Symmetric Poisson geometry

Filip Moučka

(joint work with Roberto Rubio)

44th Winter School Geometry and Physics Srní January 18, 2024

Poisson geometry

Poisson geometry originates from the mathematical formulation of classical mechanics.

Given a bivector field $\pi \in \Gamma(\wedge^2 T)$, consider the maps:

$$\{ , \}: \times^2 C^{\infty}(M) \to C^{\infty}(M), \qquad \text{Ham: } C^{\infty}(M) \to \Gamma(T).$$

$$(f,g) \longmapsto \pi(\mathrm{d}f,\mathrm{d}g) \qquad \qquad f \longmapsto \iota_{\mathrm{d}f}\pi = \{f, \}$$

We have the following series of equivalences:

$$\operatorname{Jac}_{\{\ ,\ \}}=0 \qquad \Leftrightarrow \qquad \operatorname{Ham}\{f,g\} = [\operatorname{Ham} f, \operatorname{Ham} g]_{\operatorname{Lie}} \qquad \Leftrightarrow \qquad [\pi,\pi]_{\operatorname{Sc}}=0.$$

The Schouten bracket on $\Gamma(\wedge^{\bullet}T)$ is the unique map $[\ ,\]_{Sc}: \times^2\Gamma(\wedge^{\bullet}T) \to \Gamma(\wedge^{\bullet}T)$ s.t.

- 1. $[\mathcal{X},]_{\text{sc}}$ is a degree- $(|\mathcal{X}| 1)$ 2. $[X,]_{\text{sc}} = \pounds_X$,
 - graded derivation of $\Gamma(\wedge^{\bullet}T)$, 3. $[\mathcal{X},\mathcal{Y}]_{\operatorname{Sc}} = -(-1)^{(|\mathcal{X}|-1)(|\mathcal{Y}|-1)}[\mathcal{Y},\mathcal{X}]_{\operatorname{Sc}}$.

A Poisson structure is $\pi \in \Gamma(\wedge^2 T)$ s.t. $[\pi, \pi]_{Sc} = 0$.

Equivalently, a Poisson structure is an \mathbb{R} -bilinear map $\{\ ,\ \}: \times^2 C^\infty(M) \to C^\infty(M)$ s.t.

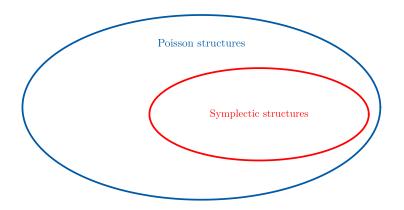
$$\{f,g\} = -\{g,f\}, \qquad \quad \{f,gh\} = g\{f,h\} + \{f,g\}h, \qquad \quad \operatorname{Jac}_{\{\ ,\ \}} = 0.$$

Relation between Poisson and symplectic geometry

If $\pi \in \Gamma(\wedge^2 T)$ is non-degenerate, $\omega := \pi^{-1} \in \Gamma(\wedge^2 T^*)$, then

$$[\pi,\pi]_{\mbox{\tiny Sc}}=0 \qquad \qquad \Leftrightarrow \qquad \mbox{d}\omega=0. \label{eq:sc}$$

A symplectic structure is a non-degenerate $\omega \in \Gamma(\wedge^2 T^*)$ s.t. $d\omega = 0$.



Motivation

From a mathematical point of view, there is a very natural question:

What happens when instead of $\pi \in \Gamma(\wedge^2 T)$ one has $\vartheta \in \Gamma(\odot^2 T)$?

Given a symmetric bivector field $\vartheta \in \Gamma(\odot^2 T)$, consider the maps:

$$\left\{ \;,\; \right\} : \times^2 C^\infty(M) \to C^\infty(M), \qquad \qquad \operatorname{grad}: C^\infty(M) \to \Gamma(T).$$

$$(f,g) \longmapsto \vartheta(\operatorname{d} f,\operatorname{d} g) \qquad \qquad f \longmapsto \iota_{\operatorname{d} f} \vartheta = \left\{ f,\; \right\}$$

Naively, one can ask

$$\begin{split} & \operatorname{Jac}_{\{\ ,\ \}} = 0 & \Leftrightarrow & \vartheta = 0, \\ & \operatorname{grad}\{f,g\} = [\operatorname{grad} f,\operatorname{grad} g]_{\operatorname{Lie}} & \Leftrightarrow & \vartheta = 0, \\ & [\vartheta,\vartheta]_{\operatorname{Sc}} = 0 & \Leftrightarrow & \vartheta \text{ is arbitrary}. \end{split}$$

The Schouten bracket on $\Gamma(\odot^{\bullet}T)$ is the unique map $[\ ,\]_{\operatorname{Se}}:\times^2\Gamma(\odot^{\bullet}T)\to\Gamma(\odot^{\bullet}T)$ s.t.

