
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