Update on IDEAL characterization of highly symmetric pp-wave spacetimes (to appear soon w/ D.McNutt, L.Wylleman)

Igor Khavkine

Institute of Mathematics Czech Academy of Sciences, Prague

15 Jan 2024 44th Winter School on Geometry and Physics 13–20 Jan 2024, Srní, Czech Republic

Preview

Theorem

All isometry classes among regular highly symmetric pp-waves have been identified.

Preview

Theorem

Using **conditional invariants**, **all** regular highly symmetric pp-wave isometry classes **have** IDEAL characterizations.

Motivation

- The fundamental symmetries in General Relativity (GR) are diffeomorphisms.
- Two (Lorentzian) spacetime geometries (M, g) and (M, g') may appear to be very different but still be related by a diffeomorphism. The geometries are **isometric**.
- A lot of effort can go into deciding whether two geometries belong to the same (local) isometry class.

Definition (locally isometric)

(M,g) is **locally isometric** to (M_0,g_0) if $\forall x \in M \exists y \in M_0$ such that a neighborhood of *x* is isometric to a neighborhood of *y*. All such (M,g) constitute the **local isometry class** of (M_0,g_0) .

IDEAL Characterization

Q: Given a model geometry (M₀, g₀), is it possible to verify when (M, g) belongs to its local isometry class by checking a list of equations

$$T_{\alpha}[g] = 0 \quad (\alpha = 1, 2, \cdots, A),$$

where each $T_{\alpha}[g]$ is a **tensor covariantly constructed** from g and its derivatives?

- ▶ If Yes, we call this an **IDEAL** (Intrinsic, Deductive, Explicit, ALgorithmic) characterization of the **local isometry class** of (M_0, g_0) . Sometimes, also called **Rainich-like**.
- Generalizes to (*M*, *g*, Φ), including matter (tensor) fields, if we use covariant tensor equations of the form *T*_α[*g*, Φ] = 0.
- An alternative to the Cartan(-Karlhede) moving-frame-based characterization.
- Also, the linearizations T_α[g + εp] = T_α[g] + εT_{α,g}[p] + O(ε²) constitute a complete list of local gauge invariant observables T_{α,g0}[−] for linearized GR on (M₀, g₀).

Examples

- Relatively few examples of IDEAL characterizations are actually known. To my knowledge, they are either classical, or due to the work of Ferrando & Sáez (València), or myself + coauth.
- Examples:
 - **Constant curvature** (1800s): R = R[g] Riemann tensor,

$$R_{ijkh} = k(g_{ik}g_{jh} - g_{jk}g_{ih})$$

Schwarzschild of mass M in 4D (F&S 1998): W = W[g] — Weyl tensor,

$$\begin{split} R_{ij} &= 0, \quad S_{ijlm} S^{lm}{}_{kh} + 3\rho S_{ijkh} = 0, \\ P_{ab} &= 0, \qquad \rho / \alpha^{3/2} - M = 0, \\ \text{where} \quad & \rho = -(\frac{1}{12} \operatorname{tr} W^3)^{1/3}, \quad S_{ijkh} = W_{ijkh} - \frac{1}{6}(g_{ik}g_{jh} - g_{jk}g_{ih}), \\ & \alpha = \frac{1}{9}(\nabla \ln \rho)^2 - 2\rho, \qquad P_{ij} = ({}^*W)_i{}_j{}^k{}_j{}^h \nabla_k \rho \nabla_h \rho. \end{split}$$

More F&S: Reissner-Nordström (2002), Kerr (2009), ... (2010, 2017)
 IK *et al.*: FLRW + φ (2018), Schwarzschild-Tangherlini (2019)

Current Ad-Hoc Strategy

- Fix a class of reference geometries $(M, g_0(\beta))$, with parameters β .
- Suppose there already exists a characterization of this class by the existence of tensor fields σ satisfying equations

$$\mathbf{S}_{\alpha}[\boldsymbol{g},\sigma]=\mathbf{0},$$

covariantly constructed from σ , g_{ij} , R_{ijkl} and their covariant derivatives.

Exploiting the geometry of (M, g₀(λ)), we try to find formulas for σ = Σ[g₀] covariantly constructed from g_{ij}, R_{ijkl} and their covariant derivatives. If successful, we get an IDEAL characterization of this class by

$$T_{\alpha}[g] := S_{\alpha}[g, \Sigma[g]] = 0.$$

If necessary, find further covariant expressions for the parameters β = B[g₀], adding equations B[g] − β = 0 to the above list, until we can IDEALly characterize individual isometry classes.

