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A tale of three (parabolic) geometries
XXO-geometry (5D)
(N5 = T+(M); `,D) D non-int.

//

(2, 3, 5)-geometry (5D)
(N5;D)

(oriented) split-conformal (4D)
(M4; [g])

Q: Which [g] lead to D with maximal (G2) symmetry?

Example (Rolling w/o twisting or slipping G2)
M = Σ1 × Σ2 with g = g1 ⊕ (−g2) for Riemannian surfaces (Σi, gi):

• Two 2-spheres with ratio of radii 1 : 3;

• An–Nurowski (2013): new examples (conf. hom & non-hom).
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(2, 3, 5)-geometry
(N5, D ⊂ TN) is a (2, 3, 5)-geometry if

rank(D) = 2, rank([D,D]) = 3, [D, [D,D]] = TN.

Goursat (1896): Locally, D = Df with Df spanned by

Dx := ∂x + p∂y + q∂p + f(x, y, p, q, z)∂z, ∂q.

This is (2, 3, 5) iff fqq 6= 0.

Theorem (Cartan 1910)
Any (2, 3, 5)-distribution has at most 14-dim symmetry. Locally,
∃! maximally symmetric model, and this has G2-symmetry.

Example (Cartan 1893)
Dq2 has G2-symmetry.
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XXO-geometry
... consists of a 5-mfld N with rank 3 dist. H ⊂ TN satisfying:
• [H,H] = TN and H = `⊕D (of ranks 1 and 2);
• [D,D] ⊆ H. �: [D,D] may have non-constant rank.

Model:
Flag1,2(R4)

(SL4/P1,2)

 0 1 2 2

-1 0 1 1

-2 -1 0 0

-2 -1 0 0


Example (Pairs of 2nd order ODE as integrable XXO-str.){
ẍ = F (t, x, y, ẋ, ẏ)

ÿ = G(t, x, y, ẋ, ẏ)


N5 : (t, x, y, ẋ, ẏ)

` = 〈∂t + ẋ∂x + ẏ∂y + F∂ẋ +G∂ẏ〉
D = 〈∂ẋ, ∂ẏ〉 (integrable: [D,D] = D)

Example (Enhancing (2, 3, 5) to a non-integrable XXO-str.)
For D = Dq2 = 〈Dx, ∂q〉, we have [D,D]/D = 〈∂p + 2q∂z〉. We
can define an XXO geometry via a choice of `:

` = 〈∂p + 2q∂z +ADx +B∂q〉 (non-int: [D,D] = H := `⊕D)
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D = 〈∂ẋ, ∂ẏ〉 (integrable: [D,D] = D)

Example (Enhancing (2, 3, 5) to a non-integrable XXO-str.)
For D = Dq2 = 〈Dx, ∂q〉, we have [D,D]/D = 〈∂p + 2q∂z〉. We
can define an XXO geometry via a choice of `:

` = 〈∂p + 2q∂z +ADx +B∂q〉 (non-int: [D,D] = H := `⊕D)

Dennis The On 4D split-conf. str. with G2-sym. twistor distrib. 4/14



An–Nurowski construction
General construction:
• Input: (M4, [g]), with g a split-signature (2, 2)-metric.
• Output: On “circle-twistor bundle” N = T+(M)→M (fibres

are SD totally null 2-planes), get XXO structure H = `⊕D.

• ` = ker(TN → TM);
• D = “twistor distribution”: distinguished via the 1-dim kernel

of
∧2

H∗ → TN/H.
• Locally, g = θ1θ2 + θ3θ4, volg = θ1 ∧ θ2 ∧ θ3 ∧ θ4, SD totally

null 2-planes look like 〈e1 + ξe3, e4 − ξe2〉. Lift to XXO:

L = 〈∂ξ〉, D = 〈e1 + ξe3 +A∂ξ, e4 − ξe2 +B∂ξ〉.

• Efficiently computeW+ via:
∧2D

[·,·]−→ H = L⊕D prL−→ L.
(Locally,W+(ξ) is a quartic polynomial in ξ  Petrov type.)
• D is (2, 3, 5) whereW+ 6= 0.

Q: Which [g] lead to D with G2 symmetry?
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A classification theorem
Theorem (Nurowski–Sagerschnig–T. 2024)
We have a complete classification of those locally
homogeneous 4D split-conformal structures with:

1 multiply-transitive induced XXO-structure, and
2 G2-symmetric twistor distribution.

Complexified summary:

Label Petrov type Comments
M9 N.O pop1 ⊂ G2

M8 D.O sl(3,R), su(1, 2) ⊂ G2

M7a

{
N.N, a2 6= 4

3 ;

N.O, a2 = 4
3

new : R2 n heis5

M6S D.D 1:3 rolling spheres + variants
M6N III.O new : aff(2)
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Example: 9-dim symmetry
Plebanski: g = dwdx+ dydz −Θxxdz

2 −Θyydw
2 + 2Θxydwdz

 W+(ξ) = (∂x + ξ∂y)
4Θ.

