Higher order symplectic structures on shape spaces of space curves

Peter W. Michor Universität Wien www.mat.univie.ac.at/~michor

44. Winterschool Geometry and Physics Srni, 2024

Sun 14th Jan 2024 - Fri 19th Jan 2024 Based on collaborations with: Martin Bauer, Sadashige Ishiga Paper unfinished

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Abstract: For $c \in \text{Imm}(S^1, \mathbb{R}^3)$ the 2- form

$$\Omega_c^{MW}(h,k) = \int_{S^1} \det(D_s c,h,k) ds,$$

where $ds = |c'(\theta)|d\theta$ and $D_s = \frac{1}{|c'(\theta)|}\partial_{\theta}$, induces the Marsden-Weinstein symplectic structure¹ on the shape space $\text{Imm}(S^1, \mathbb{R}^3)/\text{Diff}(S^1)$, corresponding to a Kähler structure. The Hamiltonian flow for the length functional is the binormal flow. In this talk I will present other symplectic structures related to this.

¹Marsden, J., and Weinstein, A. Coadjoint orbits, vortices, and Clebsch variables for in- compressible fluids. Physica D: Nonlinear Phenomena 7, 1 (1983), 305-323.

The space

of regular space curves

$$\mathsf{Imm} = \mathsf{Imm}(S^1, \mathbb{R}^3) := \left\{ c \in C^\infty(S^1, \mathbb{R}^3) : |c'| \neq 0
ight\}.$$

is open subset in $C^{\infty}(S^1, \mathbb{R}^3)$, a manifold with tangent space $T_c \operatorname{Imm} = T_c \operatorname{Imm}(S^1, \mathbb{R}^3) = C^{\infty}(S^1, \mathbb{R}^3).$

Consider the action of the reparametrization group $\text{Diff} = \text{Diff}(S^1)$ by composition from the right and the quotient (shape) space

$$B_i = B_i(S^1, \mathbb{R}^3) := \operatorname{Imm}(S^1, \mathbb{R}^3) / \operatorname{Diff}(S^1),$$

which is an infinite dimensional orbifold; the isotropy groups are finite cyclic groups.²

The vertical fibers consist exactly of all fields h that are tangent to it's foot point c, i.e., h = a.c' with $a \in C^{\infty}(S^1)$.

Reparametrization invariant Riemannian metrics

on Imm are Riemannian metrics of the form:

$$\begin{split} G_c^L(h,k) &= \int_{S^1} \langle L_c h, k \rangle |c'| d\theta = \int_{S^1} \langle h, L_c k \rangle |c'| d\theta, \quad \text{where} \\ & L \in \Gamma(\mathsf{End}(\mathsf{TImm}), \quad L_c : \mathsf{T}_c \mathsf{Imm} = C^\infty(S^1, \mathbb{R}^3) \to \mathsf{T}_c \mathsf{Imm}, \end{split}$$

called *inertia operator*, is an elliptic, pseudo differential operator that is equivariant under the right action of $\text{Diff}(S^1)$ and also under left action of of SO(3), and which is also selfadjoint with respect to the L^2 -metric, i.e.,

$$L_{c\circ arphi}(h\circ arphi) = (L_c(h))\circ arphi \quad ext{and} \quad \int \langle L_c h, k
angle ds = \int \langle h, L_c k
angle ds \; .$$

The class of Sobolev H^k -metrics, where $L = (1 - (-1)^k D_s^{2k})$. For k = 0 we have $G_c^{id}(h, k) = \int \langle h, k \rangle ds$.

The induced Liouville one form

corresponding to the metric G^L is the one-form:

$$\Theta_c^L(h) := G_c^L(c imes D_s c, h) = \int \langle c imes D_s c, L_c h
angle ds = \int \det(c, D_s c, L_c h) ds$$

for $h \in T_c$ Imm, where \times denotes the vector cross product on \mathbb{R}^3 . We have:

For any inertia operator L, that is equivariant under the right action of Diff and the left action of SO(3), the induced Liouville one-form Θ^L is invariant under the right action of Diff and the left action of SO(3), i.e., for any $c \in \text{Imm}$, $h \in T_c\text{Imm}$, $\varphi \in \text{Diff}$ and $O \in SO(3)$ we have

$$\Theta^L_{O\circ c\circ\varphi}(O\circ h\circ\varphi))=\Theta^L_c(h).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The induced pre-symplectic form on Imm is

