Courant Algebroid Relations and T-duality

Tom De Fraja

Heriot-Watt University
Supervisor: Richard Szabo

Outline

(1) Sigma-models and Courant algebroids
(2) T-duality and CA Relations
(3) Applications

4 Outlook

Courant algebroids

The generalised tangent bundle, $T M \oplus T^{*} M$, can be equipped with a pairing and a bracket, $H \in \Omega_{\mathrm{cl}}^{3}(M)$:

$$
\begin{aligned}
\langle X+\xi, Y+\eta\rangle & =\iota_{X} \eta+\iota_{Y} \xi \\
{[X+\xi, Y+\eta]_{H} } & =[X, Y]+\mathcal{L}_{X} \eta-\iota_{Y} d \xi+\iota_{Y} \iota_{X} H .
\end{aligned}
$$

In general, an exact Courant algebroid (CA) is a vector bundle E over M with a pairing and a bracket of sections fitting the sequence
\square
CAs are classified by their Ševera class $[H] \in H_{c l}^{3}(M)$, with H given by a splitting $s: T M \rightarrow E$

$$
H(X, Y, Z)=\left\langle[s(X), s(Y)]_{E}, s(Z)\right\rangle_{E} .
$$

Courant algebroids

The generalised tangent bundle, $T M \oplus T^{*} M$, can be equipped with a pairing and a bracket, $H \in \Omega_{\mathrm{cl}}^{3}(M)$:

$$
\begin{aligned}
\langle X+\xi, Y+\eta\rangle & =\iota_{X} \eta+\iota_{Y} \xi \\
{[X+\xi, Y+\eta]_{H} } & =[X, Y]+\mathcal{L}_{X} \eta-\iota_{Y} d \xi+\iota_{Y} \iota_{X} H .
\end{aligned}
$$

In general, an exact Courant algebroid (CA) is a vector bundle E over M with a pairing and a bracket of sections fitting the sequence

$$
0 \rightarrow T^{*} M \rightarrow E \rightarrow T M \rightarrow 0 . \quad\left(E \cong T M \oplus T^{*} M\right)
$$

CAs are classified by their Ševera class $[H] \in H_{c l}^{3}(M)$, with H given by a splitting $s: T M \rightarrow E$

$$
H(X, Y, Z)=\left\langle[s(X), s(Y)]_{E}, s(Z)\right\rangle_{E}
$$

Sigma-models in generalised geometry

Consider maps f from a worldsheet surface Σ to a target space M.

Sigma-Model
Wess-Zumino term $S_{H}[f]=\int_{V} f^{*} H \quad$ Courant algebroid E_{H} over M
Geometry

equiv. $g \in \operatorname{Riem}(M)$

The data of the full action $S=S_{H}+S_{g}$ is encoded in a CA equipped with a positive definite subbundle, $\left(E, V_{+}\right)$

Sigma-models in generalised geometry

Consider maps f from a worldsheet surface Σ to a target space M.

Sigma-Model
Wess-Zumino term $S_{H}[f]=\int_{V} f^{*} H \quad$ Courant algebroid E_{H} over M

$$
\begin{array}{l|l}
\hline \delta S_{H}=0 & X+\xi \text { such that } \iota_{X} H=d \xi
\end{array}
$$

equiv. $g \in \operatorname{Riem}(M)$

The data of the full action $S=S_{H}+S_{g}$ is encoded in a CA equipped with a positive definite subbundle, $\left(E, V_{+}\right)$

Sigma-models in generalised geometry

Consider maps f from a worldsheet surface Σ to a target space M.

Sigma-Model	Geometry		
Wess-Zumino term $S_{H}[f]=\int_{V} f^{*} H$	Courant algebroid E_{H} over M		
$\delta S_{H}=0$	$X+\xi$ such that $\iota_{X} H=d \xi$		
Polyakov term $S_{g}[f]=\int_{\Sigma}\\|d f\\|_{g}^{2} d \mu_{g}$	Generalised metric $V_{+} \subset E_{H}$ equiv. $\tau \in \operatorname{End}\left(E_{H}\right), \tau^{2}=1$ equiv. $g \in \operatorname{Riem}(M)$		

Sigma-models in generalised geometry

Consider maps f from a worldsheet surface Σ to a target space M.

