On 4D split-conformal structures with G_{2}-symmetric twistor distribution

Dennis The

Department of Mathematics \& Statistics
UiT The Arctic University of Norway
(Joint work in progress with
Pawel Nurowski \& Katja Sagerschnig)
January 18, 2024

A tale of three (parabolic) geometries

A tale of three (parabolic) geometries

Q: Which $[g]$ lead to D with maximal $\left(G_{2}\right)$ symmetry?

A tale of three (parabolic) geometries

Q: Which $[g]$ lead to D with maximal $\left(G_{2}\right)$ symmetry?

Example (Rolling w/o twisting or slipping
$M=\Sigma_{1} \times \Sigma_{2}$ with $g=g_{1} \oplus\left(-g_{2}\right)$ for Riemannian surfaces $\left(\Sigma_{i}, g_{i}\right)$:
Two 2-spheres with ratio of radii $1: 3$;
An-Nurowski (2013): new examples (conf. hom \& non-hom).

(2, 3, 5)-geometry

$\left(N^{5}, D \subset T N\right)$ is a (2,3,5)-geometry if

$$
\operatorname{rank}(D)=2, \quad \operatorname{rank}([D, D])=3, \quad[D,[D, D]]=T N .
$$

(2, 3, 5)-geometry

$\left(N^{5}, D \subset T N\right)$ is a (2,3,5)-geometry if

$$
\operatorname{rank}(D)=2, \quad \operatorname{rank}([D, D])=3, \quad[D,[D, D]]=T N .
$$

Goursat (1896): Locally, $D=D_{f}$ with D_{f} spanned by

$$
\mathcal{D}_{x}:=\partial_{x}+p \partial_{y}+q \partial_{p}+f(x, y, p, q, z) \partial_{z}, \quad \partial_{q}
$$

This is $(2,3,5)$ iff $f_{q q} \neq 0$.

(2, 3, 5)-geometry

$\left(N^{5}, D \subset T N\right)$ is a (2,3,5)-geometry if

$$
\operatorname{rank}(D)=2, \quad \operatorname{rank}([D, D])=3, \quad[D,[D, D]]=T N .
$$

Goursat (1896): Locally, $D=D_{f}$ with D_{f} spanned by

$$
\mathcal{D}_{x}:=\partial_{x}+p \partial_{y}+q \partial_{p}+f(x, y, p, q, z) \partial_{z}, \quad \partial_{q}
$$

This is $(2,3,5)$ iff $f_{q q} \neq 0$.
Theorem (Cartan 1910)
Any (2, 3, 5)-distribution has at most 14-dim symmetry. Locally, I! maximally symmetric model, and this has G_{2}-symmetry.

(2, 3, 5)-geometry

$\left(N^{5}, D \subset T N\right)$ is a (2,3,5)-geometry if

$$
\operatorname{rank}(D)=2, \quad \operatorname{rank}([D, D])=3, \quad[D,[D, D]]=T N .
$$

Goursat (1896): Locally, $D=D_{f}$ with D_{f} spanned by

$$
\mathcal{D}_{x}:=\partial_{x}+p \partial_{y}+q \partial_{p}+f(x, y, p, q, z) \partial_{z}, \quad \partial_{q}
$$

This is $(2,3,5)$ iff $f_{q q} \neq 0$.
Theorem (Cartan 1910)
Any (2, 3, 5)-distribution has at most 14-dim symmetry. Locally, I! maximally symmetric model, and this has G_{2}-symmetry.
$D_{q^{2}}$ has G_{2}-symmetry.

XXO-geometry

... consists of a 5 -mfld N with rank 3 dist. $H \subset T N$ satisfying:

- $[H, H]=T N$ and $H=\ell \oplus D$ (of ranks 1 and 2);
- $[D, D] \subseteq H$. ¿ : $[D, D]$ may have non-constant rank.

XXO-geometry

... consists of a 5 -mfld N with rank 3 dist. $H \subset T N$ satisfying:

- $[H, H]=T N$ and $H=\ell \oplus D$ (of ranks 1 and 2);
- $[D, D] \subseteq H . ~ ¿:[D, D]$ may have non-constant rank.

Model:

$\left(\begin{array}{c|c|c|c}0 & 1 & 2 & 2 \\ \hline-1 & 0 & 1 & 1 \\ \hline-2 & -1 & 0 & 0 \\ \hline-2 & -1 & 0 & 0\end{array}\right)$

XXO-geometry

... consists of a 5-mfld N with rank 3 dist. $H \subset T N$ satisfying:

- $[H, H]=T N$ and $H=\ell \oplus D$ (of ranks 1 and 2);
- $[D, D] \subseteq H$. § : $[D, D]$ may have non-constant rank.