 Ω^{L} is invariant under the actions of Diff and SO(3). For the invariant L^{2} -metric, i.e., L = id, one obtains three times the Marsden-Weinstein pre-symplectic structure, i.e.,

$$\Omega_c^{\mathrm{id}}(h,k) = 3 \int_{S^1} \langle D_s c \times h, k \rangle ds = 3 \int \det(D_s c, h, k) ds =: \Omega_c^{\mathsf{MW}}(h,k).$$

Its kernel consists exactly of all vector fields along c which are tangent to c, so by reduction it induces a pre-symplectic structure on shape space $\text{Imm}(S^1, \mathbb{R}^3)/\text{Diff}$ which is easily seen to be non-degenerate and thus is a symplectic structure there.

Theorem

The form Ω^L factors to a (pre)-symplectic form $\overline{\Omega}^L$ on B_i if the inertia operator L maps vertical tangent vectors to span $\{c, c'\}$, i.e., if for all $c \in \text{Imm}$ and $a \in C^{\infty}(S^1)$ we have $L_c(a.c') = a_1c' + a_2c$ for some functions $a_i \in C^{\infty}(S^1)$. **Proof.** The 1-form Θ^L on Imm factors to a 1-form $\overline{\Theta}^L$ on shape space B_i with $\Theta^L = \pi^* \overline{\Theta}^L$ if and only if Θ^L is invariant under under Diff and is horizontal in the sense that it vanishes on each vertical tangent vector h = a.c' for a in $C^{\infty}(S^1, \mathbb{R})$. The condition on L such that Θ^L vanishes on all vertical h is

$$\Theta_c^L(\mathit{ac'}) = \int \langle c \times D_s c, L_c(\mathit{ac'}) \rangle ds = 0.$$

From here it is clear that this holds if $L_c(a.c') = a_1c' + a_2c$ for some functions $a_i \in C^{\infty}(S^1)$.

In that case also its exterior derivative satisfies

$$\Omega^L = -d\Theta^L = -d\pi^*\bar{\Theta}^L = -\pi^*d\bar{\Theta}^L =:\pi^*\bar{\Omega}^L$$

for the presymplectic form $\bar{\Omega}^L = -d\bar{\Theta}^L$ on $B_{i, \Box \rightarrow \langle a \rangle } = -d\bar{\Theta}^L$

Inertia operators that satisfy these conditions are

$$L_c(h) = F(c).h$$
 for $F \in C^{\infty}(\text{Imm}, \mathbb{R}_{>0})$, for example
 $L_c(h) = \Phi(\ell_c)h$, or $L_c(h) = (1 + A\kappa_c^2)h$.

Sobolev metrics do not satisfy the conditions. By using a projection in the definiton one can, however, modify them to still respect the vertical bundle:

$$L_c h = \left(\operatorname{pr}_c (1 - (-1)^k D_s^{2k}) \operatorname{pr}_c + (1 - \operatorname{pr}_c) (1 - (-1)^k D_s^{2k}) (1 - \operatorname{pr}_c) \right) h,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\text{pr}_{c} h = \langle D_{s}c, h \rangle D_{s}c$ is the *L*²-orthogonal projection to the vertical bundle; see [Bauer, Harms, 2015], where metrics of this form were studied.

Horizontal Ω^L -Hamiltonian vector fields.

If the inertia operator $L \in \Gamma(\operatorname{End}(T\operatorname{Imm}(S^1, \mathbb{R}^3))$ induces a weak symplectic structure on B_i , and is weakly non-degenerate in the sense that $\overline{\Omega}^L : T\operatorname{Imm} \to T^*\operatorname{Imm}$ is injectiven then the kernel of $\Omega_c^L : T_c\operatorname{Imm} \to T_c^*\operatorname{Imm}$ equals $T_c(c \circ \operatorname{Diff})$ for all c. Thus Ω_c^L restricted to the G^L -orthogonal complement of $T_c(c \circ \operatorname{Diff})$ is injective. Let us suppose that H is a Diff-invariant smooth function on Imm. The 2-form Ω^L on Imm is still only presymplectic, but if each dH_c lies in the image of $\Omega^L : T\operatorname{Imm} \to T^*\operatorname{Imm}$, then a unique smooth *horizontal Hamiltonian vector field* $X \in \mathfrak{X}(\operatorname{Imm})$ is determined by