Sigma-Model	Geometry		
Wess-Zumino term $S_{H}[f]=\int_{V} f^{*} H$	Courant algebroid E_{H} over M		
$\delta S_{H}=0$	$X+\xi$ such that $\iota_{X} H=d \xi$		
Polyakov term $S_{g}[f]=\int_{\Sigma}\\|d f\\|_{g}^{2} d \mu_{g}$	Generalised metric $V_{+} \subset E_{H}$ equiv. $\tau \in \operatorname{End}\left(E_{H}\right), \tau^{2}=1$ equiv. $g \in \operatorname{Riem}(M)$		
$\delta S_{g}=0$	$\mathcal{L}_{X} g=0$		

The data of the full action $S=S_{H}+S_{g}$ is encoded in a CA equipped with a positive definite subbundle, $\left(E, V_{+}\right)$.

Courant algebroid relations

Isomorphism $\Phi: E_{1} \rightarrow E_{2}$ of CAs covering a diffeomorphism $\varphi: M_{1} \rightarrow M_{2}$ preserve all CA structure, hence the Sigma-models over M_{1} and M_{2} have the same equations of motion.
T-duality is an equivalence of Sigma-models on different target manifolds M_{1} and M_{2}, though these are not necessarily diffeomorphic. A CA isomorphisms $\Phi: E_{1} \rightarrow E_{2}$ must cover a diffeomorphism, so we seek to generalise the notion of isomorphism
Consider the graph $\operatorname{gr}(\Phi) \subset E_{1} \times E_{2}$. One sees that

Courant algebroid relations

Isomorphism $\Phi: E_{1} \rightarrow E_{2}$ of CAs covering a diffeomorphism $\varphi: M_{1} \rightarrow M_{2}$ preserve all CA structure, hence the Sigma-models over M_{1} and M_{2} have the same equations of motion.
T-duality is an equivalence of Sigma-models on different target manifolds M_{1} and M_{2}, though these are not necessarily diffeomorphic. A CA isomorphisms $\Phi: E_{1} \rightarrow E_{2}$ must cover a diffeomorphism, so we seek to generalise the notion of isomorphism.
Consider the graph $\operatorname{gr}(\Phi) \subset E_{1} \times E_{2}$. One sees that

Courant algebroid relations

Isomorphism $\Phi: E_{1} \rightarrow E_{2}$ of CAs covering a diffeomorphism $\varphi: M_{1} \rightarrow M_{2}$ preserve all CA structure, hence the Sigma-models over M_{1} and M_{2} have the same equations of motion.
T-duality is an equivalence of Sigma-models on different target manifolds M_{1} and M_{2}, though these are not necessarily diffeomorphic. A CA isomorphisms $\Phi: E_{1} \rightarrow E_{2}$ must cover a diffeomorphism, so we seek to generalise the notion of isomorphism.
Consider the graph $\operatorname{gr}(\Phi) \subset E_{1} \times E_{2}$. One sees that

$$
\begin{aligned}
{[\Phi \cdot, \Phi \cdot]_{2}=\Phi\left([\cdot, \cdot]_{1}\right) } & \Longleftrightarrow \operatorname{gr}(\Phi) \text { is involutive in } E_{1} \times E_{2} \\
\langle\Phi \cdot, \Phi \cdot\rangle_{2}=\langle\cdot, \cdot\rangle_{1} & \Longleftrightarrow \operatorname{gr}(\Phi) \text { is isotropic in } E_{1} \times E_{2}
\end{aligned}
$$

Isometry and Composition

A CA relation $R: E_{1} \rightarrow E_{2}$ is an isotropic, involutive subbundle of $E_{1} \times E_{2}$, supported on a submanifold $C \subset M_{1} \times M_{2}$.
If $R:\left(E_{1}, \tau_{1}\right) \rightarrow\left(E_{2}, \tau_{2}\right)$, then R is a generalised isometry if

$$
\left(\tau_{1} \times \tau_{2}\right)(R)=R .
$$

Contingent on some smoothness conditions [Vysoký, 1], one can compose two relations $R: E_{1} \rightarrow E_{2}, \tilde{R}: E_{2} \rightarrow E_{3}$

$$
\tilde{R} \circ R=\left\{\left(e_{1}, e_{3}\right):\left(e_{1}, e_{2}\right) \in R \text { and }\left(e_{2}, e_{3}\right) \in \tilde{R}\right\} \subset E_{1} \times \bar{E}_{3}
$$