Model:

$$
\begin{gathered}
\operatorname{Flag}_{1,2}\left(\mathbb{R}^{4}\right) \\
\left(\mathrm{SL}_{4} / P_{1,2}\right)
\end{gathered}
$$

$\left(\begin{array}{c|c|c|c}0 & 1 & 2 & 2 \\ \hline-1 & 0 & 1 & 1 \\ \hline-2 & -1 & 0 & 0 \\ \hline-2 & -1 & 0 & 0\end{array}\right)$

Example (Pairs of 2nd order ODE as integrable XXO-str.)

$$
\left\{\begin{array} { l }
{ \ddot { x } = F (t , x , y , \dot { x } , \dot { y }) } \\
{ \ddot { y } = G (t , x , y , \dot { x } , \dot { y }) }
\end{array} \quad \left\{\begin{array}{l}
N^{5}:(t, x, y, \dot{x}, \dot{y}) \\
\ell=\left\langle\partial_{t}+\dot{x} \partial_{x}+\dot{y} \partial_{y}+F \partial_{\dot{x}}+G \partial_{\dot{y}}\right\rangle \\
\left.D=\left\langle\partial_{\dot{x}}, \partial_{\dot{y}}\right\rangle \quad \text { (integrable: }[D, D]=D\right)
\end{array}\right.\right.
$$

XXO-geometry

... consists of a 5-mfld N with rank 3 dist. $H \subset T N$ satisfying:

- $[H, H]=T N$ and $H=\ell \oplus D$ (of ranks 1 and 2);
- $[D, D] \subseteq H$. 乞 : $[D, D]$ may have non-constant rank.

Model:
$\operatorname{Flag}_{1,2}\left(\mathbb{R}^{4}\right)$
$\left(\mathrm{SL}_{4} / P_{1,2}\right)$
$\left(\begin{array}{c|c|c|c}0 & 1 & 2 & 2 \\ \hline-1 & 0 & 1 & 1 \\ \hline-2 & -1 & 0 & 0 \\ \hline-2 & -1 & 0 & 0\end{array}\right)$

Example (Pairs of 2nd order ODE as integrable XXO -str.)
$\left\{\begin{array}{l}\ddot{x}=F(t, x, y, \dot{x}, \dot{y}) \\ \ddot{y}=G(t, x, y, \dot{x}, \dot{y})\end{array}\right.$

$$
\left\{\begin{array}{l}
N^{5}:(t, x, y, \dot{x}, \dot{y}) \\
\ell=\left\langle\partial_{t}+\dot{x} \partial_{x}+\dot{y} \partial_{y}+F \partial_{\dot{x}}+G \partial_{\dot{y}}\right\rangle \\
\left.D=\left\langle\partial_{\dot{x}}, \partial_{\dot{y}}\right\rangle \quad \text { (integrable: }[D, D]=D\right)
\end{array}\right.
$$

Example (Enhancing $(2,3,5)$ to a non-integrable
For $D=D_{q^{2}}=\left\langle\mathcal{D}_{x}, \partial_{q}\right\rangle$, we have $[D, D] / D=\left\langle\partial_{p}+2 q \partial_{z}\right\rangle$. We can define an XXO geometry via a choice of ℓ :

$$
\left.\ell=\left\langle\partial_{p}+2 q \partial_{z}+A \mathcal{D}_{x}+B \partial_{q}\right\rangle \quad \text { (non-int: }[D, D]=H:=\ell \oplus D\right)
$$

An-Nurowski construction

General construction:

- Input: $\left(M^{4},[g]\right)$, with g a split-signature $(2,2)$-metric.
- Output: On "circle-twistor bundle" $N=\mathbb{T}^{+}(M) \rightarrow M$ (fibres are SD totally null 2-planes), get XXO structure $H=\ell \oplus D$.

