Generalized Root Systems

Rita Fioresi, University of Bologna

15 January, 2024 Srni

CaLISTA COST Action

Join CaLISTA CA 21109!

https://site.unibo.it/calista/en

- Working group 1: Cartan Geometry and Representation Theory
- Working group 2: Integrable Systems and Supersymmetry
- Working group 3: Noncommutative Geometry and Quantum Homogeneous Spaces
- Working group 4: Vision
- Working group 5: Dissemination and Public Engagement

 $https://e-services.cost.eu/action/CA21109/working-groups/applications_{\odot, \odot} and {\label{eq:cost}} applications_{\odot, \odot} appli$

MSCA-Doctoral Network CaLiForNIA

https://site.unibo.it/california/en

11 PhD positions on the themes:

- Working group 1: Cartan Geometry and Lie Theory
- Working group 2: Noncommutative Geometry and Symmetric Spaces
- Working group 3: Quantum Computing and Quantum Information Geometry
- Working group 4: Geometric Deep Learning
- Working group 5: Dissemination and Public Engagement

프 > - - - - >

Plan of the Talk

Motivation:

A unifying conceptual point of view on root systems in Lie Theory (for semisimple Lie algebras, contragredient superalgebras and special types of hyperplane arrangements)

Operation of Generalized Root Systems (GRS): All "meaningful" root systems in Lie theory are examples.

The Category of GRS: In this category we can take subobjects and quotients

- Classification of rank 2 GRS
- Virtual Reflections
- **O** Application to Reductive Supergroups

A B M A B M

Definition

A root system Δ in E euclidean space (,) satisfies:

- Δ is finite, $0 \notin \Delta$
- Δ spans E,

•
$$\sigma_{\alpha}(\beta) := \beta - 2 \frac{(\alpha, \beta)}{(\alpha, \alpha)} \alpha \in \Delta$$

- $\langle \beta, \alpha \rangle := 2 \frac{(\alpha, \beta)}{(\alpha, \alpha)} \in \mathbb{Z}$
- The only multiple of a root α is $\pm \alpha$ (reduced root system)

Example. $\Delta = \{\pm \alpha, \pm \beta, \pm (\alpha + \beta)\}$

< □ > < /□ >

Root Systems of Rank 2

ヘロト 人間ト 人間ト 人間ト

э

Notion of Root System in Lie Theory/1

Definition (Root Systems of semisimple Lie algebras)

A **root system** $\Delta \subset \mathfrak{h}^*$ of a complex simple Lie algebra \mathfrak{g} is obtained via the root space decomposition:

$$\mathfrak{g} = \mathfrak{h} \oplus \sum_{lpha \in oldsymbol{\Delta}} \mathfrak{g}_{lpha}, \qquad \mathfrak{h} ext{ Cartan subalgebra}$$

$$\mathfrak{g}_{\alpha} = \{X \in \mathfrak{g} \,|\, [H, X] = \alpha(H)X, \forall H \in \mathfrak{h}\}$$

Example:
$$\mathfrak{g} = \mathfrak{sl}_3(\mathbb{C})$$

 $\mathfrak{h} = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} \right\}, \quad \mathfrak{g} = \left\{ \begin{pmatrix} a & X_{\alpha} & X_{\alpha+\beta} \\ X_{-\alpha} & b & X_{\beta} \\ X_{-\alpha-\beta} & X_{-\beta} & -a-b \end{pmatrix} \right\}$
 $\alpha \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} = a - b, \quad \beta \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} = b - c,$

(1)

A_2 Root System of $\mathfrak{sl}_3(\mathbb{C})$ **Example:** $\mathfrak{g} = \mathfrak{sl}_3(\mathbb{C}), \Delta = \{\pm \alpha, \pm \beta, \pm (\alpha + \beta)\}$ $\mathfrak{h} = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} \right\}, \quad \alpha \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} = a - b, \quad \beta \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} = b - c$