 $dH = i_X \Omega^L = \Omega^L(X,), \qquad G_c^L(X_c, Tc.Y) = 0 \forall Y \in \mathfrak{X}(S^1)$

which we will denote by $hgrad^{\Omega^{L}}(H)$. Obviously we then have

$${\sf grad}^{ar{\Omega}^L}(ar{H})\circ\pi={\cal T}\pi\circ{\sf hgrad}^{\Omega^L}({\cal H}),\quad{\sf where}\,\,ar{H}\circ\pi={\cal H}\,.$$

Momentum mappings

Since Θ^L is invariant for a pre-symplectic group action with fundamental vector field mapping $\zeta : \mathfrak{g} \to \mathfrak{X}(\operatorname{Imm}(S^1, \mathbb{R}^3))$, the momentum mapping is given as follows, for $Y \in \mathfrak{g}$,

$$\langle J(c), Y \rangle = \Theta^{L}(\zeta_{Y})_{c} = \int \langle c \times D_{s}c, L_{c}(Y \circ c) \rangle ds,$$

where we denote the duality as $\langle , \rangle : \mathfrak{g}^* \times \mathfrak{g} \to \mathbb{R}$. Namely, $d\Theta^L(\zeta_Y) = di_{\zeta_Y}\Theta^L = \mathcal{L}_{\zeta_Y}\Theta^L - i_{\zeta_Y}d\Theta^L = 0 - i_{\zeta_Y}\Omega^L$. Thus we have for $X \in \mathfrak{X}(S^1) = C^{\infty}(S^1)\partial_s$ and $Y \in \mathfrak{so}(3)$ $\langle J^{\text{Diff}}(c), X.D_s c \rangle = \Theta^L(X.D_s c) = \int \langle c \times D_s c, L_c(X.D_s c) \rangle ds$

reparameterization momentum.

$$\langle J^{SO(3)}(c), Y
angle = \Theta^L(Y \circ c) = \int \langle c imes D_s c, L_c(Y \circ c)
angle ds$$

angular momentum.

 $Y \in \mathbb{R}^3 \cong \mathfrak{so}(3) \cong L_{\mathsf{skew}}(\mathbb{R}^3, \mathbb{R}^3) \text{ acts via } X \mapsto 2Y \times X = \mathsf{so}(3) \cong \mathbb{R}^3$

Special case: length weighted metrics

Let $\Phi : \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ and $L_c = \Phi(\ell_c)$, where $\ell_c = \int_{S^1} |c'| d\theta$. **Theorem.** Let $\Phi \in C^1(R_{>0}, R_{\geq 0})$. The induced (pre)-symplectic structure of the $G^{\Phi(\ell)}$ -metric is given by:

$$\Omega_c^L(h,k) = \int (\langle D_s c, L_c h \times k + h \times L_c k \rangle - \langle c, D_s h \times L_c k + L_c h \times D_s k \rangle + \langle c \times D_s c, (D_{c,k}L_c)h - (D_{c,h}L_c)k \rangle) ds$$

Furthermore, we have:

- 1. If $\Phi(\ell) \neq \text{Const. } \ell^{-3}$ then the presymplectic structure $\overline{\Omega}^{\Phi(\ell)}$ on $B_i(S^1, \mathbb{R}^3)$ is non-degenerate and thus symplectic.
- In the scale invariant case, i.e., if Φ(ℓ) = Cℓ⁻³ with C > 0, then the Liouville form Θ^{Cℓ⁻³} is also invariant under the scaling action c → a.c for a ∈ ℝ_{>0} and vanishes on all scaling vectors. In that case Ω^{Cℓ⁻³} = π*(dΘ^{Cℓ⁻³}), and Ω^{Cℓ⁻³} = dΘ^{Cℓ⁻³} turns out to be a symplectic structure on Imm(S¹, ℝ³)/Diff × ℝ_{>0}.