An-Nurowski construction

General construction:

- Input: $\left(M^{4},[g]\right)$, with g a split-signature $(2,2)$-metric.
- Output: On "circle-twistor bundle" $N=\mathbb{T}^{+}(M) \rightarrow M$ (fibres are SD totally null 2-planes), get XXO structure $H=\ell \oplus D$.
- $\ell=\operatorname{ker}(T N \rightarrow T M)$;

An-Nurowski construction

General construction:

- Input: $\left(M^{4},[g]\right)$, with g a split-signature $(2,2)$-metric.
- Output: On "circle-twistor bundle" $N=\mathbb{T}^{+}(M) \rightarrow M$ (fibres are SD totally null 2-planes), get XXO structure $H=\ell \oplus D$.
- $\ell=\operatorname{ker}(T N \rightarrow T M)$;
- $D=$ "twistor distribution": distinguished via the 1-dim kernel of $\bigwedge^{2} H^{*} \rightarrow T N / H$.

An-Nurowski construction

General construction:

- Input: $\left(M^{4},[g]\right)$, with g a split-signature $(2,2)$-metric.
- Output: On "circle-twistor bundle" $N=\mathbb{T}^{+}(M) \rightarrow M$ (fibres are SD totally null 2-planes), get XXO structure $H=\ell \oplus D$.
- $\ell=\operatorname{ker}(T N \rightarrow T M)$;
- $D=$ "twistor distribution": distinguished via the 1-dim kernel of $\bigwedge^{2} H^{*} \rightarrow T N / H$.
- Locally, $g=\theta^{1} \theta^{2}+\theta^{3} \theta^{4}$, $\operatorname{vol}_{g}=\theta^{1} \wedge \theta^{2} \wedge \theta^{3} \wedge \theta^{4}$, SD totally null 2-planes look like $\left\langle e_{1}+\xi e_{3}, e_{4}-\xi e_{2}\right\rangle$.

An-Nurowski construction

General construction:

- Input: $\left(M^{4},[g]\right)$, with g a split-signature $(2,2)$-metric.
- Output: On "circle-twistor bundle" $N=\mathbb{T}^{+}(M) \rightarrow M$ (fibres are SD totally null 2-planes), get XXO structure $H=\ell \oplus D$.
- $\ell=\operatorname{ker}(T N \rightarrow T M)$;
- $D=$ "twistor distribution": distinguished via the 1-dim kernel of $\bigwedge^{2} H^{*} \rightarrow T N / H$.
- Locally, $g=\theta^{1} \theta^{2}+\theta^{3} \theta^{4}$, $\operatorname{vol}_{g}=\theta^{1} \wedge \theta^{2} \wedge \theta^{3} \wedge \theta^{4}$, SD totally null 2-planes look like $\left\langle e_{1}+\xi e_{3}, e_{4}-\xi e_{2}\right\rangle$. Lift to XXO :

$$
L=\left\langle\partial_{\xi}\right\rangle, \quad D=\left\langle e_{1}+\xi e_{3}+A \partial_{\xi}, e_{4}-\xi e_{2}+B \partial_{\xi}\right\rangle .
$$

An-Nurowski construction

General construction:

- Input: $\left(M^{4},[g]\right)$, with g a split-signature $(2,2)$-metric.
- Output: On "circle-twistor bundle" $N=\mathbb{T}^{+}(M) \rightarrow M$ (fibres are SD totally null 2-planes), get XXO structure $H=\ell \oplus D$.
- $\ell=\operatorname{ker}(T N \rightarrow T M)$;
- $D=$ "twistor distribution": distinguished via the 1-dim kernel of $\bigwedge^{2} H^{*} \rightarrow T N / H$.
- Locally, $g=\theta^{1} \theta^{2}+\theta^{3} \theta^{4}$, $\operatorname{vol}_{g}=\theta^{1} \wedge \theta^{2} \wedge \theta^{3} \wedge \theta^{4}$, SD totally null 2-planes look like $\left\langle e_{1}+\xi e_{3}, e_{4}-\xi e_{2}\right\rangle$. Lift to XXO:

$$
L=\left\langle\partial_{\xi}\right\rangle, \quad D=\left\langle e_{1}+\xi e_{3}+A \partial_{\xi}, e_{4}-\xi e_{2}+B \partial_{\xi}\right\rangle .
$$

- Efficiently compute \mathcal{W}^{+}via: $\bigwedge^{2} D \xrightarrow{[\cdot, \cdot]} H=L \oplus D \xrightarrow{\text { pr }_{L}} L$. (Locally, $\mathcal{W}^{+}(\xi)$ is a in $\xi \rightsquigarrow$ Petrov type.)