< 47 ▶

э

Notion of Root System in Lie Theory/2

Definition (Kostant root system)

R is obtained via the root space decomposition of a semisimple Lie algebra \mathfrak{g} with respect to a toral subalgebra $\mathfrak{t} \subset \mathfrak{h}, \pi : \mathfrak{h}^* \longrightarrow \mathfrak{t}^*$:

$$\mathfrak{g} = \mathfrak{c}(\mathfrak{t}) \oplus \sum_{\nu \in R} \mathfrak{g}_{\nu}, \quad \mathfrak{g}_{\nu} = \{x \in \mathfrak{g} \mid [h, x] = \nu(h)x, h \in \mathfrak{t}\}$$

Example $\Delta = \{\epsilon_i - \epsilon_j, i \neq j = 1 \dots n + 1\}$ root system of $\mathfrak{sl}_{n+1}(\mathbb{C})$. If we orthogonally project it, we modify the lengths of vectors! Suppose we project on a two dimensional space.

Roots of $\mathfrak{sl}_3(\mathbb{C})$ Projected roots of $\mathfrak{sl}_{n+1}(\mathbb{C})$

Kostant root systems

Observation

Kostant root systems are orthogonal projections of Lie algebra root systems, i.e. $R = \pi(\Delta)$. They have **less** symmetries.

Example

Notion of Root System in Lie Theory/3

Definition (Root systems of basic classical Lie superalgebras) Such root systems are obtained with a root space decomposition:

$$\mathfrak{g}=\mathfrak{g}_0\oplus\mathfrak{g}_1=\mathfrak{h}\oplus\sum_{lpha\in\Delta}\mathfrak{g}_lpha,$$

h Cartan subalgebra

$$\mathfrak{g}_{\alpha} = \{ X \in \mathfrak{g} \, | \, [H, X] = \alpha(H)X, \forall H \in \mathfrak{h} \}$$

Example: $\mathfrak{g} = \mathfrak{sl}(2|1)$, \mathfrak{h} diagonal matrices

 α even root, β odd root.

Rita Fioresi, University of Bologna

Lack of symmetries

These root systems share many properties, but differ in some ways.

Key difference: lack of Weyl group.

How do we recover the "missing" symmetries? Virtual Reflections (Serganova)

12/38

Virtual Reflections

Idea: A reflection of a simple root β with respect to a simple root α reverses its $\alpha\text{-string}$

$$\mathcal{S}_lpha(eta) = egin{cases} -eta & eta = lpha \ eta + \ell_{eta,lpha} lpha & eta
eq lpha
eq lpha \end{cases}$$

 $\ell_{\beta,\alpha}$ length of the α -string of β .

Example: The reflection s_{α} in the root system of the Lie algebra G_2

Recovering the Symmetries via virtual reflections

The virtual reflection is a linear map, but **not** an isometry.

Serganova gives this definition to recover the symmetries of root systems of Lie superalgebras. (Weyl Groupoid).

G₂ symmetries

- 2

<ロ> <四> <ヨ> <ヨ>

Generalized Root Systems

Definition

A Generalized Root System is a pair (E, R), where E is a finite-dimensional Euclidean space and $R \subset E$ is a finite set such that, for $\alpha, \beta \in R$ we have

$$\begin{array}{ll} \langle \alpha, \beta \rangle > 0 & \Longrightarrow & \alpha - \beta \in R; \\ \langle \alpha, \beta \rangle < 0 & \Longrightarrow & \alpha + \beta \in R; \\ \langle \alpha, \beta \rangle = 0 & \Longrightarrow & \alpha + \beta \in R \text{ if and only if } \alpha - \beta \in R. \end{array}$$

Remark. $0 \in R$, R = -R. **Examples:** "A type", $R = \pm \{\alpha, \beta, \alpha + \beta\}$.