Isometry and Composition

A CA relation $R: E_{1} \rightarrow E_{2}$ is an isotropic, involutive subbundle of $E_{1} \times E_{2}$, supported on a submanifold $C \subset M_{1} \times M_{2}$.
If $R:\left(E_{1}, \tau_{1}\right) \rightarrow\left(E_{2}, \tau_{2}\right)$, then R is a generalised isometry if

$$
\left(\tau_{1} \times \tau_{2}\right)(R)=R .
$$

Contingent on some smoothness conditions [Vysoký, 1], one can compose two relations $R: E_{1} \rightarrow E_{2}, \tilde{R}: E_{2} \rightarrow E_{3}$

Isometry and Composition

A CA relation $R: E_{1} \rightarrow E_{2}$ is an isotropic, involutive subbundle of $E_{1} \times E_{2}$, supported on a submanifold $C \subset M_{1} \times M_{2}$.
If $R:\left(E_{1}, \tau_{1}\right) \rightarrow\left(E_{2}, \tau_{2}\right)$, then R is a generalised isometry if

$$
\left(\tau_{1} \times \tau_{2}\right)(R)=R .
$$

Contingent on some smoothness conditions [Vysoký, 1], one can compose two relations $R: E_{1} \rightarrow E_{2}, \tilde{R}: E_{2} \rightarrow E_{3}$

$$
\tilde{R} \circ R=\left\{\left(e_{1}, e_{3}\right):\left(e_{1}, e_{2}\right) \in R \text { and }\left(e_{2}, e_{3}\right) \in \tilde{R}\right\} \subset E_{1} \times \bar{E}_{3},
$$

T-duality

T-dual spaces M_{1}, M_{2} may be fibre bundles over a common base B

T-duality

T-dual spaces M_{1}, M_{2} may be fibre bundles over a common base B

T-duality

T-dual spaces M_{1}, M_{2} may be fibre bundles over a common base B

The T-duality relation I

Want to form a CA relation $R: E_{1} \rightarrow E_{2}$ between CAs E_{i} over M_{i}. Need to know how to form CAs on a quotient manifold:
\mathcal{M} is foliated by \mathcal{F}_{2}. If \mathcal{E} is an exact CA over \mathcal{M}, then $\mathcal{E} / \mathcal{F}_{2}$ will

is an exact CA over $M_{1}[2,3]$
Can form the CA relation $Q\left(K_{2}\right)$, supported on $\operatorname{gr}\left(q_{2}\right) \subset \mathcal{M} \times M_{1}$

where $\bigsqcup_{2}: K_{2}^{\perp} \rightarrow E_{1}$ is the quotient map [1]

The T-duality relation I

Want to form a CA relation $R: E_{1} \rightarrow E_{2}$ between CAs E_{i} over M_{i}. Need to know how to form CAs on a quotient manifold: \mathcal{M} is foliated by \mathcal{F}_{2}. If \mathcal{E} is an exact CA over \mathcal{M}, then $\mathcal{E} / \mathcal{F}_{2}$ will not be an exact CA over $M_{1}=\mathcal{M} / \mathcal{F}_{2}$.

is an exact CA over $M_{1}[2,3]$
Can form the CA relation $Q\left(K_{2}\right)$, supported on $\operatorname{gr}\left(q_{2}\right) \subset \mathcal{M} \times M_{1}$

where $G_{2}: K_{2}^{\perp} \rightarrow E_{1}$ is the quotient map [1]

The T-duality relation I

Want to form a CA relation $R: E_{1} \rightarrow E_{2}$ between CAs E_{i} over M_{i}. Need to know how to form CAs on a quotient manifold: \mathcal{M} is foliated by \mathcal{F}_{2}. If \mathcal{E} is an exact CA over \mathcal{M}, then $\mathcal{E} / \mathcal{F}_{2}$ will not be an exact CA over $M_{1}=\mathcal{M} / \mathcal{F}_{2}$.
Take $K_{2}=T \mathcal{F}_{2} \subset \mathcal{E}$, then

$$
E=\frac{K_{2}^{\perp}}{K_{2}} / \mathcal{F}_{2}
$$

is an exact CA over $M_{1}[2,3]$.
Can form the CA relation $Q\left(K_{2}\right)$, supported on $\operatorname{gr}\left(q_{2}\right) \subset \mathcal{M} \times M_{1}$

$$
Q\left(K_{2}\right)=\left\{\left(e, দ_{2}(e)\right): e \in K_{2}^{\perp}\right\} \subset \mathcal{E} \times E_{1}
$$

where $\bigsqcup_{2}: K_{2}^{\perp} \rightarrow E_{1}$ is the quotient map [1]