An-Nurowski construction

General construction:

- Input: $\left(M^{4},[g]\right)$, with g a split-signature $(2,2)$-metric.
- Output: On "circle-twistor bundle" $N=\mathbb{T}^{+}(M) \rightarrow M$ (fibres are SD totally null 2-planes), get XXO structure $H=\ell \oplus D$.
- $\ell=\operatorname{ker}(T N \rightarrow T M)$;
- $D=$ "twistor distribution": distinguished via the 1-dim kernel of $\bigwedge^{2} H^{*} \rightarrow T N / H$.
- Locally, $g=\theta^{1} \theta^{2}+\theta^{3} \theta^{4}$, $\operatorname{vol}_{g}=\theta^{1} \wedge \theta^{2} \wedge \theta^{3} \wedge \theta^{4}$, SD totally null 2-planes look like $\left\langle e_{1}+\xi e_{3}, e_{4}-\xi e_{2}\right\rangle$. Lift to XXO:

$$
L=\left\langle\partial_{\xi}\right\rangle, \quad D=\left\langle e_{1}+\xi e_{3}+A \partial_{\xi}, e_{4}-\xi e_{2}+B \partial_{\xi}\right\rangle .
$$

- Efficiently compute \mathcal{W}^{+}via: $\bigwedge^{2} D \xrightarrow{[\cdot, \cdot]} H=L \oplus D \xrightarrow{\text { pr }_{L}} L$. (Locally, $\mathcal{W}^{+}(\xi)$ is a in $\xi \rightsquigarrow$ Petrov type.)
- D is $(2,3,5)$ where $\mathcal{W}^{+} \neq 0$.

An-Nurowski construction

General construction:

- Input: $\left(M^{4},[g]\right)$, with g a split-signature $(2,2)$-metric.
- Output: On "circle-twistor bundle" $N=\mathbb{T}^{+}(M) \rightarrow M$ (fibres are SD totally null 2-planes), get XXO structure $H=\ell \oplus D$.
- $\ell=\operatorname{ker}(T N \rightarrow T M)$;
- $D=$ "twistor distribution": distinguished via the 1-dim kernel of $\bigwedge^{2} H^{*} \rightarrow T N / H$.
- Locally, $g=\theta^{1} \theta^{2}+\theta^{3} \theta^{4}$, $\operatorname{vol}_{g}=\theta^{1} \wedge \theta^{2} \wedge \theta^{3} \wedge \theta^{4}$, SD totally null 2-planes look like $\left\langle e_{1}+\xi e_{3}, e_{4}-\xi e_{2}\right\rangle$. Lift to XXO :

$$
L=\left\langle\partial_{\xi}\right\rangle, \quad D=\left\langle e_{1}+\xi e_{3}+A \partial_{\xi}, e_{4}-\xi e_{2}+B \partial_{\xi}\right\rangle .
$$

- Efficiently compute \mathcal{W}^{+}via: $\bigwedge^{2} D \xrightarrow{[\cdot, \cdot]} H=L \oplus D \xrightarrow{\text { pr }_{L}} L$. (Locally, $\mathcal{W}^{+}(\xi)$ is a cuartic polynomial in $\xi \rightsquigarrow$ Petrov type.)
- D is $(2,3,5)$ where $\mathcal{W}^{+} \neq 0$.

Q: Which $[g]$ lead to D with G_{2} symmetry?

A classification theorem

Theorem (Nurowski-Sagerschnig-T. 2024)
We have a complete classification of those locally homogeneous 4D split-conformal structures with:
(1) multiply-transitive induced XXO-structure, and
(2) G_{2}-symmetric twistor distribution.

A classification theorem

Theorem (Nurowski-Sagerschnig-T. 2024)

We have a complete classification of those locally homogeneous 4D split-conformal structures with:
(1) multiply-transitive induced XXO-structure, and
(2) G_{2}-symmetric twistor distribution.

Complexified summary:

Label	Petrov type	Comments
M9	N.O	$\mathfrak{p}_{1}^{\mathrm{OP}} \subset G_{2}$
M8	D.O	$\mathfrak{s l}(3, \mathbb{R}), \mathfrak{s u}(1,2) \subset G_{2}$
M7 $_{a}$	$\left\{\begin{array}{c}\text { N.N }, \quad a^{2} \neq \frac{4}{3} ; \\ \text { N.O }, a^{2}=\frac{4}{3}\end{array}\right.$	new $: \mathbb{R}^{2} \ltimes \mathfrak{h e i s ~}_{5}$
M6S	D.D	$1: 3$ rolling spheres + variants
M6N	III.O	new $: \mathfrak{a f f (2)}$