Generalized Root Systems in the literature

- Root systems of semisimple Lie algebras (Cartan)
- Kostant root systems (Kostant "Borel-De Siebenthal Theorem")
- Root systems of contragredient Lie superalgebras (Kac "Lie Superalgebras")
- Crystallographic hyperplane arrangements (Refs in Cunz "Simplicial arrangements")
- Tits hyperplane arrangements (Wemyss private communication)
- Complex structures of flags (and superflags) (Alekseevski "Flag manifolds")

A B M A B M

Examples of Generalized Root Systems: the reduced case

Definition

A GRS is reduced if $\alpha \in R$ only $\pm \alpha \in R$.

Proposition

The reduced irreducible rank 2 GRSs are:

" A_2 ": $R^+ = \{\alpha, \beta, \alpha + \beta\}$ a two-parameter family. " B_2 ": $R^+ = \{\alpha, \beta, \beta + \alpha, \beta + 2\alpha\}$ a one-parameter family $(\beta \perp \beta + 2\alpha)$.

 G_2 – this is a singleton: no "deformation" allowed, it is rigid

- 3

< □ > < 同 > < 回 > < 回 > < 回 >

Cartan Matrix

Let *R* be a (reduced) root system of rank, $S = \{\alpha, \beta\}$. We can define the Cartan matrix $C = (c_{\alpha,\beta})$:

$$c_{lpha,eta} = rac{2\langle lpha,eta
angle}{\langle lpha,lpha
angle} \qquad lpha,eta\in S$$

Example: the two parameter family A_2

$$C = \left(egin{array}{cc} 2 & a \ b & 2 \end{array}
ight) \; ,$$

where
$$a:=c_{lpha,eta}=rac{2\langlelpha,eta
angle}{\langlelpha,lpha
angle}$$
 and $b:=c_{eta,lpha}=rac{2\langleeta,lpha
angle}{\langleeta,eta
angle}.$

Examples:

A D N A B N A B N A B N

э

Exotic GRS: Quadruple root GRS

A more exotic rank 2 GRS – admits a root α for which 4α is also a root:

$$R^+ = \{k\alpha, 1 \le k \le 4, \beta + l\alpha, -3 \le l \le 3, 2\beta\}$$
.

Here $\alpha \perp \beta$, $\|\beta\| = \sqrt{6} \|\alpha\|$.

Positive systems of Generalized Root Systems

Definition

Given a Generalized Root System R we say that R^+ is a **positive systems** if:

- $R = R^+ \cup -R^+$.
- If $\alpha, \beta \in \mathbb{R}^+$ and $\alpha + \beta \in \mathbb{R}$, then $\alpha + \beta \in \mathbb{R}^+$.

Some properties of Positive Systems

- (i) Every positive system R⁺ admits a base S.
 Attention: Same R may look "different" if we choose different bases to represent it.
- (ii) Every positive system has a highest root.
- (iii) Every positive system is laying on one side of an hyperplane:

$$\mathsf{R}^{+} = \{ \alpha \in \mathsf{R} \, | \, \langle \alpha, \gamma \rangle > \mathsf{0} \}$$

Generalized Root Systems are Lattices

Let R be a GRS and S a base. We can define a partial order on R by the **height of a root**:

$$\operatorname{ht}(\alpha) = \sum_{i} a_{i}, \quad \text{where} \quad \alpha = \sum_{i} a_{i} \alpha_{i}$$

Hence the pair (R, S) is a poset (partially order set).

Proposition

Let R be a generalized root systems and S a base. Then as a poset R is a lattices, i.e. we can define a \lor join (least upper bound) and meet \land (greatest lower bound). If $\alpha = \sum_{i} a_{i}\alpha_{i}$, $\beta = \sum_{i} b_{i}\alpha_{i}$, $S = \{\alpha_{1}, \ldots, \alpha_{n}\}$ base:

$$\alpha \lor \beta = \sum_{i} \min(a_i, b_i) \alpha_i$$

Remark. In general $\alpha \land \beta \neq \sum_{i} \max(a_i, b_i)$.

