Geometric approach to graded vector bundles

Rudolf Šmolka Joint work with Ing. Jan Vysoký, Ph.D.

January 18, 2024

1 \mathbb{Z} -graded geometry

2 Graded vector bundles as sheaves of modules

3 Graded vector bundles as graded manifolds

4 Their equivalence

$\mathbb{Z}\text{-}\mathsf{graded}$ geometry

We will use the word "graded" for \mathbb{Z} -graded. Under the definition that we use, graded objects (vector spaces, modules, algebras..) are defined as "sequences of objects". For example: a **graded vector space** V is defined as a sequence of vector spaces

$$V = (V_i)_{i \in \mathbb{Z}},$$

where for every $i \in \mathbb{Z}$, V_i is an ordinary vector space. We write $v \in V$ for $\exists ! \ell \in \mathbb{Z}, v \in V_\ell$ and we call this ℓ the **degree** of v and write

$$\ell =: |\mathbf{v}|$$

A graded linear map between two graded vector spaces $\varphi : V \to W$ is defined as a sequence $\varphi = (\varphi_i)_{i \in \mathbb{Z}}$, where for every $i \in \mathbb{Z}$,

$$\varphi_i: V_i \to W_{i+|\varphi|},$$

is a linear map. Here $|\varphi| \in \mathbb{Z}$ is called the **degree** of the graded linear map.

Consider a typical example: let $(n_j)_{j\in\mathbb{Z}}$ be a sequence of non-negative integers. Then $\mathbb{R}^{(n_j)}$ denotes the vector space

$$\left(\mathbb{R}^{(n_j)}\right)_j = \mathbb{R}^{n_j}.$$

We say that $\{e_k\}$ is a **basis** for $\mathbb{R}^{(n_j)}$ if $\{e_k\}_{k:|e_k|=i}$ form a basis for \mathbb{R}^{n_i} for every $i \in \mathbb{Z}$.

We can view ℝ as a graded vector space, where ℝ₀ = ℝ and ℝ_j = {0} for every j ≠ 0. If {e_k} is a basis for ℝ^(n_j), then we can define vectors of the **dual basis** as graded linear maps

$$e^k: \mathbb{R}^{(n_j)} o \mathbb{R}, \qquad e^k(e_\ell) = {\delta^k}_\ell,$$

where $|e^{k}| = -|e_{k}|$ and $|\delta^{k}_{\ell}| = |e_{\ell}| - |e_{k}|$.

Now let us move on to graded manifolds. Any choice of basis $\{e_1, \ldots, e_m\}$ of an ordinary vector space \mathbb{R}^m makes \mathbb{R}^m into a smooth manifold, with global coordinates $\{e^1, \ldots, e^m\}$.

Similarly, consider some sequence $(n_j)_{j\in\mathbb{Z}}$ of non-negative integers, only finitely many of which are non-zero. Then, by choosing a basis $\{e_1, \ldots, e_{n_0}, \xi_1, \ldots, \xi_n\}$ for $\mathbb{R}^{(n_{-j})}$, where $n = \sum_{i\neq 0} n_i$ and $|\xi_i| \neq 0$ for any $i \in \{1, \ldots, n\}$, we can view $\mathbb{R}^{(n_{-j})}$ as a graded manifold.

In particular, we call \mathbb{R}^{n_0} the underlying smooth manifold, and for every $U \in op(\mathbb{R}^{n_0})$ we say that **graded functions** f, of degree |f|, on U are formal power series

$$f=\sum_{\mathbf{p}}f_{\mathbf{p}}(\xi^{1})^{p_{1}}\cdots(\xi^{n})^{p_{n}},$$

where the sum ranges over the set

$$\{ \mathsf{p} \in \mathbb{N}_{0}^{n} \mid \sum_{k=1}^{n} p_{k} | \xi^{k} | = |f| \text{ and } p_{k} \in \{0,1\} \text{ for } |\xi^{k}| \text{ odd } \},$$

the coefficients f_p are ordinary smooth functions $f_p \in C^{\infty}(U)$ and we impose the commutation relations

$$f g = (-1)^{|f||g|} g f,$$

for any graded functions f, g.