Igor Khavkine (CAS, Prague)

IDEAL vs Cartan

Approaches to classification and equivalence of metrics.

Cartan moving frame:

- Supplements the metric with a progressively specialized frame.
- Has a systematic foundation. Quite generally applicable.
- IDEAL characterization:
 - Relies only on the metric and covariant tensorial constructions from it.
 - Has only been worked out in *ad hoc* examples. Domain of applicability not well-understood.
 - More convenient in some applications (cf. linear observables).

P(lane)P(arallel)-wave Spacetimes in 4d

Def: vacuum **pp-waves** take the form (with $\zeta = x + iy$, $\partial_{\bar{\zeta}} f = 0$)

$$\mathrm{d}\boldsymbol{s}^{2} = 2\mathrm{d}\zeta\mathrm{d}\bar{\zeta} - 2\mathrm{d}\boldsymbol{u}\mathrm{d}\boldsymbol{v} - 2\left(f(\zeta,\boldsymbol{u}) + \bar{f}(\bar{\zeta},\boldsymbol{u})\right)\mathrm{d}\boldsymbol{u}^{2},$$

 \iff Weyl-Petrov $\mathbf{C}^{\dagger} = \mathbf{W} - i^* \mathbf{W}$ type N and Weyl recurrent $\nabla \mathbf{C}^{\dagger} = \mathbf{K} \otimes \mathbf{C}^{\dagger}$.

- Sub-classified by isometry Lie algebra type (Ehlers & Kundt 1962).
- Further sub-classification into isometry classes possible. (our work)
- All curvature scalars vanish! Scalars cannot distinguish from flat space (maximally different from Riemannian signature).
- Cartan approach (McNutt 2013 PhD). Contains some of the most difficult cases for Cartan's method.

 $f(\zeta, u) = \begin{cases} 4\alpha u^{2i\kappa-2}\zeta^2 & G_{6a} \\ e^{2i\lambda u}\zeta^2 & G_{6b} \\ A(u)\zeta^2 & G_5 \\ 4\alpha u^{-2}\ln\zeta & G_{3a} \\ \ln\zeta & G_{3b} \\ e^{2\lambda\zeta} & G_{3c} \\ e^{i\gamma}\zeta^{2i\kappa} & G_{3d} \\ u^{-2}f(\zeta u^{i\kappa}) & G_{2a} \\ f(\zeta e^{i\lambda u}) & G_{2b} \\ A(u)\ln\zeta & G_{2c} \\ f(\zeta, u) & G_1 \end{cases}$ Gı

Progress and Lessons Learned

Theorem (IDEAL identification of pp-waves)

Vacuum 4d (M, g) is pp-wave iff (a) $C_{ab}^{\dagger \ cd} C_{cdef}^{\dagger} = 0$, (b) $T_{abc[d} T_{e]fgh;i} = 0$, where $T_{abcd} = -C_{e(ac|f|}^{\dagger} \bar{C}_{b}^{\dagger \ e_{d}})^{f}$ is the Bel-Robinson tensor.

Proof: (a) Weyl-Petrov type N $\rightsquigarrow T_{abcd} = \beta \ell_a \ell_b \ell_c \ell_d$, (b) $T_{abc[d} T_{e]fgh;i} = \beta \ell_a \ell_b \ell_c \ell_f \ell_g \ell_h (\ell_{[d} \ell_{e];i}) = 0 \rightsquigarrow \text{recurrent } \nabla \mathbf{C}^{\dagger} = \mathbf{K} \otimes \mathbf{C}^{\dagger}$.

problems going further to isometry classes

Lessons learned:

- Recall: No non-vanishing curvature scalars!
- Any covariant relation F(T₁,...,T_k) = 0 between non-scalar invariants is at most polynomial.
- Any isometry classes with non-polynomial relations between invariants cannot be characterized IDEALly!

Highly Symmetric pp-waves

- Q: Is the problem of non-polynomial relations realized for pp-waves?
- A: Yes.
- ► At least the G₅ classes contain isometry classes characterized by arbitrary C[∞] functions F(y).
- Solution: Introduce extra conditional scalar invariants.
- We have sub-classified highly symmetric pp-waves (dim.isom. ≥ 2, G₂₋₆) by isometry classes.
- Generic G₁ classes currently outside (our) reach.