Example: 9-dim symmetry

Plebanski: $g=d w d x+d y d z-\Theta_{x x} d z^{2}-\Theta_{y y} d w^{2}+2 \Theta_{x y} d w d z$

$$
\rightsquigarrow \quad \mathcal{W}^{+}(\xi)=\left(\partial_{x}+\xi \partial_{y}\right)^{4} \Theta .
$$

Example: 9-dim symmetry

Plebanski: $g=d w d x+d y d z-\Theta_{x x} d z^{2}-\Theta_{y y} d w^{2}+2 \Theta_{x y} d w d z$

$$
\rightsquigarrow \quad \mathcal{W}^{+}(\xi)=\left(\partial_{x}+\xi \partial_{y}\right)^{4} \Theta .
$$

Example

Let $\Theta=-\frac{y^{4}}{12}$. Then $g=y^{2} d w^{2}+d w d x+d y d z$ has 9 CKV's.

Example: 9-dim symmetry

Plebanski: $g=d w d x+d y d z-\Theta_{x x} d z^{2}-\Theta_{y y} d w^{2}+2 \Theta_{x y} d w d z$

$$
\rightsquigarrow \quad \mathcal{W}^{+}(\xi)=\left(\partial_{x}+\xi \partial_{y}\right)^{4} \Theta .
$$

Example

Let $\Theta=-\frac{y^{4}}{12}$. Then $g=y^{2} d w^{2}+d w d x+d y d z$ has 9 CKV's.

- Lift to XXO-geometry $\rightsquigarrow(\ell, D)$ admits 9-dim. sym. alg. f.

Example: 9-dim symmetry

Plebanski: $g=d w d x+d y d z-\Theta_{x x} d z^{2}-\Theta_{y y} d w^{2}+2 \Theta_{x y} d w d z$

$$
\rightsquigarrow \quad \mathcal{W}^{+}(\xi)=\left(\partial_{x}+\xi \partial_{y}\right)^{4} \Theta .
$$

Example

Let $\Theta=-\frac{y^{4}}{12}$. Then $g=y^{2} d w^{2}+d w d x+d y d z$ has 9 CKV's.

- Lift to XXO-geometry $\rightsquigarrow(\ell, D)$ admits 9 -dim. sym. alg. f.
- $\mathcal{W}^{+}=-2 \xi^{4}$, so D is $(2,3,5)$ when $\xi \neq 0$.

Example: 9-dim symmetry

Plebanski: $g=d w d x+d y d z-\Theta_{x x} d z^{2}-\Theta_{y y} d w^{2}+2 \Theta_{x y} d w d z$

$$
\rightsquigarrow \quad \mathcal{W}^{+}(\xi)=\left(\partial_{x}+\xi \partial_{y}\right)^{4} \Theta .
$$

Example

Let $\Theta=-\frac{y^{4}}{12}$. Then $g=y^{2} d w^{2}+d w d x+d y d z$ has 9 CKV's.

- Lift to XXO-geometry $\rightsquigarrow(\ell, D)$ admits 9 -dim. sym. alg. f.
- $\mathcal{W}^{+}=-2 \xi^{4}$, so D is $(2,3,5)$ when $\xi \neq 0$.
- Cartan (1910): Submax. sym. dim. for $(2,3,5)$ is 7 .

Example: 9-dim symmetry

Plebanski: $g=d w d x+d y d z-\Theta_{x x} d z^{2}-\Theta_{y y} d w^{2}+2 \Theta_{x y} d w d z$

$$
\rightsquigarrow \quad \mathcal{W}^{+}(\xi)=\left(\partial_{x}+\xi \partial_{y}\right)^{4} \Theta .
$$

Example

Let $\Theta=-\frac{y^{4}}{12}$. Then $g=y^{2} d w^{2}+d w d x+d y d z$ has 9 CKV's.

- Lift to XXO-geometry $\rightsquigarrow(\ell, D)$ admits 9 -dim. sym. alg. f.
- $\mathcal{W}^{+}=-2 \xi^{4}$, so D is $(2,3,5)$ when $\xi \neq 0$.
- Cartan (1910): Submax. sym. dim. for $(2,3,5)$ is 7 .
- Thus, $\mathfrak{f} \hookrightarrow G_{2}$. Indeed $\mathfrak{f} \cong \mathfrak{p}_{1}^{o p} \subset G_{2}$.

