▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

### Courant Algebroid Relations and T-duality

#### Tom De Fraja

Heriot-Watt University Supervisor: Richard Szabo



#### 2 T-duality and CA Relations







| Sigma-models and Courant algebroids | T-duality and CA Relations | Applications | Outlook |
|-------------------------------------|----------------------------|--------------|---------|
| ●0                                  |                            | 00           | 00      |
| Courses al malanaida                |                            |              |         |

### Courant algebroids

The generalised tangent bundle,  $TM \oplus T^*M$ , can be equipped with a pairing and a bracket,  $H \in \Omega^3_{cl}(M)$ :

$$\langle X + \xi, Y + \eta \rangle = \iota_X \eta + \iota_Y \xi, [X + \xi, Y + \eta]_H = [X, Y] + \mathcal{L}_X \eta - \iota_Y d\xi + \iota_Y \iota_X H.$$

In general, an **exact Courant algebroid** (CA) is a vector bundle E over M with a pairing and a bracket of sections fitting the sequence

$$0 \to T^*M \to E \to TM \to 0. \qquad (E \cong TM \oplus T^*M)$$

CAs are classified by their Ševera class  $[H] \in H^3_{cl}(M)$ , with H given by a splitting  $s: TM \to E$ 

$$H(X, Y, Z) = \langle [s(X), s(Y)]_E, s(Z) \rangle_E.$$

T-duality and CA Relations

Applications

Outlook 00

## Courant algebroids

The generalised tangent bundle,  $TM \oplus T^*M$ , can be equipped with a pairing and a bracket,  $H \in \Omega^3_{cl}(M)$ :

$$\langle X + \xi, Y + \eta \rangle = \iota_X \eta + \iota_Y \xi, [X + \xi, Y + \eta]_H = [X, Y] + \mathcal{L}_X \eta - \iota_Y d\xi + \iota_Y \iota_X H.$$

In general, an **exact Courant algebroid** (CA) is a vector bundle E over M with a pairing and a bracket of sections fitting the sequence

$$0 \to T^*M \to E \to TM \to 0. \qquad (E \cong TM \oplus T^*M)$$

CAs are classified by their Ševera class  $[H] \in H^3_{cl}(M)$ , with H given by a splitting  $s: TM \to E$ 

$$H(X, Y, Z) = \langle [s(X), s(Y)]_E, s(Z) \rangle_E.$$

# Sigma-models in generalised geometry

Consider maps f from a worldsheet surface  $\Sigma$  to a target space M.

| Sigma-Model                                              | Geometry                                           |
|----------------------------------------------------------|----------------------------------------------------|
| Wess-Zumino term $S_H[f] = \int_V f^* H$                 | Courant algebroid $E_H$ over $M$                   |
| $\delta S_H = 0$                                         | $X + \xi$ such that $\iota_X H = d\xi$             |
| Polyakov term $S_g[f] = \int_{\Sigma} \ df\ _g^2 d\mu_g$ | $egin{array}{llllllllllllllllllllllllllllllllllll$ |
| $\delta S_g = 0$                                         | $\mathcal{L}_X g = 0$                              |

T-duality and CA Relations

# Sigma-models in generalised geometry

Consider maps f from a worldsheet surface  $\Sigma$  to a target space M.

| Sigma-Model                                              | Geometry                                                                                                                                |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Wess-Zumino term $S_H[f] = \int_V f^* H$                 | Courant algebroid $E_H$ over $M$                                                                                                        |
| $\delta S_H = 0$                                         | $X + \xi$ such that $\iota_X H = d\xi$                                                                                                  |
| Polyakov term $S_g[f] = \int_{\Sigma} \ df\ _g^2 d\mu_g$ | Generalised metric $V_+ \subset E_H$<br>equiv. $	au \in \operatorname{End}(E_H)$ , $	au^2 = 1$<br>equiv. $g \in \operatorname{Riem}(M)$ |
| $\delta S_g = 0$                                         | $\mathcal{L}_X g = 0$                                                                                                                   |

# Sigma-models in generalised geometry

Consider maps f from a worldsheet surface  $\Sigma$  to a target space M.