Ex.: G₅, G₆ isometry classes

class		invariant parameters
G₅∘; F ∶	$f(\zeta, u) = e^{B(u)}\zeta^2$	$\begin{split} & \frac{\partial_u(\operatorname{Re}\dot{B}e^{-\frac{\operatorname{Re}\mathcal{B}}{2}})\neq 0,}{\left(\underset{(\operatorname{Im}\dot{B})^2e^{-\operatorname{Re}\mathcal{B}}}{\operatorname{Re}} \right)^2 = F(\operatorname{Re}\dot{B}e^{-\frac{\operatorname{Re}\mathcal{B}}{2}}),} \\ & F = \begin{pmatrix} F_{\operatorname{Re}}\\ F_{\operatorname{Im}} \end{pmatrix} : U \subset \mathbb{R} \to \mathbb{R}^2, \\ & F_{\operatorname{Im}}(y) \geq 0, \ \ F_{\operatorname{Re}}(y) \neq \frac{1}{2}y^2 \end{split}$
<i>G</i> _{5';α,} <i>F</i> :	$f(\zeta, u) = rac{4lpha}{u^2} e^{i \ln B(u)} \zeta^2$	$ \begin{aligned} &\partial_u(\mathrm{Im}\dot{B}e^{-\frac{\mathrm{Re}B}{2}})\neq 0,\\ &-\mathrm{Re}\dot{B}e^{-\frac{\mathrm{Re}B}{2}}=\alpha^{-1/2}\geq 0,\\ &\mathrm{Im}\ddot{B}e^{-\mathrm{Re}B}=\pmb{F}(\mathrm{Im}\dot{B}e^{-\frac{\mathrm{Re}B}{2}}),\\ &\pmb{F}\colon U\subset\mathbb{R}\to\mathbb{R},\\ &\pmb{F}(-y)=-\pmb{F}(y),\ \pmb{F}(y)\neq -\frac{y}{2\sqrt{\alpha}} \end{aligned} $
<i>G</i> _{6a;α,κ} :	$f(\zeta, u) = \frac{4\alpha}{u^2} u^{2i\kappa} \zeta^2$	$lpha > 0, \kappa \geq 0$
$G_{6b;\lambda}$:	$f(\zeta, u) = e^{2i\lambda u}\zeta^2$	$\lambda \ge 0$

ODE integration constants ~> gauge parameters

Conditional Invariants

A standard invariant $\mathbf{A} = \mathbf{A}[g]$ satisfies $\mathcal{L}_{v}\mathbf{A}[g] = \dot{\mathbf{A}}_{g}[\mathcal{L}_{v}g]$ ($\mathbf{A}[g] = 0 \Rightarrow \dot{\mathbf{A}}[\mathcal{L}_{v}g] = 0$).

For any $g \in \mathcal{G}_0 \subset \Gamma(S^2 T^* M)$, suppose that

$$\mathbf{A} \wedge \mathbf{B} = A_{c_1 \cdots c_n a_1 \cdots a_m} B_{b_1 \cdots b_m} - A_{c_1 \cdots c_n b_1 \cdots b_m} B_{a_1 \cdots a_m} = 0.$$

Lemma (Conditional Invariants)

(a) \exists a unique **X** such that $\mathbf{A} = \mathbf{X} \otimes \mathbf{B}$. (b) If $\mathbf{A} = \mathbf{A}[g]$, $\mathbf{B} = \mathbf{B}[g]$ are invariants, then also $\mathcal{L}_{v}\mathbf{X}[g] = \dot{\mathbf{X}}_{g}[\mathcal{L}_{v}g]$ for $g \in \mathcal{G}_{0}$ in a diff-stable family.

Corollary

For covariant $\mathbf{F}[g] = F(\mathbf{A}, \mathbf{B}, \mathbf{X}, ...)$, if $\mathbf{F}[g] = 0$ at $g \in \mathcal{G}_0$, then $\dot{\mathbf{F}}_g[\mathcal{L}_v g] = 0$.

Linearization of an IDEAL characterization using **conditional invariants** still gives **linear invariants** (one of our motivations!).