1.
$$[\mathcal{X},]_{\operatorname{Sc}}$$
 is a degree- $(|\mathcal{X}|-1)$ 2. $[X,]_{\operatorname{Sc}}=\pounds_X$, derivation of $\Gamma(\odot^{\bullet}T)$, 3. $[\mathcal{X},\mathcal{Y}]_{\operatorname{Sc}}=-[\mathcal{Y},\mathcal{X}]_{\operatorname{Sc}}$.

Non-degenerate case? The exterior derivative cannot act on the elements of $\Gamma(\odot^{\bullet}T^*)$.

Any way out?

Recall three ways that lead to the notion of Poisson structure:

- 1. $[\pi,\pi]_{Sc}=0$,
- 2. $\operatorname{Ham}\{f,g\} = [\operatorname{Ham} f, \operatorname{Ham} g]_{\text{Lie}}$,
- 3. non-degenerate case: $\mathrm{d}\omega=0$, where $\omega:=\pi^{\scriptscriptstyle{-1}}.$

The way out is to find analogues of d, \pounds_X , and $[\ ,\]_{\text{\tiny Lie}}!$

Symmetric derivative

There is a unique degree-1 graded derivation d of $\Gamma(\wedge^{\bullet}T^*)$ s.t.

$$(\mathrm{d}f)(X) = Xf, \qquad \qquad \mathrm{d} \circ \mathrm{d} = 0.$$

It is called the exterior derivative.

Analogue on
$$\Gamma(\odot^{\bullet}T^*)$$
?

Def. The symmetric derivative corresponding to a connection ∇ ,

$$\nabla^s := \bigoplus_{k \in \mathbb{Z}} (k+1) \cdot \operatorname{Sym} \circ \nabla.$$

Prop. There is one-to-one correspondence between torsion-free connections and degree-1 derivations D of $\Gamma(\odot^{\bullet}T^*)$ s.t.

$$(Df)(X) = Xf.$$

Prop. There is **no** degree-1 derivation D of $\Gamma(\odot^{\bullet}T^*)$ s.t.

$$(Df)(X) = Xf, D \circ D = 0.$$

The covariant gradient $\nabla: \Gamma(\otimes^{ullet} T^*) \to \Gamma(\otimes^{ullet} T^*)$: $\nabla(\Gamma(\otimes^k T^*)) \subseteq \Gamma(\otimes^{k+1} T^*), \qquad (\nabla A)(X,X_1,\dots,X_k) := (\nabla_X A)(X_1,\dots,X_k).$

Analogue of closed forms?

A Killing structure is a pair (∇, K) consisting of a torsion-free connection ∇ and $K \in \Gamma(\odot^{\bullet}T^{*})$ s.t.

$$\nabla^s K = 0.$$

A Killing structure (∇, K) induces the function $f_K \in C^{\infty}(TM)$

$$f_K((p,v)) := K_p(v,\ldots,v)$$
 for all $(p,v) \in TM$,

that is constant along every geodesic of ∇ .

Killing tensors are used in general relativity (Carter tensor in Kerr-Newman spacetime), integrable systems (separability of Hamilton-Jacobi eq.), cosmology (FLRW spacetimes),

. . .

Symmetric Lie derivative

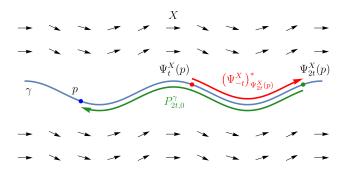
The Lie derivative w.r.t. $X \in \Gamma(T)$:

$$\pounds_X := [\iota_X, \mathbf{d}]_{\mathbf{g}} = \iota_X \circ \mathbf{d} + \mathbf{d} \circ \iota_X.$$

Def. The symmetric Lie derivative corresponding to ∇^s w.r.t. $X \in \Gamma(T)$:

$$\pounds_X^{\nabla^s} := [\iota_X, \nabla^s] = \iota_X \circ \nabla^s - \nabla^s \circ \iota_X.$$

$$\textbf{Prop.} \ (\pounds_X^{\nabla^s}\sigma)_p = \lim_{t\to 0} \frac{1}{t} \left(P_{2t,0}^{\gamma} \left(\Psi_{-t}^X \right)_{\Psi_{2t}^X(p)}^* \sigma_{\Psi_t^X(p)} - \sigma_p \right).$$



Symmetric Lie derivative

 ∇^s -Schouten bracket

Prop. Given a symmetric derivative ∇^s , there is a unique map

$$[\ ,\]_{\nabla^{s}\text{-Sc}}: \times^{2}\Gamma(\odot^{\bullet}T) \to \Gamma(\odot^{\bullet}T)$$

s.t.