The graded algebra of graded functions over U is then denoted as

 $C^{\infty}_{(n_j)}(U)$

The assignment $C_{(n_j)}^{\infty}$ is a sheaf on \mathbb{R}^{n_0} called the structure sheaf or the sheaf of graded functions. Restrictions are just restrictions of the coefficient smooth functions. We call ξ^k the **graded coordinates** on $\mathbb{R}^{(n_{-j})}$, although sometimes we just call them coordinates, and denote $\{e^1, \ldots, e^{n_0}, \xi^1, \ldots, \xi^n\} =: \{x^i\}.$

A general graded manifold is defined as a pair

$$\mathcal{M} = (M, C^{\infty}_{\mathcal{M}}),$$

where M is a second-countable Hausdorff topological space and the structure sheaf $C_{\mathcal{M}}^{\infty}$ on M is valued in graded commutative associative unital algebras. Furthermore, \mathcal{M} is **locally isomorphic** to $\mathbb{R}^{(n_{-j})}|_U$ for some fixed finite sequence of non-negative integers $(n_j)_{j\in\mathbb{Z}}$, called the **graded dimension** of \mathcal{M} .

Finally we need the notion of a morphism in the category of graded manifolds: a **graded smooth map**

$$\varphi: \mathcal{M} \to \mathcal{N},$$

is a pair $\varphi \equiv (\underline{\varphi}, \varphi^*)$, where

$$\varphi: M \to N$$

is an ordinary smooth map, and

$$\varphi^*: C^{\infty}_{\mathcal{N}} \to \underline{\varphi}_* C^{\infty}_{\mathcal{M}}$$

is a morphism of sheaves of graded commutative algebras (which gives rise to local ring morphisms between stalks).

Consider the well known "almost unique" correspondence between non-graded vector bundles and their sheaves of sections.

$$\pi: E \to M \quad \longleftrightarrow \quad \Gamma_E: \operatorname{Op}(M)^{\operatorname{op}} \to \operatorname{Vec}$$

Where Γ_E is a locally freely and finitely generated sheaf of C_M^{∞} -modules of a constant rank. Our aim is to show the same correspondence in the graded setting.

One approach to define graded vector bundles, taken by J. Vysoký in [1], is to "define them as their sheaves of sections".

- ▶ A graded vector bundle over a graded manifold \mathcal{M} is any locally freely and finitely generated sheaf \mathcal{E} of $C_{\mathcal{M}}^{\infty}$ -modules, of a constant rank.
- ▶ If one has two graded vector bundles \mathcal{E} over \mathcal{M} and \mathcal{E}' over \mathcal{M}' , then morphisms $\Phi : \mathcal{E} \to \mathcal{E}'$ are defined as pairs $\Phi = (\varphi, A)$, where
 - $\blacktriangleright \ \varphi: \mathcal{M} \to \mathcal{M}' \text{ is a graded smooth map.}$
 - $A: (\mathcal{E}')^* \to \varphi_*(\mathcal{E}^*)$ is a morphism of sheaves of $C^{\infty}_{\mathcal{E}'}$ -modules.

Graded vector bundles form a category.

Graded vector bundles as graded manifolds

Let us attempt to indroduce graded vector bundles in a more conventional way.

- Consider a graded vector space V := ℝ^(n_{-j}), where only finitely many of n_j are non-zero. By choosing its total basis {k_a} we may consider it as a graded manifold of graded dimension (n_j) with coordinates {k^a}.
- ▶ For any $\lambda \in \mathbb{R}$ we may consider the graded linear map $H_{\lambda} : V \to V$, defined on vectors as

$$H_{\lambda}: \mathbf{v} \to \lambda \mathbf{v}.$$

We can define the corresponding graded smooth map $H_{\lambda} \equiv (\underline{H}_{\lambda}, H_{\lambda}^*) : V \to V$ by taking $\underline{H}_{\lambda} : \mathbb{R}^{n_0} \to \mathbb{R}^{n_0}$ as the multiplication by lambda, and H_{λ}^* defined on coordinates as

$$H^*_{\lambda}(k^a) = \lambda \, k^a.$$

A graded vector bundle is defined as $(\mathcal{E}, \mathcal{M}, \pi, \{H_{\mathcal{E}}^{\lambda}\}_{\lambda \in \mathbb{R}})$, where \mathcal{E}, \mathcal{M} are graded manifolds, $\pi : \mathcal{E} \to \mathcal{M}, H_{\mathcal{E}}^{\lambda} : \mathcal{E} \to \mathcal{E}$ are graded smooth maps, such that $\underline{\pi}$ is surjective and there exists an open cover $\{U_{\alpha}\}_{\alpha \in I}$ of Mtogether with graded diffeomorphisms