Conditional Invariants for pp-waves

- Recurrence vector K: $\mathbf{K} \otimes \mathbf{C}^{\dagger} := \nabla \mathbf{C}^{\dagger}$ (i.e., $\nabla \mathbf{C}^{\dagger} \wedge \mathbf{C}^{\dagger} = \mathbf{0}$)
- Weyl contraction: $D_{ac}^{\dagger} = \frac{1}{(\overline{\mathbf{K}}\cdot\mathbf{K})^2} \overline{K}^{b} \overline{K}^{d} C_{abcd}^{\dagger}$
- ► Conditional scalars: supposing $\overline{\mathbf{K}} \cdot \mathbf{K} = 0$ and $\mathbf{T} \wedge \mathbf{K}^{\otimes 4} = \mathbf{T} \wedge (\nabla \mathbf{K})^{\otimes 2} = 0$

$$\left(I_{a}^{(2)}\right)^{4}\mathbf{T}:=16\mathbf{K}^{\otimes 4}, \qquad \qquad \left(I_{b}^{(2)}\right)^{2}\mathbf{T}:=16(\nabla\mathbf{K})^{\otimes 2}$$

N.B.: The conditional invariant scalars $I_a^{(2)}$, $I_b^{(2)}$ can now participate in non-polynomial relations.

• **Example:** $G_{5^{\circ};F}$ isometry class, $f(\zeta, u) = e^{B(u)}\zeta^2$

$$\begin{pmatrix} \operatorname{\mathsf{Re}} \ddot{B} e^{-\operatorname{\mathsf{Re}} B} \\ (\operatorname{\mathsf{Im}} \dot{B} e^{-\frac{1}{2} \operatorname{\mathsf{Re}} B})^2 \end{pmatrix} = \boldsymbol{F} (\operatorname{\mathsf{Re}} \dot{B} e^{-\frac{\operatorname{\mathsf{Re}} B}{2}}) \quad \Longleftrightarrow \quad \begin{pmatrix} \operatorname{\mathsf{Re}} I_b^{(2)} \\ (\operatorname{\mathsf{Im}} I_a^{(2)})^2 \end{pmatrix} = \boldsymbol{F} \left(\operatorname{\mathsf{Re}} I_a^{(2)} \right)$$

with any smooth F(y)

Flowchart: highly symmetric pp-waves isom.classes

All isometry classes among regular highly symmetric pp-waves have been

identified.

Theorem

Flowchart: highly symmetric pp-waves IDEAL eqs.

Theorem

Using **conditional invariants**, **all** regular highly symmetric pp-wave isometry classes **have** IDEAL characterizations.

Discussion

- An IDEAL characterization of the (local) isometry class of a physically interesting spacetime is a **natural problem** of geometric interest.
- Q: Examples where the IDEAL approach fails?
 A: In at least in some examples of pp-waves we must extend the IDEAL approach by conditional tensor invariants.
- TODO: Try to extend the IDEAL approach to generic pp-waves by systematic use of differential invariants (cf. Kruglikov, McNutt, Schneider).
- TODO: Continue to compare with Cartan method and find limitations of the IDEAL approach.

Discussion

- An IDEAL characterization of the (local) isometry class of a physically interesting spacetime is a **natural problem** of geometric interest.
- Q: Examples where the IDEAL approach fails?
 A: In at least in some examples of pp-waves we must extend the IDEAL approach by conditional tensor invariants.
- TODO: Try to extend the IDEAL approach to generic pp-waves by systematic use of differential invariants (cf. Kruglikov, McNutt, Schneider).
- TODO: Continue to compare with Cartan method and find limitations of the IDEAL approach.

Thank you for your attention!

Only Polynomial Relations $g = 2d\zeta d\bar{\zeta} - 2dudv - 2(f(\zeta, u) + \bar{f}(\bar{\zeta}, u)) du^{2}$ with $\mathbf{C}^{\dagger} = 8f_{\zeta\zeta}(\ell \wedge \mathbf{m}) \otimes (\ell \wedge \mathbf{m}), \quad \mathbf{T} = 4|f_{\zeta\zeta}|^{2}\ell\ell\ell\ell$

- Any non-trivial curvature relations must be tensorial.
- ▶ All tensorial invariants will be concomitants of $\nabla^k \mathbf{C}^{\dagger}$ and g.
- In components, an invariant tensorial equation must have the form

$$\sum_{i} P_{i}[f] \boldsymbol{\ell}^{\otimes l_{i}} \mathbf{m}^{\otimes m_{i}} \overline{\mathbf{m}}^{\otimes n_{i}} = \mathbf{0},$$

with $P_i[f]$ some **polynomial** differential operators.

- At any differential order, there is only a **finite dimensional** family of possible equations $(P_i[f] = 0)_i$. Hence, only as many isometry classes could be characterized.
- If any isometry class families are parametrized by functional degrees of freedom, they cannot be exhausted by a union of finite dimensional subspaces (*Baire category theorem*).