1. $[\mathcal{X},]_{\nabla^{s}-S_{c}}$ is a degree- $(|\mathcal{X}|-1)$ 2. $[X,]_{\nabla^{s}-S_{c}} = \pounds_{X}^{\nabla^{s}}$, derivation of $\Gamma(\odot^{\bullet}T)$.

3. $[\mathcal{X}, \mathcal{Y}]_{\nabla^{s} \to s_c} = [\mathcal{Y}, \mathcal{X}]_{\nabla^{s} \to s_c}$

We call it the ∇^s -Schouten bracket.

Prop. Let G be a (pseudo-)Riemannian metric and $\mathcal{X} \in \Gamma(\odot^{\bullet}T)$. Then

$$\begin{split} [\mathcal{X},G^{-1}]_{G_{\nabla^S\text{-Sc}}} &= 0 \qquad \Leftrightarrow \qquad ^G \nabla^s G^* \mathcal{X} = 0 \\ &\qquad \qquad \text{(i.e. } G^* \mathcal{X} \in \Gamma(\odot^{\bullet} T^*) \text{ is a Killing tensor of } G\text{)}. \end{split}$$

Symmetric bracket

The Lie bracket of vector fields is the R-bilinear map

$$[\ ,\]_{\text{\tiny Lie}}: \times^2\Gamma(T) \to \Gamma(T)$$

given by

$$\iota_{[X,Y]_{\mathrm{Lie}}} := [\pounds_X, \iota_Y]_{\mathrm{g}} = \pounds_X \circ \iota_Y - \iota_Y \circ \pounds_X.$$

Explicitly: $[X, Y]_{\text{Lie}} = X \circ Y - Y \circ X$.

$$\left[X,Y\right]_{\mathrm{Lie}}\big|_p = (\pounds_XY)_p = \lim_{t \to 0} \frac{1}{t} \left(\left(\Psi^X_{-t}\right)_{*\Psi^X_t(p)} Y_{\Psi^X_t(p)} - Y_p \right).$$

Def. The symmetric bracket corresponding to ∇^s is the \mathbb{R} -bilinear map

$$\langle : \rangle_{\nabla^S} : \times^2 \Gamma(T) \to \Gamma(T)$$

given by

$$\iota_{(X,Y)_{\neg s}} := [\pounds_{\mathbf{v}}^{\nabla^s}, \iota_Y] = \pounds_{\mathbf{v}}^{\nabla^s} \circ \iota_Y - \iota_Y \circ \pounds_{\mathbf{v}}^{\nabla^s}.$$

Explicitly: $\langle X:Y\rangle_{\nabla^s} = \nabla_X Y + \nabla_Y X$.

$$\mathbf{Prop.}\ \left\langle X:Y\right\rangle _{\nabla^{S}}|_{p}=(\pounds_{X}^{\nabla^{S}}Y)_{p}=\lim_{t\rightarrow0}\frac{1}{t}\left(P_{2t,0}^{\gamma}\left(\Psi_{t}^{X}\right)_{*\Psi_{t}^{X}\left(p\right)}Y_{\Psi_{t}^{X}\left(p\right)}-Y_{p}\right)\!.$$

Back to bivector fields

$$\begin{split} [\pi,\pi]_{\mathsf{Sc}} &= 0 & (\pounds_X \leadsto \pounds_X^{\nabla^s}) & [\vartheta,\vartheta]_{\nabla^s\cdot\mathsf{Sc}} &= 0, \\ \mathrm{Ham}\{f,g\} &= [\mathrm{Ham}\,f,\mathrm{Ham}\,g]_{\mathsf{Lie}} & ([\;,\;]_{\mathsf{Lie}} \leadsto \langle\;,\;\rangle_{\nabla^s}) & \mathrm{grad}\{f,g\} &= \langle \mathrm{grad}\,f,\mathrm{grad}\,g\rangle_{\nabla^s}, \\ \mathrm{d}\omega &= 0 & (\mathrm{d} \leadsto \nabla^s) & \nabla^s G &= 0. \end{split}$$