| Sigma-Model                                              | Geometry                                                                                                                             |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Wess-Zumino term $S_H[f] = \int_V f^* H$                 | Courant algebroid $E_H$ over $M$                                                                                                     |
| $\delta S_H = 0$                                         | $X + \xi$ such that $\iota_X H = d\xi$                                                                                               |
| Polyakov term $S_g[f] = \int_{\Sigma} \ df\ _g^2 d\mu_g$ | Generalised metric $V_+ \subset E_H$<br>equiv. $	au \in \operatorname{End}(E_H), 	au^2 = 1$<br>equiv. $g \in \operatorname{Riem}(M)$ |
| $\delta S_g = 0$                                         | $\mathcal{L}_X g = 0$                                                                                                                |

# Sigma-models in generalised geometry

Consider maps f from a worldsheet surface  $\Sigma$  to a target space M.

| Sigma-Model                                              | Geometry                                                                                                                             |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Wess-Zumino term $S_H[f] = \int_V f^* H$                 | Courant algebroid $E_H$ over $M$                                                                                                     |
| $\delta S_H = 0$                                         | $X + \xi$ such that $\iota_X H = d\xi$                                                                                               |
| Polyakov term $S_g[f] = \int_{\Sigma} \ df\ _g^2 d\mu_g$ | Generalised metric $V_+ \subset E_H$<br>equiv. $	au \in \operatorname{End}(E_H), 	au^2 = 1$<br>equiv. $g \in \operatorname{Riem}(M)$ |
| $\delta S_{g}=0$                                         | $\mathcal{L}_X g = 0$                                                                                                                |

### Courant algebroid relations

Isomorphism  $\Phi: E_1 \to E_2$  of CAs covering a diffeomorphism  $\varphi: M_1 \to M_2$  preserve all CA structure, hence the Sigma-models over  $M_1$  and  $M_2$  have the same equations of motion.

T-duality is an equivalence of Sigma-models on different target manifolds  $M_1$  and  $M_2$ , though these are not necessarily diffeomorphic. A CA isomorphisms  $\Phi: E_1 \rightarrow E_2$  must cover a diffeomorphism, so we seek to generalise the notion of isomorphism.

Consider the graph  $gr(\Phi) \subset E_1 \times E_2$ . One sees that

$$\begin{split} [\Phi \cdot, \Phi \cdot]_2 &= \Phi([\cdot, \cdot]_1) \iff \operatorname{gr}(\Phi) \text{ is involutive in } E_1 \times E_2 \\ \langle \Phi \cdot, \Phi \cdot \rangle_2 &= \langle \cdot, \cdot \rangle_1 \iff \operatorname{gr}(\Phi) \text{ is isotropic in } E_1 \times E_2 \end{split}$$

Courant algebroid relations

Isomorphism  $\Phi: E_1 \rightarrow E_2$  of CAs covering a diffeomorphism  $\varphi \colon M_1 \to M_2$  preserve all CA structure, hence the Sigma-models over  $M_1$  and  $M_2$  have the same equations of motion. T-duality is an equivalence of Sigma-models on different target manifolds  $M_1$  and  $M_2$ , though these are not necessarily diffeomorphic. A CA isomorphisms  $\Phi: E_1 \rightarrow E_2$  must cover a diffeomorphism, so we seek to generalise the notion of isomorphism.

Courant algebroid relations

Isomorphism  $\Phi: E_1 \to E_2$  of CAs covering a diffeomorphism  $\varphi: M_1 \to M_2$  preserve all CA structure, hence the Sigma-models over  $M_1$  and  $M_2$  have the same equations of motion. T-duality is an equivalence of Sigma-models on different target manifolds  $M_1$  and  $M_2$ , though these are not necessarily diffeomorphic. A CA isomorphisms  $\Phi: E_1 \to E_2$  must cover a diffeomorphism, so we seek to generalise the notion of isomorphism.

Consider the graph  $gr(\Phi) \subset E_1 \times E_2$ . One sees that

$$\begin{split} [\Phi\cdot, \Phi\cdot]_2 &= \Phi([\cdot, \cdot]_1) \iff \mathsf{gr}(\Phi) \text{ is involutive in } E_1 \times E_2 \\ \langle \Phi\cdot, \Phi\cdot \rangle_2 &= \langle \cdot, \cdot \rangle_1 \iff \mathsf{gr}(\Phi) \text{ is isotropic in } E_1 \times E_2 \end{split}$$

# Isometry and Composition

A **CA** relation  $R: E_1 \dashrightarrow E_2$  is an isotropic, involutive subbundle of  $E_1 \times E_2$ , supported on a submanifold  $C \subset M_1 \times M_2$ . If  $R: (E_1, \tau_1) \dashrightarrow (E_2, \tau_2)$ , then R is a generalised isometry if