$$\psi_{\alpha}: \mathcal{M}|_{U} \times \mathbb{R}^{(n_{-j})} \to \mathcal{E}|_{\underline{\pi}^{-1}(U_{\alpha})},$$

for some fixed finite (n_j) , such that for every $\alpha \in I$,

π|_{π⁻¹(U_α)} ∘ ψ_α = p₁, where p₁ is the canonical product projection.
The diagram

$$\mathcal{M}|_{\mathcal{U}} \times \mathbb{R}^{(n_{-j})} \xrightarrow{\psi_{\alpha}} \mathcal{E}|_{\underline{\pi}^{-1}(U_{\alpha})} \\ \downarrow^{1 \times H_{\lambda}} \qquad \qquad \downarrow^{H_{\mathcal{E}}^{\lambda}}|_{\underline{\pi}^{-1}(U_{\alpha})} \\ \mathcal{M}|_{\mathcal{U}} \times \mathbb{R}^{(n_{-j})} \xrightarrow{\psi_{\alpha}} \mathcal{E}|_{\underline{\pi}^{-1}(U_{\alpha})}$$

commutes for every $\lambda \in \mathbb{R}$.

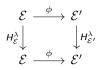
We have objects, we need arrows: consider two graded vector bundles $\pi: \mathcal{E} \to \mathcal{M}$ and $\pi': \mathcal{E}' \to \mathcal{M}'$. We say that $\Phi = (\varphi, \phi)$ is a morphism of vector bundles from \mathcal{E} to \mathcal{E}' , if $\varphi: \mathcal{M} \to \mathcal{M}'$ and $\phi: \mathcal{E} \to \mathcal{E}'$ are graded smooth maps, s.t.

▶ The diagram

$$\begin{array}{c} \mathcal{E} & \stackrel{\phi}{\longrightarrow} \mathcal{E}' \\ \pi \downarrow & \downarrow^{\pi'} \\ \mathcal{M} & \stackrel{\varphi}{\longrightarrow} \mathcal{M}' \end{array}$$

commutes, and

The diagram



commutes for every $\lambda \in \mathbb{R}$.

Their equivalence

The two definitions of graded VBs agree upto "some isomorphism", similarly as in the non-graded case. To put it precisely:

Theorem

The categories of graded vector bundles defined as sheaves of modules and graded vector bundles defined as graded manifolds, are equivalent.

We show this equivalence in the usual way - by constructing a functor $\Gamma : gVbun \rightarrow gVbun$ and showing that it is fully faithful and essentially surjective.

▶ For a graded vector bundle $\mathcal{E} \in \mathsf{gVbun}$, define (the dual of) $\Gamma_{\mathcal{E}}$ as

$${\sf \Gamma}_{\mathcal E}^* = igcap_{\lambda \in \mathbb R} {\sf ker}({\sf H}_{\mathcal E}^{\lambda,*}-\lambda),$$

which can be viewed as a subsheaf of $C^{\infty}_{\mathcal{M}}$ -modules $\Gamma^*_{\mathcal{E}} \subseteq \pi_*(C^{\infty}_{\mathcal{E}})$.

► Basically, $f \in \Gamma_{\mathcal{E}}(U)^*$ are those graded functions $f \in C^{\infty}_{\mathcal{E}}(\underline{\pi}^{-1}(U))$ which satisfy

$$H_{\mathcal{E}}^{\lambda,*}f = \lambda f$$

for every $\lambda \in \mathbb{R}$. We call them functions linear in the fiber.

▶ Next, for every arrow $(\varphi, \phi) : \mathcal{E} \to \mathcal{E}'$ we notice that the pullback ϕ^* can be considered as

$$\phi^*: \pi'_* C^{\infty}_{\mathcal{E}'} \to \varphi_*(\pi_* C^{\infty}_{\mathcal{E}}),$$

which furthermore preserves linearity in the fiber, hence

$$\phi^*: \Gamma^*_{\mathcal{E}'} \to \varphi_* \Gamma^*_{\mathcal{E}},$$

which means we can take $\Gamma(\varphi, \phi) = (\varphi, \phi^*)$.

Full faithfulness of Γ is then verified in coordinates, as is essential surjectivity, with the help of a construction theorem from [1, Vysoký 22].

Thank you.

Vysoký, J. (2022) Global theory of graded manifolds. *Reviews in Mathematical Physics.* 34(10), 2250035.

Vysoký, J. (2022) Graded generalized geometry. *Journal of Geometry and Physics.* 182, 104683.