Proposition

If $\Phi(\ell) \neq \text{Const. } \ell^{-3}$, For a Diff-invariant Hamiltonian $H: \text{Imm}(S^1, \mathbb{R}^3) \rightarrow \mathbb{R}^3$, we have

$$\begin{split} \mathsf{hgrad}^{\Omega^{\Phi(\ell)}}(H) &= \frac{1}{3\Phi(\ell_c)} \Biggl\{ -D_s c \times \mathsf{grad}^{G^{\mathsf{id}}} H \\ &+ \frac{\Phi'(\ell_c)}{3\Phi(\ell_c) + \Phi'(\ell_c)\ell_c} \Biggl[\langle D_s^2 c, D_s c \times \mathsf{grad}^{G^{\mathsf{id}}} H \rangle_{L^2_{ds}(S^1)} D_s c \times (D_s c \times c) \\ &+ \langle D_s c \times c, D_s c \times \mathsf{grad}^{G^{\mathsf{id}}} H \rangle_{L^2_{ds}(S^1)} D_s c \times D_s^2 c \Biggr] \Biggr\} \end{split}$$

The scale invariant case

$$\Phi(\ell) = \text{Const.} \ \ell^{-3} \iff 3\Phi(\ell_c) + \Phi'(\ell_c)\ell_c = 0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

still offers difficulties.

Example: Length

Suppose $H(c) = f \circ \ell$ for some function f. Then:

$$dH_{c}(k) = f'(\ell_{c}) \int \langle D_{s}k, D_{s}c \rangle ds = -f'(\ell_{c}) \int \langle D_{s}^{2}c, k \rangle ds,$$

$$grad^{G^{id}} H = -f'(\ell_{c})D_{s}^{2}c.$$

$$hgrad^{\Omega^{\Phi(\ell)}} H = \frac{f'(\ell_{c})}{3\Phi(\ell_{c})} \left(1 + \frac{\Phi'(\ell_{c})\ell_{c}}{3\Phi(\ell_{c}) + \Phi'(\ell_{c})\ell_{c}}\right) D_{s}c \times D_{s}^{2}c.$$

If $f'(\ell_c) = 0$ then c is a fixed point of the Hamitonian flow. If $f'(\ell_c) \neq 0$, then the length ℓ_c is conserved along the flow as $H = f \circ \ell$ is conserved. Note that $\operatorname{hgrad}^{\Omega^{\Phi(\ell)}} H$ is a constant multiple of the binormal equation (also known as the vortex filament equation),

$$\mathsf{hgrad}^{\Omega^{\mathsf{MW}}} \ell = D_s c \times D_s^2 c$$

using the Marsden-Weinstein symplectic structure.

as a Hamiltonian function: $E(c)\frac{1}{2}\int |c|^2 ds$, Using grad^{*G*^{id}} E = c, the horizontal Hamiltonian field is:

$$\begin{split} \mathsf{h}\mathsf{grad}^{\Omega^{\Phi(\ell)}} & E = \frac{1}{3\Phi(\ell_c)} \left\{ -D_s c \times c + \frac{\Phi'(\ell_c)}{3\Phi(\ell_c) + \Phi'(\ell_c)\ell_c} \cdot \right. \\ & \left. \cdot \left[\Theta^{D_s^2 c}(c) D_s c \times D_s c \times c - \int |D_s c \times c|^2 ds D_s c \times D_s^2 c \right] \right. \\ & = \frac{1}{3\Phi(\ell_c)} \left\{ \mathsf{h}\mathsf{grad}^{\Omega^{\mathsf{MW}}} E + \frac{\Phi'(\ell_c)}{3\Phi(\ell_c) + \Phi'(\ell_c)\ell_c} \cdot \right. \\ & \left. \cdot \left[\Theta^{D_s^2 c}(c) (\mathsf{pr}_c - 1) \operatorname{grad}^{G^{\mathsf{id}}} E - \int |D_s c \times c|^2 ds \operatorname{h}\mathsf{grad}^{\Omega^{\mathsf{MW}}} \ell \right] . \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The presymplectic form $\Omega^{1+\kappa^2} = -d\Theta^{1+\kappa^2}$ descends to $\bar{\Omega}^{1+\kappa^2}$ by the general Theorem above. It seems that $\bar{\Omega}^{1+\kappa^2}$ is non-degenerate, but the computations are not completely done.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thank you for your attention