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Part 1 - Geometric decomposition



Hd+dH =1"— st
where

o)

-1
Hw5/ Kawpgat™dt, H:AU) = ATHU),  (2)
J0

for w € A*(U), K := (x — 20)'0;, k = deg(w), U - star-shaped,
and linear homotopy F'(t,z) = z¢ + t(x — z¢) interpolates between
Id and the constant map Sz, : © — Zo.
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for w € A¥(U), K := (x — 20)'0;, k = deg(w), [/ - star-shaped,
and linear homotopy F'(t,z) = z¢ + t(x — z¢) interpolates between
Id and the constant map sz, : © — xp.
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The Poincaré lemma

Homotopy Invariance Formula (for linear homotopy)
Hd+dH =1I" - s, , (1)
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and linear homotopy F'(t,x) = x¢ + t(x — xp) interpolates between
Id and the constant map s;, : £ — xo.




The Poincaré lemma

Homotopy Invariance Formula (for linear homotopy)
Hd+dH =1I" - s, , (1)

where
1
Hw := / ]C_le(tw)tk_ldt, H:A(U)— A*_l(U), (2)
0
for w € A*(U), K := (x — 20)?0;, k = deg(w), U - star-shaped,

and linear homotopy F'(t,x) = x¢ + t(x — xp) interpolates between
Id and the constant map s;, : £ — xo.

Why H is so interesting?




Why H is so interesting?

H?=0
That gives (Hd+ dH =1 — :

(3)
g"‘;‘“)
(Hd)? = Hd,

(dH)? = dH.
We have projectors Hd and dH into
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Why H is so interesting?

H?>=0
That gives (Hd+ dH = I — s}, )

(Hd)* = Hd, (dH)*=dH

(4)
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The Poincaré lemma

Why H is so interesting?

H?*=0 (3)

That gives (Hd +dH =1 — s},)
(Hd)?> = Hd, (dH)? =dH. (4)

We have projectors Hd and dH into
e Exact/closed vector space £(U) = im(dH) = ker(d),
e Antiexact module A(U) = im(Hd) = ker(H),
o A*(U)=EWU)a AU).



For a Riemannian manifold (M, g) we have the codifferential
§ : AF — A*+1 _ the metric dual of d.
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The co-Poincaré lemma

For a Riemannian manifold (M, g) we have the codifferential
8 : A — ARF1 - the metric dual of d.
We have cohomotopy operator h : ATt — AF. with h2 = 0, and

hoh = h, 6hd = 4.
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The co-Poincaré lemma

For a Riemannian manifold (M, g) we have the codifferential

§ : AF — AF*+1 _ the metric dual of d.

We have cohomotopy operator h : ATt — AF. with h2 = 0, and
hoh = h, 6hd = 4.

That gives (hd +0h =1—S})

(h6)? = hé, (6h)* = 6h. (5)

We therefore have the projectors hé and 6h onto
e Coexact/coclosed vector space C(U) = im(dh) = ker(6),
@ Anticoexact module Y(U) = im(hd) = ker(h),
o A"(U)=C(U)a® Y({).



In a star-shaped U:

A (U) = EU) ® A(D).

In addition, on Riemannian manifolds:

(6)
A*(U) = C(U) @ Y(U).
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In a star-shaped U:

A (U)=EU) @ A(U).
In addition, on Riemannian manifolds:

A (U) = C(U) @ V().
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Part 2 - Applications



Covariant exterior derivative
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U xV CR"xRF, U - star-shaped. Looks like a local
trivialization of a vector bundle.



Fibered set

Vertical i/

/\/ Base

U xV CR"xRF, U - star-shaped. Looks like a local
trivialization of a vector bundle.
We are interested in V-valued differential forms: A(U, V).



Vector-valued differential forms

e

Sections of associated vector bundle are in 1:1 correspondence with
equivariant horizontal forms.



d¥:=d+ AN
for A € AY(U, End(V)) (usually with additional properties related
to underlying bundle).

(8)
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(Homogenous) parallel transport equation

Theorem
The unique nontrivial solution to the equation

V=0, k>0 (9)
with the condition dH¢p =c € E(U, V) \ ker(AA_), c#0, is
given by

¢=> (“D'(HAN))e, (10)

1=0
where c is an arbitrary form, (H(A A ))? = Id, and

(HAAN ) =HAAN(..(HAN)..), (11)
l

is the [-fold composition of the operator H o A A _.



¢=> (~D'(H(AA))e,
=0

ce WU, V) \ker(AND), (12)

H(AA W) = || [y iic(A A w)(@o + t(x — 20))tF L dt]| o
—,() .

fo Il *Ju\H\:lH\Hwaf”' dt
We therefore have

= ||z *-U)HHAHXHWH\}

plloo = ||(L — H(AN ) + H(

H(A

4

)elloo <
) +.. ) lelloos
Uniformly convergent series of smooth functions can converge to a

continuous function!! Analytic functions have better uniform

A=
All
<1+ 2 — ol [ L4l 1 (Hz !

convergence properties (Cauchy—Kovalevskayg theprem)
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Notes about convergence

b= 3 (—DYHANA )le, ce&U, V) \ker(AN), (12)
=0

since
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Notes about convergence

¢ = 3 (—DYHANA )le, ce&U, V) \ker(AN), (12)
=0

since

I|H(A A w)]]os :1” [ i (A A w)(@o + t(a — 20))t*dt]| oo
< Jy llz = onHAHoonHoot’ffldt
= ||z — zol|| Al|oo| |w[loo 7 -
We therefore have

|lloo = [[(1 = H(AA )+ H(AN(H(AN))) = .. )clloo <
2
Allso Allso
1t o — ol 4= + (1o = aoll 4"+ ) el
Uniformly convergent series of smooth functions can converge to a

continuous function!! Analytic functions have better uniform
convergence properties (Cauchy—Kovalevskaya theorem).



Geometry-based differential equations
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Geometry-based differential equations

Using Geometric decomposition we can solve (locally) all equations
containing the operators

DA=dV =d+ AA_, Ae A" (U, End(V)), (13)

A¥ =6+ X (14)
using methods that mimics those for ODEs:

d
deﬂ,

15
J < H. (15)
For series solutions convergence issues matters - analyticity is the
best property - it preserves under uniform convergence of
functional series.



Variational calculus



We have A*(J°°(M,R)) with local coordinates z,y,y;, .
d - vertical exterior derivative

Having E[y] € C*°(J*°(M,R)) find such L € C*°(J*>°(M,R)),
such that

dL = Elyldy

(16)
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Variational calculus

We have A*(J>°(M,R)) with local coordinates Y Yy -
d - vertical exterior derivative

Inverse problem in the calculus of variations

Having Ely] € C*°(J>*°(M,R)) find such L € C*(J>*(M,R)),
such that ~
dL = E[y]dy (16)

Obvious constraint: d(Edy) = ddL = 0.



Variational calculus

When d(Edy) # 0, then we can apply Geometric decomposition
(vertical star-shaped set) to get

Edy =dL & )\, (17)

where \ € A is an vertical atiexact form A\ = Hd(Edy).



Variational calculus

When d(Edy) # 0, then we can apply Geometric decomposition
(vertical star-shaped set) to get

Edy =dL & )\, (17)

where \ € A is an vertical atiexact form A\ = Hd(Edy).
The constraint A = 0 restricts DE manifold and makes £
variational on it (hybrid variational problem).



Topological duals



Topological duals

We restrict ourselves to the forms with compact support. The

support is a star-shaped set of a Riemannian manifold (use of
homotopy operator). Define

< w >i= /w (18)

where ¢ is a chain, and w a form.
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Topological duals

We restrict ourselves to the forms with compact support. The
support is a star-shaped set of a Riemannian manifold (use of
homotopy operator). Define

<cw >i= /w (18)

where ¢ is a chain, and w a form.
Notable topological dual (Stokes theorem)

< Oc,w >=<c¢,dw > . (19)
We can dualize homotopy operator
< Hyc,w >=<c,Hw >, (20)

and then construct Geometric decomposition on chains in order to
solve chain equations, e.g., dc = e for chain ¢ and a fixed chain e.



We can also dualize inner product

< Exc,w >=<c,ixw >,

(21)
where Ex is the extrusion operator along the flow of X € I'(M).
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Topological duals

We can also dualize inner product
< Exc,w >=<c,ixw >, (21)

where Ex is the extrusion operator along the flow of X € I'(M).
Moreover, the dual of A A _ operator is given by

< Eiwc,w >=<c, ANw >, (22)

where ET is adjoint of extrusion with respect to the metric on
chains, and { is the musical isomorphism on Riemannian manifold.



Topological duals

We can also dualize inner product
< Exc,w >=<c,ixw >, (21)

where Ex is the extrusion operator along the flow of X € I'(M).
Moreover, the dual of A A _ operator is given by

< Eiwc,w >=<c, ANw >, (22)

where ET is adjoint of extrusion with respect to the metric on
chains, and { is the musical isomorphism on Riemannian manifold.
All the geometry-based differential equations have their
(topological) duals, e.g.

d+AN_ < O+ EL,. (23)
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Summary

@ Geometric decomposition is the essential method to solve
exterior differential equations locally (e.g. in a star-shaped
subset) as simple as for ODEs.

e In the worst (typical) case scenario we can construct a
functional series solution - lack of smoothness in general case.
@ Geometric decomposition explains lack of variationality for the
equations 'as they stand’ (however, all equations are either
variational or are reductions of variational equations, see:
Dirac reduction of constraints for symplectic geometry).

@ Topological dual of Geometric decomposition can be used to
solve (topological) dual problems.
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