Prop. Let ∇ be a torsion-free connection and $\vartheta \in \Gamma(\odot^2 T)$. Then

$$\begin{split} [\vartheta,\vartheta]_{\nabla^{S}\text{-Sc}} &= 0 \qquad \Leftrightarrow \qquad (\nabla_{\operatorname{grad} f}\vartheta)(\operatorname{d} g,\operatorname{d} h) + \operatorname{cyclic}(f,g,h) = 0, \\ & \Leftrightarrow \qquad \operatorname{Jac}_{\{\ ,\ \}}(f,g,h) = \operatorname{d} h(\langle \operatorname{grad} f : \operatorname{grad} g \rangle_{\nabla^{S}}) + \operatorname{cyclic}(f,g,h). \end{split}$$

Prop. Let ∇ be a torsion-free connection and $\vartheta \in \Gamma(\odot^2 T)$. Then

$$[\vartheta,\vartheta]_{\nabla^{S}\text{-Sc}}=0 \qquad \Longleftrightarrow \qquad \operatorname{grad}\{f,g\}=\langle \operatorname{grad} f:\operatorname{grad} g\rangle_{\nabla^{S}} \qquad \Leftrightarrow \qquad \nabla_{\operatorname{grad} f}\,\vartheta=0.$$

Def. A symmetric Poisson structure is a pair (∇, ϑ) consisting of a torsion-free connection ∇ and $\vartheta \in \Gamma(\odot^2 T)$ s.t. $[\vartheta, \vartheta]_{\nabla^s \cdot \mathsf{Sc}} = 0$.

Def. A strong symmetric Poisson structure is a pair (∇, ϑ) consisting of a torsion-free connection ∇ and $\vartheta \in \Gamma(\odot^2 T)$ s.t. $\nabla_{\operatorname{grad} f} \vartheta = 0$.

Non-degenerate symmetric Poisson structures

Prop. Let ∇ be a torsion-free connection and $\vartheta \in \Gamma(\odot^2 T)$ be non-degenerate, $G := \vartheta^{-1} \in \Gamma(\odot^2 T^*)$. Then

$$\nabla^s G = 0$$

$$\Leftrightarrow$$

$$[\vartheta,\vartheta]_{\nabla^{s}\text{-Sc}}=0.$$

non-degenerate symmetric Poisson structures

$$\leftarrow 1:1 \longrightarrow$$

non-degenerate 2-Killing structures

Prop. Let ∇ be a torsion-free connection and $\vartheta \in \Gamma(\odot^2 T)$ be non-degenerate, $G := \vartheta^{-1} \in \Gamma(\odot^2 T^*)$. Then

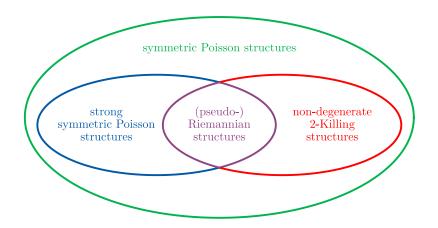
$$\nabla_{\operatorname{grad} f} \, \vartheta = 0 \quad \Leftrightarrow \quad \nabla \vartheta = 0 \quad \Leftrightarrow \quad \nabla G = 0 \quad \Leftrightarrow \quad \nabla \text{ is the Levi-Civita connection of } G.$$

non-degenerate strong symmetric Poisson structures

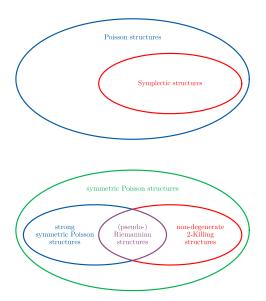
$$\leftarrow 1:1 \longrightarrow$$

(pseudo-)Riemannian structures

(Strong) symmetric Poisson, Killing, and (pseudo-)Riemannian structures



Comparison of symmetric Poisson and Poisson structures



Patterson-Walker metric

Given a torsion-free connection ∇ on M, one can construct (pseudo-)Riemannian metric $G_{\nabla} \in \Gamma(\odot^2 T^*(T^*M))$, the so-called **Patterson-Walker metric**.

