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Theorem
Using conditional invariants, all regular highly symmetric pp-wave
isometry classes have IDEAL characterizations.

Igor Khavkine (CAS, Prague) IDEAL characterization of pp-waves Srní 15/01/2024 2 / 15



Motivation

▶ The fundamental symmetries in General Relativity (GR) are
diffeomorphisms.

▶ Two (Lorentzian) spacetime geometries (M,g) and (M,g′) may
appear to be very different but still be related by a diffeomorphism.
The geometries are isometric.

▶ A lot of effort can go into deciding whether two geometries belong
to the same (local) isometry class.

Definition (locally isometric)
(M,g) is locally isometric to (M0,g0) if ∀x ∈ M ∃y ∈ M0 such that a
neighborhood of x is isometric to a neighborhood of y . All such (M,g)
constitute the local isometry class of (M0,g0).

Igor Khavkine (CAS, Prague) IDEAL characterization of pp-waves Srní 15/01/2024 3 / 15



IDEAL Characterization
▶ Q: Given a model geometry (M0,g0), is it possible to verify when

(M,g) belongs to its local isometry class by checking a list of
equations

Tα[g] = 0 (α = 1,2, · · · ,A),

where each Tα[g] is a tensor covariantly constructed from g
and its derivatives?

▶ If Yes, we call this an IDEAL (Intrinsic, Deductive, Explicit,
ALgorithmic) characterization of the local isometry class of
(M0,g0). Sometimes, also called Rainich-like.

▶ Generalizes to (M,g,Φ), including matter (tensor) fields, if we use
covariant tensor equations of the form Tα[g,Φ] = 0.

▶ An alternative to the Cartan(-Karlhede) moving-frame-based
characterization.

▶ Also, the linearizations Tα[g + εp] = Tα[g] + εṪα,g[p] + O(ε2)
constitute a complete list of local gauge invariant observables
Ṫα,g0 [−] for linearized GR on (M0,g0).
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Examples
▶ Relatively few examples of IDEAL characterizations are actually

known. To my knowledge, they are either classical, or due to the
work of Ferrando & Sáez (València), or myself + coauth.

▶ Examples:
▶ Constant curvature (1800s): R = R[g] — Riemann tensor,

Rijkh = k(gik gjh − gjk gih)

▶ Schwarzschild of mass M in 4D (F&S 1998): W = W [g] — Weyl tensor,

Rij = 0, SijlmSlm
kh + 3ρSijkh = 0,

Pab = 0, ρ/α3/2 − M = 0,

where
ρ = −( 1

12 trW 3)1/3, Sijkh = Wijkh − 1
6 (gik gjh − gjk gih),

α = 1
9 (∇ ln ρ)2 − 2ρ, Pij = (∗W )i

k
j
h∇kρ∇hρ.

▶ More F&S: Reissner-Nordström (2002), Kerr (2009), . . . (2010, 2017)
▶ IK et al.: FLRW + ϕ (2018), Schwarzschild-Tangherlini (2019)
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Current Ad-Hoc Strategy
▶ Fix a class of reference geometries (M,g0(β)), with parameters β.
▶ Suppose there already exists a characterization of this class by

the existence of tensor fields σ satisfying equations

Sα[g, σ] = 0,

covariantly constructed from σ, gij , Rijkl and their covariant
derivatives.

▶ Exploiting the geometry of (M,g0(λ)), we try to find formulas for
σ = Σ[g0] covariantly constructed from gij , Rijkl and their covariant
derivatives. If successful, we get an IDEAL characterization of
this class by

Tα[g] := Sα[g,Σ[g]] = 0.

▶ If necessary, find further covariant expressions for the
parameters β = B[g0], adding equations B[g]− β = 0 to the above
list, until we can IDEALly characterize individual isometry
classes.

Igor Khavkine (CAS, Prague) IDEAL characterization of pp-waves Srní 15/01/2024 6 / 15



IDEAL vs Cartan

Approaches to classification and equivalence of metrics.

▶ Cartan moving frame:
▶ Supplements the metric with a progressively specialized frame.
▶ Has a systematic foundation.

Quite generally applicable.
▶ IDEAL characterization:
▶ Relies only on the metric and covariant tensorial constructions from it.
▶ Has only been worked out in ad hoc examples.

Domain of applicability not well-understood.
▶ More convenient in some applications (cf. linear observables).

▶ Try to push the IDEAL approach to its limits.
⇝ pp-waves (maximally hard case?)

Igor Khavkine (CAS, Prague) IDEAL characterization of pp-waves Srní 15/01/2024 7 / 15



P(lane)P(arallel)-wave Spacetimes in 4d
Def: vacuum pp-waves take the form (with ζ = x + iy , ∂ζ̄ f = 0)

ds2 = 2dζdζ̄ − 2dudv − 2
(
f (ζ,u) + f̄ (ζ̄,u)

)
du2,

⇐⇒ Weyl-Petrov C† = W − i∗W type N and Weyl recurrent ∇C† = K ⊗ C†.

▶ Sub-classified by isometry Lie algebra type
(Ehlers & Kundt 1962).

▶ Further sub-classification into isometry
classes possible. (our work)

▶ All curvature scalars vanish! Scalars
cannot distinguish from flat space
(maximally different from Riemannian
signature).

▶ Cartan approach (McNutt 2013 PhD).
Contains some of the most difficult cases
for Cartan’s method.

f (ζ, u) =



4αu2iκ−2ζ2 G6a

e2iλuζ2 G6b

A(u)ζ2 G5

4αu−2 ln ζ G3a

ln ζ G3b

e2λζ G3c

eiγζ2iκ G3d

u−2f (ζu iκ) G2a

f (ζeiλu) G2b

A(u) ln ζ G2c

f (ζ, u) G1
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Progress and Lessons Learned

Theorem (IDEAL identification of pp-waves)

Vacuum 4d (M,g) is pp-wave iff (a) C†
ab

cdC†
cdef = 0, (b) Tabc[dTe]fgh;i = 0,

where Tabcd = −C†
e(ac|f |C̄†

b
e

d)
f is the Bel-Robinson tensor.

Proof: (a) Weyl-Petrov type N⇝ Tabcd = βℓaℓbℓcℓd ,
(b) Tabc[dTe]fgh;i = βℓaℓbℓcℓf ℓgℓh(ℓ[dℓe];i) = 0⇝ recurrent ∇C† = K ⊗ C†.

� problems going further to isometry classes �

Lessons learned:

▶ Recall: No non-vanishing curvature scalars!

▶ Any covariant relation F (T1, . . . ,Tk ) = 0 between non-scalar invariants
is at most polynomial.

▶ Any isometry classes with non-polynomial relations between
invariants cannot be characterized IDEALly!
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Highly Symmetric pp-waves

▶ Q: Is the problem of
non-polynomial relations
realized for pp-waves?

▶ A: Yes.
▶ At least the G5 classes contain

isometry classes characterized
by arbitrary C∞ functions F (y).

▶ Solution: Introduce extra
conditional scalar invariants.

▶ We have sub-classified highly
symmetric pp-waves
(dim.isom. ≥ 2, G2–6) by
isometry classes.

▶ Generic G1 classes currently
outside (our) reach.

Ex.: G5, G6 isometry classes

class invariant parameters

G5◦;F : f (ζ,u) = eB(u)ζ2

∂u(Re Ḃe−Re B
2 ) ̸= 0,(

Re B̈e−ReB

(Im Ḃ)2e−ReB

)
= F (Re Ḃe−Re B

2 ),

F =

(
FRe

FIm

)
: U ⊂ R → R2,

FIm(y) ≥ 0, FRe(y) ̸=
1
2

y2

G5′;α,F : f (ζ,u) = 4α
u2 ei ImB(u)ζ2

∂u(Im Ḃe−Re B
2 ) ̸= 0,

−Re Ḃe−Re B
2 = α−1/2 ≥ 0,

Im B̈e−ReB = F (Im Ḃe−Re B
2 ),

F : U ⊂ R → R,

F (−y) = −F (y), F (y) ̸= − y
2
√
α

G6a;α,κ: f (ζ,u) = 4α
u2 u2iκζ2 α > 0, κ ≥ 0

G6b;λ: f (ζ,u) = e2iλuζ2 λ ≥ 0

ODE integration constants⇝ gauge parameters
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Conditional Invariants

A standard invariant A = A[g] satisfies Lv A[g] = Ȧg [Lv g] (A[g] = 0 ⇒ Ȧ[Lv g] = 0).

For any g ∈ G0 ⊂ Γ(S2T ∗M), suppose that

A ∧ B = Ac1···cn a1···am Bb1···bm − Ac1···cn b1···bm Ba1···am = 0.

Lemma (Conditional Invariants)
(a) ∃ a unique X such that A = X ⊗ B. (b) If A = A[g], B = B[g] are invariants,
then also Lv X[g] = Ẋg [Lv g] for g ∈ G0 in a diff-stable family.

Corollary
For covariant F[g] = F (A,B,X, . . .), if F[g] = 0 at g ∈ G0, then Ḟg [Lv g] = 0.

Linearization of an IDEAL characterization using conditional invariants still
gives linear invariants (one of our motivations!).
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Conditional Invariants for pp-waves
▶ Recurrence vector K: K ⊗ C† := ∇C† (i.e., ∇C† ∧ C† = 0)

▶ Weyl contraction: D†
ac = 1

(K·K)2 K
b
K

d
C†

abcd

▶ Conditional scalars: supposing K · K = 0 and T ∧ K⊗4 = T ∧ (∇K)⊗2 = 0(
I(2)a

)4
T := 16K⊗4,

(
I(2)b

)2
T := 16(∇K)⊗2

N.B.: The conditional invariant scalars I(2)a , I(2)b can now participate in
non-polynomial relations.

▶ Example: G5◦;F isometry class, f (ζ,u) = eB(u)ζ2

(
Re B̈e−Re B

(Im Ḃe− 1
2 Re B)2

)
= F (Re Ḃe− Re B

2 ) ⇐⇒

(
Re I(2)b

(Im I(2)a )2

)
= F

(
Re I(2)a

)
with any smooth F (y)
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Flowchart: highly symmetric pp-waves isom.classes
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Flowchart: highly symmetric pp-waves IDEAL eqs.
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k−1

15

G3c;λ

G3d ;γ,κ
N = 0

6

αeiγ = 1/I(iκ)d

M(iκ) = 0

13

G1

G2a′;α,γ,κ,c

c = |N|
|K|

λ = 1
2 |K|

G2b′′′:k

e2iγ = (2iκ+1)(iκ−1)2

(2iκ−1)(iκ+1)2

∣∣∣ K
2(iκ−1)

∣∣∣4iκ
J

ln(|K|2) = 2ReF (I(∞)
d )

c = A∞,ReF (I
(∞)
d , I(∞)

e )

ln(|K|2) = 2ReF (I(∞)
e )

cos γ = GReF (I
(∞)
e )

ln(|K|2) = 2ReF (−I(iκ)d )

c = Aκ,ReF (I
(iκ)
d , I(iκ)e )

k = 2iκ
κ = 2λα1/2

L = 0
11

(
∇N − N

2
K
)⊗2

= 2λ2e−iγ sgnλN2D†

D† = e2iγD† or −2D† = ±ℓℓ

12e2iγ = 1 9e2iγ = 1 10

G3a◦;α,γ G3b◦;γ

G5′;∞,F

G5′;α,F α = ∞

α = ∞

G2c′;∞,F

G2c′;α,F

±α = 1/I(0)d

−2D† = ±ℓℓ

Theorem
Using conditional invariants, all regular highly symmetric pp-wave
isometry classes have IDEAL characterizations.
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Discussion

▶ An IDEAL characterization of the (local) isometry class of a
physically interesting spacetime is a natural problem of
geometric interest.

▶ Q: Examples where the IDEAL approach fails?
A: In at least in some examples of pp-waves we must extend the
IDEAL approach by conditional tensor invariants.

▶ TODO: Try to extend the IDEAL approach to generic pp-waves
by systematic use of differential invariants (cf. Kruglikov, McNutt,
Schneider).

▶ TODO: Continue to compare with Cartan method and find
limitations of the IDEAL approach.

Thank you for your attention!
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Only Polynomial Relations
g = 2dζdζ̄ − 2dudv − 2

(
f (ζ,u) + f̄ (ζ̄,u)

)
du2

with C† = 8f,ζζ(ℓ ∧ m)⊗ (ℓ ∧ m), T = 4|f,ζζ |2ℓℓℓℓ

▶ Any non-trivial curvature relations must be tensorial.
▶ All tensorial invariants will be concomitants of ∇kC† and g.
▶ In components, an invariant tensorial equation must have the form∑

i

Pi [f ]ℓ⊗li m⊗mi m⊗ni = 0,

with Pi [f ] some polynomial differential operators.
▶ At any differential order, there is only a finite dimensional family

of possible equations (Pi [f ] = 0)i . Hence, only as many isometry
classes could be characterized.

▶ If any isometry class families are parametrized by functional
degrees of freedom, they cannot be exhausted by a union of
finite dimensional subspaces (Baire category theorem).


