Configuration space of a 3 -link snake robot model

Martin Doležal
Masaryk University Brno, Czech Republic
$14^{\text {th }}$ January 2024

The model of a 3-link snake robot

On a plane, i.e. $X_{1}, \ldots X_{4} \in \mathbb{R}^{2}$

$$
\begin{gathered}
\frac{1}{2}\left(\dot{X}_{1}+\dot{X}_{2}\right)=\alpha \cdot\left(X_{2}-X_{1}\right) \\
\frac{1}{2}\left(\dot{X}_{2}+\dot{X}_{3}\right)=\beta \cdot\left(X_{3}-X_{2}\right) \\
\frac{1}{2}\left(\dot{X}_{3}+\dot{X}_{4}\right)=\gamma \cdot\left(X_{4}-X_{3}\right) \\
\left\|X_{2}-X_{1}\right\|=\text { const., }\left\|X_{3}-X_{2}\right\|=\text { const., }\left\|X_{4}-X_{3}\right\|=\text { const. }
\end{gathered}
$$

\rightarrow foliation of subbundles of \mathbb{R}^{8}

The model, better coordinates

Choose $\left\|X_{i+1}-X_{i}\right\|=1$.
New coordinates $\left(v_{1}, v_{2}, v_{3}, x, y\right) \in \mathcal{M}=S^{1} \times S^{1} \times S^{1} \times \mathbb{R}^{2}$.

$$
\begin{aligned}
& V F_{1}=\left(1+\cos \left(v_{1}\right)\right) \partial_{v_{1}}-\partial_{v_{2}}+\left(1+\cos \left(v_{3}\right)\right) \partial_{V_{3}} \\
& V F_{2}=-2 \sin \left(v_{1}\right) \partial_{v_{1}}+2 \sin \left(v_{3}\right) \partial_{V_{3}}+\cos \left(v_{2}\right) \partial_{x}+\sin \left(v_{2}\right) \partial_{y}
\end{aligned}
$$

They represent steering of the central segment (move and rotation).

Distribution

- A distribution $\mathcal{D}=\left\langle V F_{1}, V F_{2}\right\rangle$.
- \mathcal{D} is bracket-generating

$$
\begin{gathered}
\mathcal{D}^{(1)}=\mathcal{D}, \quad \mathcal{D}^{(i+1)}=\mathcal{D}+\left[\mathcal{D}, \mathcal{D}^{(i)}\right] \\
\mathcal{D}^{(k)}=\mathcal{D}^{(k-1)}+\left[\mathcal{D}, \mathcal{D}^{(k)}\right]=T \mathcal{M}
\end{gathered}
$$

- By Chow-Rashevskii thm, every position is achievable
- Differences of $\mathcal{D}^{(i)}$'s dimensions \rightarrow growth vector
- In regular points, the growth vector is $(2,1,2)$

$$
\begin{array}{ll}
V F_{1}, & V F_{3}=\left[V F_{1}, V F_{2}\right], \\
V F_{2}, & V F_{5}:=\left[V F_{1}, V F_{3}\right], \\
\left.V F_{2}, V F_{3}\right]
\end{array}
$$

- In singular points (e.g. $v_{1}=v_{3}=0$), $\left[V F_{2}, V F_{3}\right]$ isn't linearly independent, and the growth vector is $(2,1,1,1)$.

Lie algebra

A vector field is $V F_{6}:=\left[V F_{1}, V F_{4}\right]$ is linearly independent only over real numbers. $\left(V F_{6}=A \cdot V F_{2}-V F_{3}-A \cdot V F_{4}-B \cdot V F_{5}\right)$ One can show, $V F_{1}, \ldots V F_{6}$ form a finite-dimensional solvable Lie algebra.