Counterexample: in A_3 we have $\alpha_1 \land \alpha_3 \neq \alpha_1 + \alpha_3$ because this is not a root!

Rita Fioresi, University of Bologna

The Category of Generalized Root Systems

Let $R \subset V$ be a GRS, S a base of R. (i) If $W \subset V$ is a subspace $R \cap W$ is a GRS, this is a *subsystem* of R. (ii) If $I \subset S$, let $V_I = \operatorname{span}\{I\} \subset V$. We have $V = V_I \oplus V_I^{\perp}$, $\pi : V \longrightarrow V_I^{\perp}$. Define:

$$R_I := R \cap I, \qquad R/I := \pi_I(R) \subset V_I^{\perp}$$

Theorem. Let $I \subset S$ base of R.

- a) Both R_I and R/I are GRS.
- b) Let $I \subset J \subset S$. Then:

$$R/J \cong (R/I)/(J/I)$$

Proof. (a). R_I immediate, R/I harder to show. (b) easy.

イロト イポト イヨト イヨト 二日

Example of quotient

Take: $R = B_3 = \{e_i \pm e_j, i \neq j\}$ $S = \{\alpha_1 = e_1 - e_2, \alpha_2 = e_2 - e_3, \alpha_3 = e_3\}, I = \alpha_2.$ Take the quotient $R \longrightarrow R/I$ $\alpha_1 = e_1 - e_2 \mapsto \overline{e}_1 - \overline{e}_2$ $\alpha_2 = e_2 - e_3 \mapsto 0 \implies \overline{e}_2 = \overline{e}_3 \implies 2\overline{e}_2 \in R/I!$ $\alpha_3 = e_3 \mapsto \overline{e}_3$ We represent R/I (up to equivalence) as:

Morphisms of Generalized Root Systems

Definition

Two generalized root systems (R_1, V_1) and (R_2, V_2) are isomorphic if there is an isometry $\phi : V_1 \longrightarrow V_2$ and a bijection between R_1 and R_2

Definition

 (R_1, V_1) and (R_2, V_2) are equivalent if there is a vector space isomorphism $\phi : V_1 \longrightarrow V_2$ and bijection between R_1 and R_2 .

Clearly: isomorphic \implies equivalent, but not vice-versa. **Example**: the two root systems are equivalent, but not isomorphic.

- 3

A B M A B M

Quotients of GRS

Theorem (Dimitrov-F. 2023)

Quotients of generalized root systems are generalized root systems.

Corollary (Dimitrov-F. 2023)

All Kostant root systems are GRS.

Note: They are quotients of Lie algebra root systems.

Theorem (Dimitrov-F. 2023)

All root systems of contragredient superalgebras are GRS.

Note: they are quotients of Lie algebra root systems (Dimitrov-Roth 2016, Dimitrov-F. 2021).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lie algebras and quotients of Root systems

Theorem (Dimitrov-F. 2023, Dimitrov-Roth 2016)

Every root system of a simple Lie algebra is isomorphic to a quotient of one of the root system A_n , D_n , E_i , i = 6,7,8 (simply-laced root system). More precisely we have:

(i)	$B_{l}\cong D_{l+2}^{1,2,,l}$;
(ii)	$C_{I}\cong D_{2I}^{2,4,,2I}$;
(iii)	$F_4\cong E_7^{1,3,4,6}\cong E_8^{1,6,7,8}$;
(iv)	$G_2 \cong E_6^{2,4} \cong E_7^{1,3} \cong E_8^{7,8}$

Note: This is not obtained with technique of "diagram folding".

Note: For B_1 and C_1 we have listed just one of many ways these are quotients of D_N for an appropriate N, while for F_4 and G_2 , we have listed all ways in which they are quotients of E_1 .