 $(\tau_1 \times \tau_2)(R) = R.$ 

Contingent on some smoothness conditions [Vysoký, 1], one can compose two relations  $R: E_1 \dashrightarrow E_2, \tilde{R}: E_2 \rightarrow E_3$ 

 $ilde{R}\circ R=\{(e_1,e_3):(e_1,e_2)\in R ext{ and } (e_2,e_3)\in ilde{R}\}\subset E_1 imes \overline{E}_3,$ 

Isometry and Composition

A **CA** relation  $R: E_1 \rightarrow E_2$  is an isotropic, involutive subbundle of  $E_1 \times E_2$ , supported on a submanifold  $C \subset M_1 \times M_2$ . If  $R: (E_1, \tau_1) \dashrightarrow (E_2, \tau_2)$ , then R is a generalised isometry if

 $(\tau_1 \times \tau_2)(R) = R.$ 

Isometry and Composition

A **CA** relation  $R: E_1 \rightarrow E_2$  is an isotropic, involutive subbundle of  $E_1 \times E_2$ , supported on a submanifold  $C \subset M_1 \times M_2$ . If  $R: (E_1, \tau_1) \dashrightarrow (E_2, \tau_2)$ , then R is a generalised isometry if

$$(\tau_1 \times \tau_2)(R) = R.$$

Contingent on some smoothness conditions [Vysoký, 1], one can compose two relations  $R: E_1 \dashrightarrow E_2, \tilde{R}: E_2 \to E_3$ 

$$ilde{R}\circ R=\{(e_1,e_3):(e_1,e_2)\in R ext{ and } (e_2,e_3)\in ilde{R}\}\subset E_1 imes \overline{E}_3,$$

A D N A 目 N A E N A E N A B N A C N

| Sigma-models and Courant algebroids | T-duality and CA Relations | Applications | Outlook |
|-------------------------------------|----------------------------|--------------|---------|
|                                     | 00●00                      | 00           | 00      |
| T-duality                           |                            |              |         |

T-dual spaces  $M_1, M_2$  may be fibre bundles over a common base B



| Sigma-models and Courant algebroids | T-duality and CA Relations | Applications | Outlook |
|-------------------------------------|----------------------------|--------------|---------|
|                                     | 00€00                      | 00           | 00      |
| T-duality                           |                            |              |         |

T-dual spaces  $M_1, M_2$  may be fibre bundles over a common base B



| Sigma-models and Courant algebroids | T-duality and CA Relations | Applications | Outlook |
|-------------------------------------|----------------------------|--------------|---------|
|                                     | 00●00                      | 00           | 00      |
| T-dualitv                           |                            |              |         |

T-dual spaces  $M_1, M_2$  may be fibre bundles over a common base B



| Sigma-models and Courant algebroids | T-duality and CA Relations | Applications | Outlook |
|-------------------------------------|----------------------------|--------------|---------|
|                                     | 000€0                      | 00           | 00      |
|                                     |                            |              |         |

### The T-duality relation I

Want to form a CA relation  $R: E_1 \dashrightarrow E_2$  between CAs  $E_i$  over  $M_i$ . Need to know how to form CAs on a quotient manifold:

 $\mathcal{M}$  is foliated by  $\mathcal{F}_2$ . If  $\mathcal{E}$  is an exact CA over  $\mathcal{M}$ , then  $\mathcal{E}/\mathcal{F}_2$  will not be an exact CA over  $M_1 = \mathcal{M}/\mathcal{F}_2$ . Take  $K_2 = T\mathcal{F}_2 \subset \mathcal{E}$ , then

$$\mathsf{E} = \frac{K_2^{\perp}}{K_2} \big/ \mathcal{F}_2$$

is an exact CA over  $M_1$  [2,3].

Can form the CA relation  $Q(K_2)$ , supported on  $gr(q_2) \subset \mathcal{M} \times M_1$ ,

 $Q(K_2) = \{(e, \natural_2(e)) \colon e \in K_2^{\perp}\} \subset \mathcal{E} \times E_1$ 

where  $\natural_2 \colon K_2^\perp \to E_1$  is the quotient map [1].

Sigma-models and Courant algebroids T-duality and CA Relations Applications Outlook

Want to form a CA relation  $R: E_1 \rightarrow E_2$  between CAs  $E_i$  over  $M_i$ . Need to know how to form CAs on a quotient manifold:  $\mathcal{M}$  is foliated by  $\mathcal{F}_2$ . If  $\mathcal{E}$  is an exact CA over  $\mathcal{M}$ , then  $\mathcal{E}/\mathcal{F}_2$  will not be an exact CA over  $M_1 = \mathcal{M}/\mathcal{F}_2$ .

Take  $K_2 = T\mathcal{F}_2 \subset \mathcal{E}$ , then

$$\Xi = \frac{K_2^{\perp}}{K_2} \Big/ \mathcal{F}_2$$

is an exact CA over  $M_1$  [2,3].

Can form the CA relation  $Q(K_2)$ , supported on  $gr(q_2) \subset \mathcal{M} \times M_1$ ,

 $Q(K_2) = \{(e, \natural_2(e)) \colon e \in K_2^{\perp}\} \subset \mathcal{E} \times E_1$ 

Sigma-models and Courant algebroids T-duality and CA Relations Applications Outlook

Want to form a CA relation  $R: E_1 \rightarrow E_2$  between CAs  $E_i$  over  $M_i$ . Need to know how to form CAs on a quotient manifold:  $\mathcal{M}$  is foliated by  $\mathcal{F}_2$ . If  $\mathcal{E}$  is an exact CA over  $\mathcal{M}$ , then  $\mathcal{E}/\mathcal{F}_2$  will not be an exact CA over  $M_1 = \mathcal{M}/\mathcal{F}_2$ . Take  $K_2 = T\mathcal{F}_2 \subset \mathcal{E}$ , then

$$E = \frac{K_2^{\perp}}{K_2} \Big/ \mathcal{F}_2$$

is an exact CA over  $M_1$  [2,3].

Can form the CA relation  $Q(K_2)$ , supported on  $gr(q_2) \subset \mathcal{M} \times M_1$ ,

 $Q(K_2) = \{(e, \natural_2(e)) \colon e \in K_2^{\perp}\} \subset \mathcal{E} \times E_1$ 

Sigma-models and Courant algebroids T-duality and CA Relations Applications Outlook

Want to form a CA relation  $R: E_1 \rightarrow E_2$  between CAs  $E_i$  over  $M_i$ . Need to know how to form CAs on a quotient manifold:  $\mathcal{M}$  is foliated by  $\mathcal{F}_2$ . If  $\mathcal{E}$  is an exact CA over  $\mathcal{M}$ , then  $\mathcal{E}/\mathcal{F}_2$  will not be an exact CA over  $M_1 = \mathcal{M}/\mathcal{F}_2$ . Take  $K_2 = T\mathcal{F}_2 \subset \mathcal{E}$ , then

$$E = \frac{K_2^{\perp}}{K_2} \Big/ \mathcal{F}_2$$

is an exact CA over  $M_1$  [2,3].

Can form the CA relation  $Q(K_2)$ , supported on  $\operatorname{gr}(q_2) \subset \mathcal{M} \times M_1$ ,

$$Q(K_2) = \{(e, \natural_2(e)) \colon e \in K_2^{\perp}\} \subset \mathcal{E} \times E_1$$

A D N A 目 N A E N A E N A B N A C N

where  $\natural_2 \colon K_2^{\perp} \to E_1$  is the quotient map [1].

Sigma-models and Courant algebroids T-duality and CA Relations Applications 0000● 00

### The T-duality relation II

The T-duality relation  $R: E \rightarrow E'$  is then the composition of CA relations:



#### Theorem (DF, Marotta, Szabo [4])

Let  $g_1$  be a Riemannian metric on  $M_1$ . If  $\mathcal{L}_X g = \mathcal{L}_X F = 0$ ,  $\forall X \in \mathcal{F}_2$ , then TFAE

 $\bullet \ K_1^{\perp} \cap \Phi(K_2) \subseteq K_1 \ .$ 

There exists a unique Riemannian metric g<sub>2</sub> on M<sub>2</sub> such that R is a generalised isometry.

Outlook

Sigma-models and Courant algebroids T-duality and CA Relations Applications 0000● 00

### The T-duality relation II

The T-duality relation  $R: E \rightarrow E'$  is then the composition of CA relations:

Outlook



#### Theorem (DF, Marotta, Szabo [4])

Let  $g_1$  be a Riemannian metric on  $M_1$ . If  $\mathcal{L}_X g = \mathcal{L}_X F = 0$ ,  $\forall X \in \mathcal{F}_2$ , then TFAE

 $\bullet \ K_1^{\perp} \cap \Phi(K_2) \subseteq K_1 \ .$ 

There exists a unique Riemannian metric g<sub>2</sub> on M<sub>2</sub> such that R is a generalised isometry. Sigma-models and Courant algebroids T-duality and CA Relations Applications 0000€ 00

### The T-duality relation II

The T-duality relation  $R: E \rightarrow E'$  is then the composition of CA relations:

Outlook

#### Theorem (DF, Marotta, Szabo [4])

Let  $g_1$  be a Riemannian metric on  $M_1$ . If  $\mathcal{L}_X g = \mathcal{L}_X F = 0$ ,  $\forall X \in \mathcal{F}_2$ , then TFAE

 $\bullet K_1^{\perp} \cap \Phi(K_2) \subseteq K_1 .$ 

There exists a unique Riemannian metric g<sub>2</sub> on M<sub>2</sub> such that R is a generalised isometry.

# Application: T-dualities for Torus bundles

#### Cavalcanti-Gualitieri [5] formulate the correspondence space picture for T-dual torus bundles over a base B: Endow $M_i$ with H-flux $H_i$ . Take $\mathcal{M} = M_1 \times_B \times M_2$ and $q_1: \mathcal{M} \to M_2$ etc. Then $M_1$ is T-dual to $M_2$ if

$$q_2^* H_1 - q_1^* H_2 = dF,$$

with  $F : \mathfrak{t}_1 \otimes \mathfrak{t}_2 \to \mathbb{R}$  invariant and non-degenerate. The condition  $\mathcal{L}_X F = 0$  gives requisite invariance, and item (1) gives non-degeneracy. The resulting Riemannian metrics  $\mathfrak{g}_1, \mathfrak{g}_2$  satisfy the Russher rules

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

# Application: T-dualities for Torus bundles

Cavalcanti-Gualitieri [5] formulate the correspondence space picture for T-dual torus bundles over a base B: Endow  $M_i$  with H-flux  $H_i$ . Take  $\mathcal{M} = M_1 \times_B \times M_2$  and  $q_1 \colon \mathcal{M} \to M_2$  etc. Then  $M_1$  is T-dual to  $M_2$  if

$$q_2^*H_1 - q_1^*H_2 = dF,$$

with  $F : \mathfrak{t}_1 \otimes \mathfrak{t}_2 \to \mathbb{R}$  invariant and non-degenerate.

The condition  $\mathcal{L}_X F = 0$  gives requisite invariance, and item (1) gives non-degeneracy.

The resulting Riemannian metrics  $g_1, g_2$  satisfy the Buscher rules.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

# Application: T-dualities for Torus bundles

Cavalcanti-Gualitieri [5] formulate the correspondence space picture for T-dual torus bundles over a base B: Endow  $M_i$  with H-flux  $H_i$ . Take  $\mathcal{M} = M_1 \times_B \times M_2$  and  $q_1 \colon \mathcal{M} \to M_2$  etc. Then  $M_1$  is T-dual to  $M_2$  if

$$q_2^*H_1 - q_1^*H_2 = dF,$$

with  $F : \mathfrak{t}_1 \otimes \mathfrak{t}_2 \to \mathbb{R}$  invariant and non-degenerate. The condition  $\mathcal{L}_X F = 0$  gives requisite invariance, and item (1) gives non-degeneracy.

The resulting Riemannian metrics  $g_1, g_2$  satisfy the Buscher rules.

# Application: Doubled Geometry

Instead of  $\mathcal{M}$  being the fibred product space, we can consider it being the simultaneous doubled space of  $M_1$  and  $M_2$ .

From a generalised metric  $(g_1, b_1)$  on  $E_1$ , one can form a Riemannian metric  $G_1$  on  $\mathcal{M}.$ 

Let  $X_1, ..., X_N$  be coordinate vector fields on  $\mathcal{M}$ , and  $X_1, ..., X_n$  generate the foliation  $T\mathcal{F}_2$  (with n = N/2).

Now pick k < n and a diffeomorphism  $\varphi$ , and define a foliation by  $T\mathcal{F}_1$  generated by the following *n* vector fields:

$$\varphi_*(X_i)$$
 for  $i = k + 1, ..., n$ ,  $\varphi_*(X_p)$  for  $p = n + 1, ..., n + k$ .

$$\varphi^* G_2 = G_1.$$

# Application: Doubled Geometry

Instead of  $\mathcal{M}$  being the fibred product space, we can consider it being the simultaneous doubled space of  $M_1$  and  $M_2$ . From a generalised metric  $(g_1, b_1)$  on  $E_1$ , one can form a Riemannian metric  $G_1$  on  $\mathcal{M}$ .