$[\cdot, \cdot]$	$V F_{1}$	$V F_{2}$	$V F_{3}$	$V F_{4}$	$V F_{5}$	$V F_{6}$
$V F_{1}$	0	$V F_{3}$	$V F_{4}$	$V F_{6}$	0	$-V F_{4}$
$V F_{2}$	$-V F_{3}$	0	$V F_{5}$	0	$4 V F_{3}+4 V F_{6}$	0
$V F_{3}$	$-V F_{4}$	$-V F_{5}$	0	0	0	0
$V F_{4}$	$-V F_{6}$	0	0	0	0	0
$V F_{5}$	0	$-4 V F_{3}-4 V F_{6}$	0	0	0	0
$V F_{6}$	$V F_{4}$	0	0	0	0	0

Extended model

$\mathcal{M}^{\prime}=\mathcal{M} \times \mathbb{R}$, coordinates $\left(v_{1}, v_{2}, v_{3}, x, y, t\right), \mathcal{D}^{\prime}=\left\langle V F_{1}^{\prime}, V F_{2}^{\prime}\right\rangle$

$$
\begin{aligned}
& V F_{1}^{\prime}=\left(1+\cos \left(V_{1}\right)\right) \partial_{v_{1}}-\partial_{v_{2}}+\left(1+\cos \left(V_{3}\right)\right) \partial_{V_{3}}+\partial_{t} \\
& V F_{2}^{\prime}=-2 \sin \left(v_{1}\right) \partial_{v_{1}}+2 \sin \left(V_{3}\right) \partial_{v_{3}}+\cos \left(v_{2}\right) \partial_{x}+\sin \left(v_{2}\right) \partial_{y}
\end{aligned}
$$

- $V F_{1}^{\prime}, \ldots V F_{6}^{\prime}$ are now linearly independents over functions, thanks to the added coordinate t
- \mathcal{D}^{\prime} has a growth-vector $(2,1,2,1)$
- $V F_{1}^{\prime}, \ldots V F_{6}^{\prime}$ form a basis of a Lie algebra, so they give us locally a structure of a Lie group on \mathcal{M}^{\prime}

Symmetries on \mathcal{M}^{\prime}

- Infinitesimal symmetries of a distribution \mathcal{D} are vector fields v on \mathcal{M} such that $[v, \mathcal{D}] \in \mathcal{D}$.
- \mathcal{M}^{\prime} is locally a Lie group, there are 6 right-invariant vector fields which commute with $V F_{1}^{\prime}, \ldots V F_{6}^{\prime}$

$$
\begin{gathered}
\partial_{x}, \partial_{y}, \partial_{v_{2}}-y \partial_{x}+x \partial_{y} \\
\left(1+\cos v_{3}\right) e^{2 v_{2}+2 t} \partial_{v_{3}},\left(1+\cos v_{1}\right) e^{-2 v_{2}-2 t} \partial_{v_{1}}, \partial_{t}
\end{gathered}
$$

- distributions $(2,1,2,1)$ can have maximally 8 -dim symmetry (Anderson, Kruglikov 2011)
- it can by shown, $\left(\mathcal{M}^{\prime}, \mathcal{D}^{\prime}\right)$ has only these 6 symmetries
- $(\mathcal{M}, \mathcal{D})$ has only 3 symmetries (take quotient of \mathcal{M}^{\prime} by an automorphism generated by ∂_{t})

A modulation of the model

- For three different lengths $\ell_{1}, \ell_{2}, \ell_{3} \in \mathbb{R}^{+}$, the distribution \mathcal{D} is still $(2,1,2)$, but now it contains a 9 -dim Lie algebra with a growth-vector $(2,1,2,1,2,1)$

$$
\left\|X_{2}-X_{1}\right\|=\ell_{1},\left\|X_{3}-X_{2}\right\|=\ell_{2},\left\|X_{4}-X_{3}\right\|=\ell_{3}
$$

Another modulation of the model

- If we move the rubber wheels, i.e. choose some $a, b, c \in(0,1)$, the distribution is still $(2,1,2)$, now the Lie algebra inside is $(2,1,2,2,2)$.

$$
\begin{aligned}
& a \dot{X}_{1}+(1-a) \dot{X}_{2}=\alpha \cdot\left(X_{2}-X_{1}\right) \\
& b \dot{X}_{2}+(1-b) \dot{X}_{3}=\beta \cdot\left(X_{3}-X_{2}\right) \\
& c \dot{X}_{3}+(1-c) \dot{X}_{4}=\gamma \cdot\left(X_{4}-X_{3}\right)
\end{aligned}
$$

Conclusions and open questions

- If a distribution contains generators of a finite-dimensional Lie algebra, it can be used to estimate the number of symmetries.
- It is unclear how to find such generators.
- It isn't easy to add new coordinates in a right way and let the dimension of the Lie algebra unchanged. Is it necessary to add these coordinates?
- further research needed...

Thank you for your attention!