The T-duality relation I

Want to form a CA relation $R: E_{1} \rightarrow E_{2}$ between CAs E_{i} over M_{i}. Need to know how to form CAs on a quotient manifold: \mathcal{M} is foliated by \mathcal{F}_{2}. If \mathcal{E} is an exact CA over \mathcal{M}, then $\mathcal{E} / \mathcal{F}_{2}$ will not be an exact CA over $M_{1}=\mathcal{M} / \mathcal{F}_{2}$.
Take $K_{2}=T \mathcal{F}_{2} \subset \mathcal{E}$, then

$$
E=\frac{K_{2}^{\perp}}{K_{2}} / \mathcal{F}_{2}
$$

is an exact CA over $M_{1}[2,3]$.
Can form the CA relation $Q\left(K_{2}\right)$, supported on $\operatorname{gr}\left(q_{2}\right) \subset \mathcal{M} \times M_{1}$,

$$
Q\left(K_{2}\right)=\left\{\left(e, দ_{2}(e)\right): e \in K_{2}^{\perp}\right\} \subset \mathcal{E} \times E_{1}
$$

where $\natural_{2}: K_{2}^{\perp} \rightarrow E_{1}$ is the quotient map [1].

The T-duality relation II

The T-duality relation $R: E \rightarrow E^{\prime}$ is then the composition of CA relations:

The T-duality relation II

The T-duality relation $R: E \rightarrow E^{\prime}$ is then the composition of CA relations:

The T-duality relation II

The T-duality relation $R: E \rightarrow E^{\prime}$ is then the composition of CA relations:

Theorem (DF, Marotta, Szabo [4])

Let g_{1} be a Riemannian metric on M_{1}. If $\mathcal{L}_{X} g=\mathcal{L}_{X} F=0$, $\forall X \in \mathcal{F}_{2}$, then TFAE
(1) $K_{1}^{\perp} \cap \Phi\left(K_{2}\right) \subseteq K_{1}$.
(2) There exists a unique Riemannian metric g_{2} on M_{2} such that R is a generalised isometry.

Application: T-dualities for Torus bundles

Cavalcanti-Gualitieri [5] formulate the correspondence space picture for T-dual torus bundles over a base B :

Application: T-dualities for Torus bundles

Cavalcanti-Gualitieri [5] formulate the correspondence space picture for T-dual torus bundles over a base B :
Endow M_{i} with H-flux H_{i}. Take $\mathcal{M}=M_{1} \times_{B} \times M_{2}$ and $q_{1}: \mathcal{M} \rightarrow M_{2}$ etc. Then M_{1} is T -dual to M_{2} if

$$
q_{2}^{*} H_{1}-q_{1}^{*} H_{2}=d F,
$$

with $F: \mathfrak{t}_{1} \otimes \mathfrak{t}_{2} \rightarrow \mathbb{R}$ invariant and non-degenerate.
gives non-degeneracy.
The resulting Riemannian metrics g_{1}, g_{2} satisfy the Buscher rules

Application: T-dualities for Torus bundles

Cavalcanti-Gualitieri [5] formulate the correspondence space picture for T-dual torus bundles over a base B :
Endow M_{i} with H-flux H_{i}. Take $\mathcal{M}=M_{1} \times_{B} \times M_{2}$ and $q_{1}: \mathcal{M} \rightarrow M_{2}$ etc. Then M_{1} is T-dual to M_{2} if

$$
q_{2}^{*} H_{1}-q_{1}^{*} H_{2}=d F,
$$

with $F: \mathfrak{t}_{1} \otimes \mathfrak{t}_{2} \rightarrow \mathbb{R}$ invariant and non-degenerate.
The condition $\mathcal{L}_{X} F=0$ gives requisite invariance, and item (1) gives non-degeneracy.
The resulting Riemannian metrics g_{1}, g_{2} satisfy the Buscher rules.

Application: Doubled Geometry

Instead of \mathcal{M} being the fibred product space, we can consider it being the simultaneous doubled space of M_{1} and M_{2}.
From a generalised metric $\left(g_{1}, b_{1}\right)$ on E_{1}, one can form a Riemannian metric G_{1} on \mathcal{M}.
Let X_{1}, \ldots, X_{N} be coordinate vector fields on M, and X_{1}, \ldots, X_{n} generate the foliation $T \mathcal{F}_{2}$ (with $n=N / 2$) Now pick $k<n$ and a diffeomorphism φ, and define a foliation by $T \mathcal{F}_{1}$ generated by the following n vector fields:

Upon forming the T-duality relation $R: E_{1} \rightarrow E_{2}$, one has the following results for the metrics:

$$
\varphi^{*} G_{2}=G_{1}
$$

Application: Doubled Geometry

Instead of \mathcal{M} being the fibred product space, we can consider it being the simultaneous doubled space of M_{1} and M_{2}. From a generalised metric $\left(g_{1}, b_{1}\right)$ on E_{1}, one can form a Riemannian metric G_{1} on \mathcal{M}.
Let X_{1}, \ldots, X_{N} be coordinate vector fields on \mathcal{M}, and X_{1}, \ldots, X_{n} generate the foliation $T \mathcal{F}_{2}$ (with $n=N / 2$) Now pick $k<n$ and a diffeomorphism φ, and define a foliation by $T \mathcal{F}_{1}$ generated by the following n vector fields:

Upon forming the T-duality relation $R: E_{1} \rightarrow E_{2}$, one has the following results for the metrics:

Application: Doubled Geometry

Instead of \mathcal{M} being the fibred product space, we can consider it being the simultaneous doubled space of M_{1} and M_{2}.
From a generalised metric $\left(g_{1}, b_{1}\right)$ on E_{1}, one can form a Riemannian metric G_{1} on \mathcal{M}. Let X_{1}, \ldots, X_{N} be coordinate vector fields on \mathcal{M}, and X_{1}, \ldots, X_{n} generate the foliation $T \mathcal{F}_{2}$ (with $n=N / 2$).
Now pick $k<n$ and a diffeomorphism φ, and define a foliation by $T \mathcal{F}_{1}$ generated by the following n vector fields:

Upon forming the T-duality relation $R: E_{1} \rightarrow E_{2}$, one has the following results for the metrics:

Application: Doubled Geometry

Instead of \mathcal{M} being the fibred product space, we can consider it being the simultaneous doubled space of M_{1} and M_{2}.
From a generalised metric $\left(g_{1}, b_{1}\right)$ on E_{1}, one can form a Riemannian metric G_{1} on \mathcal{M}.
Let X_{1}, \ldots, X_{N} be coordinate vector fields on \mathcal{M}, and X_{1}, \ldots, X_{n} generate the foliation $T \mathcal{F}_{2}$ (with $n=N / 2$).
Now pick $k<n$ and a diffeomorphism φ, and define a foliation by $T \mathcal{F}_{1}$ generated by the following n vector fields:

$$
\varphi_{*}\left(X_{i}\right) \text { for } i=k+1, \ldots, n, \quad \varphi_{*}\left(X_{p}\right) \text { for } p=n+1, \ldots, n+k .
$$

Upon forming the T-duality relation $R: E_{1} \rightarrow E_{2}$, one has the following results for the metrics:

Application: Doubled Geometry

Instead of \mathcal{M} being the fibred product space, we can consider it being the simultaneous doubled space of M_{1} and M_{2}.
From a generalised metric $\left(g_{1}, b_{1}\right)$ on E_{1}, one can form a Riemannian metric G_{1} on \mathcal{M}.
Let X_{1}, \ldots, X_{N} be coordinate vector fields on \mathcal{M}, and X_{1}, \ldots, X_{n} generate the foliation $T \mathcal{F}_{2}$ (with $n=N / 2$).
Now pick $k<n$ and a diffeomorphism φ, and define a foliation by $T \mathcal{F}_{1}$ generated by the following n vector fields:

$$
\varphi_{*}\left(X_{i}\right) \text { for } i=k+1, \ldots, n, \quad \varphi_{*}\left(X_{p}\right) \text { for } p=n+1, \ldots, n+k .
$$

Upon forming the T-duality relation $R: E_{1} \rightarrow E_{2}$, one has the following results for the metrics:

$$
\varphi^{*} G_{2}=G_{1} .
$$

Outlook

(1) Fit Poisson-Lie T-duality into this framework.
(2) Add more structure: divergences (or CA connections), allowing to incorporate the dilaton, generalised Ricci tensors and Ricci flow; generalised complex structures, allowing incorporation of branes.

Thanks you for listening! Questions?
References: [1] Vysoký https://arxiv.org/abs/1910.05347
[2] Bursztyn, Cavalcanti, Gualtieri
https://arxiv.org/abs/math/0509640
[3] Zambon https://arxiv.org/abs/math/0701740
[4] DF, Marotta, Szabo https://arxiv.org/abs/2308.15147
[5] Cavalcanti, Gualitieri https://arxiv.org/abs/1106.1747