イロト 不得 トイヨト イヨト 二日

Classification of GRS of rank 2

Theorem (Dimitrov-F. 2023)

Up to equivalence, there are 16 irreducible GRSs of rank 2. Of these:

- 1 admits quadruple roots,
- 4 admit a triple roots,
- 8 admit double roots, and
- 3 do not admit multiples of roots (reduced root systems A₂, B₂, G₂).

Note: This result agrees and recovers all root systems associated with rank 2 complex structures on flags G/P studied by Graev, 2015, JGP.

Important: We are not assuming these to be quotients of root systems of simple Lie algebras (Graev hypothesis).

- 3

30 / 38

< ロ > < 同 > < 回 > < 回 > < 回 > <

Generalized Root Systems with quadruple roots $(\alpha, 2\alpha, 3\alpha, 4\alpha)$

э

Root Systems with triple roots $(\alpha, 2\alpha, 3\alpha)$

Rita Fioresi, University of Bologna

15 January, 2024 Srni 32 / 38

э

・ロト ・ 同ト ・ ヨト ・ ヨト

Virtual Reflections

In ordinary root systems reflections play a key role (Weyl group).

Observation

Let R be a generalized root system.

- (i) The usual reflection about $\alpha \in R$ may not leave R invariant.
- (ii) For $\alpha \in R$, define virtual reflection $s_{\alpha} : R \to R$ as the bijection that reverses all α -strings.
- (iii) s_{α} does not necessarily extend to an element of GL(V).
- (iv) The group generated by all (primitive) s_{α} does not seem to be a good analog of the Weyl group.
- (v) Instead, we can define different groupoids in analogy with root systems of superalgebras.

イロト 不得 トイヨト イヨト 二日

Bases and Virtual reflections

Virtual reflections "act transitively" on the set of bases of a generalized root system.

Important: there is no group here!

Theorem

Let S' and S'' be two bases of a generalized root system R. There exists a sequence of bases

$$S'=S_0,S_1,\ldots S_k=S'$$

and roots $\alpha_i \in S_i$, $i = 1 \dots k$ such that $S_{i+1} = \sigma_{\alpha_i}(S_i)$.

A B < A B </p>

Virtual reflections in quotients of Lie algebras

Question. How do we establish whether two quotients of the same Lie algebra are **isomorphic**?

We have an algorithm to construct graphs whose connected components represent isomorphic quotients.

Bibliography

- Dimitrov, Ivan; Fioresi, Rita; On generalized root systems. https://arxiv.org/abs/2308.06852
- Dimitrov, Ivan; Fioresi, Rita; On Kostant root systems of Lie superalgebras. J. Algebra 570 (2021), 678–701.
- B. Kostant, Root Systems for Levi Factors and Borel-de Siebenthal The- ory, http://lanl.arxiv.org/pdf/0711.2809.
- Chuah, M.-K.; Fioresi, R., Levi Factors and Admissible Automorphisms Algebras and Representation Theory, https://doi.org/10.1007/s10468-020-1-0024-8, (2021).

Applications and Future work

Joint work with Bin Shu, ECNU, Shanghai https://arxiv.org/abs/2303.18065

Quasi-reductive supergroup: algebraic supergroups **G** with reductive reduced group $G = \mathbf{G}_{ev}$.

Quasi-reductive pair (G, Y):

- G: connected reductive algebraic group,
- Y a G-superscheme of super-dimension (0|N).

化原水 化原水合 医

Quasi-reductive supergroups and GRS

Let T be the maximal torus of G, X(T) character group of T, $\epsilon : \mathcal{O}(Y) \longrightarrow k.$

Define

$$R = \Phi(T) \cup \Gamma(D)$$

 Φ the root system of *G*.

Questions:

- When does a quasi-reductive pair correspond to quasi-reductive supergroup(s)?
- Can we classify quasi-reductive supergroups based on the properties of *R*?

Answers: (F.-Shu) A good class of quasi-reductive pairs defined via GRS corresponds to reductive supergroups that can be classified.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの