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Part 1 - Geometric decomposition



The Poincaré lemma

Homotopy Invariance Formula (for linear homotopy)

Hd+ dH = I∗ − s∗x0
, (1)

where

Hω :=

∫ 1

0
K⌟ωF (t,x)t

k−1dt, H : Λ∗(U) → Λ∗−1(U), (2)

for ω ∈ Λk(U), K := (x− x0)
i∂i, k = deg(ω), U - star-shaped,

and linear homotopy F (t, x) = x0 + t(x− x0) interpolates between
Id and the constant map sx0 : x → x0.

Why H is so interesting?
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Homotopy Invariance Formula (for linear homotopy)

Hd+ dH = I∗ − s∗x0
, (1)

where

Hω :=

∫ 1

0
K⌟ωF (t,x)t

k−1dt, H : Λ∗(U) → Λ∗−1(U), (2)

for ω ∈ Λk(U), K := (x− x0)
i∂i, k = deg(ω), U - star-shaped,

and linear homotopy F (t, x) = x0 + t(x− x0) interpolates between
Id and the constant map sx0 : x → x0.

Why H is so interesting?



The Poincaré lemma
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Why H is so interesting?

H2 = 0 (3)

That gives (Hd+ dH = I − s∗x0
)

(Hd)2 = Hd, (dH)2 = dH. (4)

We have projectors Hd and dH into

Exact/closed vector space E(U) = im(dH) = ker(d),

Antiexact module A(U) = im(Hd) = ker(H),

Λ∗(U) = E(U)⊕A(U).
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The co-Poincaré lemma

For a Riemannian manifold (M, g) we have the codifferential
δ : Λk → Λk+1 - the metric dual of d.
We have cohomotopy operator h : Λk+1 → Λk. with h2 = 0, and
hδh = h, δhδ = δ.
That gives (hδ + δh = I − S∗

x0
)

(hδ)2 = hδ, (δh)2 = δh. (5)

We therefore have the projectors hδ and δh onto

Coexact/coclosed vector space C(U) = im(δh) = ker(δ),

Anticoexact module Y(U) = im(hδ) = ker(h),

Λ∗(U) = C(U)⊕ Y(U).
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Geometric decomposition

In a star-shaped U :

Λ∗(U) = E(U)⊕A(U). (6)

In addition, on Riemannian manifolds:

Λ∗(U) = C(U)⊕ Y(U). (7)
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Part 2 - Applications



Covariant exterior derivative



Fibered set

U × V ⊂ Rn × Rk, U - star-shaped. Looks like a local
trivialization of a vector bundle.
We are interested in V -valued differential forms: Λ(U, V ).
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Vector-valued differential forms

Sections of associated vector bundle are in 1:1 correspondence with
equivariant horizontal forms.



Covariant exterior derivative

d∇ := d+A ∧ , (8)

for A ∈ Λ1(U,End(V )) (usually with additional properties related
to underlying bundle).



(Homogenous) parallel transport equation

Theorem

The unique nontrivial solution to the equation

d∇ϕ = 0, k > 0 (9)

with the condition dHϕ = c ∈ E(U, V ) \ ker(A ∧ ), c ̸= 0, is
given by

ϕ =
∞∑
l=0

(−1)l(H(A ∧ ))lc, (10)

where c is an arbitrary form, (H(A ∧ ))0 = Id, and

(H(A ∧ ))l = H(A ∧ (. . . (H(A ∧ ) . . .)︸ ︷︷ ︸
l

, (11)

is the l-fold composition of the operator H ◦A ∧ .



Notes about convergence

ϕ =

∞∑
l=0

(−1)l(H(A ∧ ))lc, c ∈ E(U, V ) \ ker(A ∧ ), (12)

since

||H(A ∧ ω)||∞ = ||
∫ 1
0 iK(A ∧ ω)(x0 + t(x− x0))t

k−1dt||∞
≤

∫ 1
0 ||x− x0||||A||∞||ω||∞tk−1dt
= ||x− x0||||A||∞||ω||∞ 1

k .

We therefore have

||ϕ||∞ = ||(1−H(A ∧ ) +H(A ∧ (H(A ∧ )))− . . .)c||∞ ≤(
1 + ||x− x0|| ||A||∞

k +
(
||x− x0|| ||A||∞

k

)2
+ . . .

)
||c||∞,

Uniformly convergent series of smooth functions can converge to a
continuous function!! Analytic functions have better uniform
convergence properties (Cauchy–Kovalevskaya theorem).
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Geometry-based differential equations

Using Geometric decomposition we can solve (locally) all equations
containing the operators

DA = d∇ = d+A ∧ , A ∈ Λ1(U,End(V )), (13)

DX = δ +X⌟ . (14)

using methods that mimics those for ODEs:

d ↔ d
dx ,∫

↔ H.
(15)

For series solutions convergence issues matters - analyticity is the
best property - it preserves under uniform convergence of
functional series.
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Variational calculus

We have Λ∗(J∞(M,R)) with local coordinates xi, y, yj , . . ..
d̄ - vertical exterior derivative

Inverse problem in the calculus of variations

Having E [y] ∈ C∞(J∞(M,R)) find such L ∈ C∞(J∞(M,R)),
such that

d̄L = E [y]dy (16)

Obvious constraint: d̄(Edy) = d̄d̄L = 0.
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Obvious constraint: d̄(Edy) = d̄d̄L = 0.



Variational calculus

When d̄(Edy) ̸= 0, then we can apply Geometric decomposition
(vertical star-shaped set) to get

Edy = d̄L⊕ λ, (17)

where λ ∈ A is an vertical atiexact form λ = H̄d̄(Edy).
The constraint λ = 0 restricts DE manifold and makes E
variational on it (hybrid variational problem).



Variational calculus

When d̄(Edy) ̸= 0, then we can apply Geometric decomposition
(vertical star-shaped set) to get

Edy = d̄L⊕ λ, (17)

where λ ∈ A is an vertical atiexact form λ = H̄d̄(Edy).
The constraint λ = 0 restricts DE manifold and makes E
variational on it (hybrid variational problem).



Topological duals



Topological duals

We restrict ourselves to the forms with compact support. The
support is a star-shaped set of a Riemannian manifold (use of
homotopy operator). Define

< c, ω >:=

∫
c
ω (18)

where c is a chain, and ω a form.
Notable topological dual (Stokes theorem)

< ∂c, ω >=< c, dω > . (19)

We can dualize homotopy operator

< H#c, ω >=< c,Hω >, (20)

and then construct Geometric decomposition on chains in order to
solve chain equations, e.g., ∂c = e for chain c and a fixed chain e.
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Topological duals

We can also dualize inner product

< EXc, ω >=< c, iXω >, (21)

where EX is the extrusion operator along the flow of X ∈ Γ(M).
Moreover, the dual of A ∧ operator is given by

< E†
A♯c, ω >=< c,A ∧ ω >, (22)

where E† is adjoint of extrusion with respect to the metric on
chains, and ♯ is the musical isomorphism on Riemannian manifold.
All the geometry-based differential equations have their
(topological) duals, e.g.

d+A ∧ ↔ ∂ + E†
A♯ . (23)
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Geometric decomposition is the essential method to solve
exterior differential equations locally (e.g. in a star-shaped
subset) as simple as for ODEs.

In the worst (typical) case scenario we can construct a
functional series solution - lack of smoothness in general case.

Geometric decomposition explains lack of variationality for the
equations ’as they stand’ (however, all equations are either
variational or are reductions of variational equations, see:
Dirac reduction of constraints for symplectic geometry).

Topological dual of Geometric decomposition can be used to
solve (topological) dual problems.
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