In natural coordinates, it is given by

$$G_{\nabla}|_{U} = \mathrm{d}x^{j} \odot \mathrm{d}p_{j} - p_{k} \Gamma^{k}{}_{lj} \mathrm{d}x^{l} \odot \mathrm{d}x^{j}.$$

It gives us the bracket $\{\ ,\ \}_{\nabla}: \times^2 C^{\infty}(T^*M) \to C^{\infty}(T^*M)$,

$$\{f,g\}_{\nabla}|_{U} = \frac{\partial f}{\partial x^{j}}\frac{\partial g}{\partial p_{j}} + \frac{\partial f}{\partial p_{j}}\frac{\partial g}{\partial x^{j}} + 2p_{k}\Gamma^{k}{}_{lj}\frac{\partial f}{\partial p_{l}}\frac{\partial g}{\partial p_{j}}.$$

Compare with the canonical symplectic structure $\omega_{\text{can}} \in \Gamma(\wedge^2 T^*(T^*M))$,

$$\omega_{\scriptscriptstyle{\operatorname{can}}}|_U = \mathrm{d} x^j \wedge \mathrm{d} p_j,$$

and the canonical Poisson bracket $\{\ ,\ \}_{\operatorname{can}}: \times^2 C^\infty(T^*M) \to C^\infty(T^*M)$,

$$\{f,g\}_{\operatorname{can}}|_U = \frac{\partial f}{\partial x^j} \frac{\partial g}{\partial p_j} - \frac{\partial f}{\partial p_j} \frac{\partial g}{\partial x^j}.$$

How does it relate to symmetric Poisson structures?

Every $\mathcal{X} \in \Gamma(\odot^k T)$ induces a smooth function $\Phi_{\mathcal{X}} \in C^{\infty}(T^*M)$,

$$\Phi_{\mathcal{X}}((p,\alpha)) := \frac{1}{k!} \mathcal{X}_p(\alpha,\ldots,\alpha)$$
 for all $(p,\alpha) \in T^*M$.

Prop. The map $\Phi:\Gamma(\odot^{\bullet}T)\to C^{\infty}(T^*M)$ is a $C^{\infty}(M)$ -module morphism and satisfies

$$1. \ \Phi_{\mathcal{X} \odot \mathcal{Y}} = \Phi_{\mathcal{X}} \Phi_{\mathcal{Y}}, \qquad \qquad 2. \ \Phi_{[\mathcal{X}, \mathcal{Y}]_{\nabla^S \text{-sc}}} = \{\Phi_{\mathcal{X}}, \Phi_{\mathcal{Y}}\}_{\nabla}.$$

Given a symmetric Poisson structure (∇, ϑ) it follows that

$$\{\Phi_\vartheta,\Phi_\vartheta\}_\nabla=\Phi_{[\vartheta,\vartheta]_{\nabla^S.\mathrm{Sc}}}=0\qquad\Leftrightarrow\qquad \Phi_\vartheta \text{ is constant along integral curves of}\\ \mathrm{grad}_\nabla\,\Phi_\vartheta=\{\Phi_\vartheta,\ \}_\nabla.$$

In natural coordinates, we have

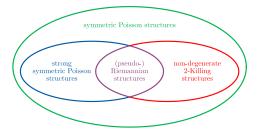
$$\operatorname{grad}_{\nabla} \Phi_{\vartheta}|_{U} = \frac{\partial \Phi_{\vartheta}}{\partial p_{i}} \frac{\partial}{\partial x^{j}} + \left(\frac{\partial \Phi_{\vartheta}}{\partial x^{j}} + 2p_{k} \Gamma^{k}{}_{lj} \frac{\partial \Phi_{\vartheta}}{\partial p_{l}} \right) \frac{\partial}{\partial p_{i}}.$$

Therefore, the integral curves are given by ODEs

$$\begin{split} \dot{x}^j &= \vartheta^{jk} p_k \\ \dot{p}_j &= \left(\frac{1}{2} \frac{\partial \vartheta^{kl}}{\partial x^j} + 2 \Gamma^k_{\ mj} \vartheta^{ml}\right) p_k p_l \qquad \Rightarrow \qquad (\nabla_x \dot{x})^j = \frac{1}{2} ([\vartheta, \vartheta]_{\nabla^{S, \varsigma_s}})^{jkl} p_k p_l = 0. \end{split}$$
 (geodesic equation)

Outlook

Symmetric Poisson geometry extends (pseudo-)Riemannian geometry while bringing in features of Poisson geometry. It has the potential to blend these two areas.



- Analogue of Weinstein's splitting theorem?
- Symmetric Poisson cohomology?
- Flat symmetric Poisson structures?

Thank you for your attention!