Example
Let Θ = −y4

12 . Then g = y2dw2 + dwdx+ dydz has 9 CKV’s.
• Lift to XXO-geometry (`,D) admits 9-dim. sym. alg. f.
• W+ = −2ξ4, so D is (2, 3, 5) when ξ 6= 0.
• Cartan (1910): Submax. sym. dim. for (2, 3, 5) is 7.
• Thus, f ↪→ G2. Indeed f ∼= pop1 ⊂ G2.
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• Cartan (1910): Submax. sym. dim. for (2, 3, 5) is 7.
• Thus, f ↪→ G2. Indeed f ∼= pop1 ⊂ G2.
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Harmonic curvatures

Structure Hieroglyphic Harmonic curvatures Hom.

(2, 3, 5)
−8 4

Cartan quartic: Q +4

4D split-conf
0 −4 4

ASD Weyl: W− +2

4 −4 0
SD Weyl: W+ +2

XXO
0 −4 4

S +3

−4 1 2
T +2

4 −4 0
I +1

Remarks:
• I precisely obstructs integrability of D.
• Čap (2006) 4D split-conf. ↔ XXO geometry with T ≡ 0.
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How to systematically classify?
• Via Lie algebras of vector fields: not sure how to start.

• Cartan reduction on XXO with T ≡ 0 and I 6= 0: get a list,
but need to impose Q ≡ 0 to remove extraneous items.
(This is cumbersome, especially for the 6D case.)

Strategy:
• Work inside g = G2, filtered by the parabolic P = P1;
• Build in Q ≡ 0 and I 6= 0 from the outset.

Here, the filtration is:

g = g−3 ⊃ ... ⊃ g0 = p ⊃ ... ⊃ g3.
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What should we classify?
Suppose we have a Lie-theoretic XXO model (f, f0; `,D).

Assume D is non-int. & Q ≡ 0. Admissible (f, f0; `,D):
(X.1) f ↪→ g = G2 as a filtered (wrt P ) Lie subalgebra;
(X.2) gr−(f) = g− & dim(f0) ≥ 1 (“multiply-transitive”);
(X.3) On f/f0, we have the data

f−1/f0 = D, f−2/f0 = `⊕D;

(X.4) T ≡ 0;
(X.5) maximal wrt natural partial order: f ≤ f̃ iff f ↪→ f̃.

Classify admissible (f, f0; `,D) (up to the natural P -action).
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Classification steps

1 Classify complex admissible (f, f0; `,D) + real forms.
2 Integrate structure eqns to get local coordinate models.

Check Petrov types.

3 Find “Cartan-theoretic” embeddings into (sl4, p1,2). (This
also determines Petrov types, as well as holonomy.)

We’ll sketch a few key ideas relating to the first step.
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Examples

Let Z1,Z2 ∈ h be dual to the simple roots α1, α2 ∈ h∗ of G2.
Grading element: Z1. Define H := [e01, f01] = −Z1 + 2Z2.

Z1,Z2
e10f10

e01

f01f31

e31

f32

e32

e21

f21

e11

f11

M9 M6S

f0 f01,Z1,H, e01 H
D = f−1/f0 f10 f10 + e11

f11 f11 + e10
f−2/f−1 f21 f21 + e21
f−3/f−2 f31 f31 + e32

f32 f32 + e31
` f21 f21 + e21
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Leading parts
The graded subalgebra s := gr(f) ⊂ g determines leading parts
of f. (Also need to determine “tails”.) Start with the isotropy f0.

Lemma
1 fi = 0 for i ≥ 1

2 gr(f0) ⊆ g0 ∼= gl(g−1) ∼= gl2, so dim(f0) ≤ 4.

P -action G0-action on s0 ⊆ g0. Classification over C:

dim gl2 subalgebra
4 gl2

3 sl2,

〈(
∗ 0
∗ ∗

)〉
2

〈(
∗ 0
0 ∗

)〉
,

〈(
λ1 0
∗ λ2

)〉
1

〈(
λ1 0
0 λ2

)〉
,

〈(
λ 0
1 λ

)〉
(Here, identify Z1 ↔ −id and H↔ diag(1,−1).)
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Tails
• Suppose ∃S ∈ f0 with S0 = gr0(S) ∈ s0 semisimple.

• Try to use P -action to normalize tails so that S = S0.
• Pick S-invariant decomp. s⊕ s⊥ = g.
• Tails deform. map d ∈ (s∗ ⊗ s⊥)+ is highly constrained:

S · d = 0. ( eigenvalue restrictions!)

All cases with such semisimple elements in (normalized) s0:

S0 ∈ s0 Constraints Admissible models
Z1 − M9

H Z1 6∈ s0 M8 & M6S

Z1 + cH
c 6= 0,

s0 ⊆ 〈Z1 + cH, f01〉
c 6= 1 : none
c = 1 : M7a

Remaining cases with no such: s0 = 〈f01 + rZ1〉 (Jordan case).
• r 6= 0: No admissible model. (Easy.)
• r = 0: M6N. (Most challenging case; T ≡ 0 is essential.)
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