Let  $X_1, ..., X_N$  be coordinate vector fields on  $\mathcal{M}$ , and  $X_1, ..., X_n$  generate the foliation  $T\mathcal{F}_2$  (with n = N/2).

Now pick k < n and a diffeomorphism  $\varphi$ , and define a foliation by  $T\mathcal{F}_1$  generated by the following *n* vector fields:

$$\varphi_*(X_i)$$
 for  $i = k + 1, ..., n$ ,  $\varphi_*(X_p)$  for  $p = n + 1, ..., n + k$ .

$$\varphi^* G_2 = G_1.$$

T-duality and CA Relations

Applications

Outlook

# Application: Doubled Geometry

Instead of  $\mathcal{M}$  being the fibred product space, we can consider it being the simultaneous doubled space of  $M_1$  and  $M_2$ . From a generalised metric  $(g_1, b_1)$  on  $E_1$ , one can form a Riemannian metric  $G_1$  on  $\mathcal{M}$ .

Let  $X_1, ..., X_N$  be coordinate vector fields on  $\mathcal{M}$ , and  $X_1, ..., X_n$  generate the foliation  $T\mathcal{F}_2$  (with n = N/2).

Now pick k < n and a diffeomorphism  $\varphi$ , and define a foliation by  $T\mathcal{F}_1$  generated by the following *n* vector fields:

$$\varphi_*(X_i)$$
 for  $i = k + 1, ..., n$ ,  $\varphi_*(X_p)$  for  $p = n + 1, ..., n + k$ .

$$\varphi^* G_2 = G_1.$$

T-duality and CA Relations

Applications

Outlook

# Application: Doubled Geometry

Instead of  $\mathcal{M}$  being the fibred product space, we can consider it being the simultaneous doubled space of  $M_1$  and  $M_2$ . From a generalised metric  $(g_1, b_1)$  on  $E_1$ , one can form a Riemannian metric  $G_1$  on  $\mathcal{M}$ .

Let  $X_1, ..., X_N$  be coordinate vector fields on  $\mathcal{M}$ , and  $X_1, ..., X_n$  generate the foliation  $T\mathcal{F}_2$  (with n = N/2).

Now pick k < n and a diffeomorphism  $\varphi$ , and define a foliation by  $T\mathcal{F}_1$  generated by the following *n* vector fields:

$$\varphi_*(X_i)$$
 for  $i = k + 1, ..., n$ ,  $\varphi_*(X_p)$  for  $p = n + 1, ..., n + k$ .

$$\varphi^* G_2 = G_1.$$

T-duality and CA Relations

# Application: Doubled Geometry

Instead of  $\mathcal{M}$  being the fibred product space, we can consider it being the simultaneous doubled space of  $M_1$  and  $M_2$ . From a generalised metric  $(g_1, b_1)$  on  $E_1$ , one can form a Riemannian metric  $G_1$  on  $\mathcal{M}$ .

Let  $X_1, ..., X_N$  be coordinate vector fields on  $\mathcal{M}$ , and  $X_1, ..., X_n$  generate the foliation  $T\mathcal{F}_2$  (with n = N/2).

Now pick k < n and a diffeomorphism  $\varphi$ , and define a foliation by  $T\mathcal{F}_1$  generated by the following *n* vector fields:

$$\varphi_*(X_i)$$
 for  $i = k + 1, ..., n$ ,  $\varphi_*(X_p)$  for  $p = n + 1, ..., n + k$ .

$$\varphi^*G_2=G_1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

## Outlook

- If Poisson-Lie T-duality into this framework.
- Add more structure: divergences (or CA connections), allowing to incorporate the dilaton, generalised Ricci tensors and Ricci flow; generalised complex structures, allowing incorporation of branes.



Thanks you for listening! Questions?
References: [1] Vysoký https://arxiv.org/abs/1910.05347
[2] Bursztyn, Cavalcanti, Gualtieri
https://arxiv.org/abs/math/0509640
[3] Zambon https://arxiv.org/abs/math/0701740
[4] DF, Marotta, Szabo https://arxiv.org/abs/2308.15147
[5] Cavalcanti, Gualitieri https://arxiv.org/abs/1106.1747