Example: 9-dim symmetry

Plebanski: $g=d w d x+d y d z-\Theta_{x x} d z^{2}-\Theta_{y y} d w^{2}+2 \Theta_{x y} d w d z$

$$
\rightsquigarrow \quad \mathcal{W}^{+}(\xi)=\left(\partial_{x}+\xi \partial_{y}\right)^{4} \Theta .
$$

Example

Let $\Theta=-\frac{y^{4}}{12}$. Then $g=y^{2} d w^{2}+d w d x+d y d z$ has 9 CKV's.

- Lift to XXO-geometry $\rightsquigarrow(\ell, D)$ admits 9 -dim. sym. alg. f.
- $\mathcal{W}^{+}=-2 \xi^{4}$, so D is $(2,3,5)$ when $\xi \neq 0$.
- Cartan (1910): Submax. sym. dim. for $(2,3,5)$ is 7 .
- Thus, $\mathfrak{f} \hookrightarrow G_{2}$. Indeed $\mathfrak{f} \cong \mathfrak{p}_{1}^{o p} \subset G_{2}$.

Harmonic curvatures

Structure

$(2,3,5)$	$\begin{aligned} & -8 \\ & x<4 \\ & \hline \end{aligned}$	Cartan quartic: Q	+4
4D split-conf	$\begin{array}{lll} 0 & -4 & 4 \\ \bullet & \chi \end{array}$	ASD Weyl: \mathcal{W}^{-}	+2
	$4 \quad-4 \quad 0$	SD Weyl: \mathcal{W}^{+}	+2
XXO	$\begin{array}{lll} \hline 0 & -4 & 4 \\ \times & \times \end{array}$	S	+3
	$\begin{array}{lll} -4 & 1 & 2 \\ \times & \times & 0 \end{array}$	\mathcal{T}	+2
	$\begin{array}{ccc} 4 & -4 & 0 \\ \times & \end{array}$	I	+1

Harmonic curvatures

Structure

$(2,3,5)$	$\begin{aligned} & -8 \\ & \times<0 \end{aligned}$	Cartan quartic: Q	+4
4D split-conf	$\begin{array}{lll} 0 & -4 & 4 \\ \bullet & \times \end{array}$	ASD Weyl: \mathcal{W}^{-}	+2
	$\begin{array}{lll} 4 & -4 & 0 \\ \bullet \end{array}$	SD Weyl: \mathcal{W}^{+}	+2
XXO	$\begin{array}{lll} 0 & -4 & 4 \\ \times & \times & \end{array}$	\mathcal{S}	+3
	$\begin{array}{ccc} -4 & 1 & 2 \\ \times & \times \end{array}$	\mathcal{T}	+2
	$\begin{array}{rrr} 4 & -4 & 0 \\ \times & \times & 0 \\ \hline \end{array}$	I	+1

Remarks:

- precisely obstructs
- Čap (2006) $\rightsquigarrow 4$ D split-conf. \leftrightarrow XXO geometry with $\mathcal{T} \equiv 0$.

How to systematically classify?

- Via Lie algebras of vector fields: not sure how to start.

How to systematically classify?

- Via Lie algebras of vector fields: not sure how to start.
- Cartan reduction on XXO with $\mathcal{T} \equiv 0$ and $\mathcal{I} \neq 0$: get a list, but need to impose $Q \equiv 0$ to remove extraneous items. (This is cumbersome, especially for the 6D case.)

How to systematically classify?

- Via Lie algebras of vector fields: not sure how to start.
- Cartan reduction on XXO with $\mathcal{T} \equiv 0$ and $\mathcal{I} \neq 0$: get a list, but need to impose $Q \equiv 0$ to remove extraneous items. (This is cumbersome, especially for the 6D case.)
Strategy:
- Work inside $\mathfrak{g}=G_{2}$, filtered by the parabolic $P=P_{1}$;

How to systematically classify?

- Via Lie algebras of vector fields: not sure how to start.
- Cartan reduction on XXO with $\mathcal{T} \equiv 0$ and $\mathcal{I} \neq 0$: get a list, but need to impose $Q \equiv 0$ to remove extraneous items. (This is cumbersome, especially for the 6D case.)
Strategy:
- Work inside $\mathfrak{g}=G_{2}$, filtered by the parabolic $P=P_{1}$;
- Build in $\mathcal{Q} \equiv 0$ and $\mathcal{I} \neq 0$ from the outset.

How to systematically classify?

- Via Lie algebras of vector fields: not sure how to start.
- Cartan reduction on XXO with $\mathcal{T} \equiv 0$ and $\mathcal{I} \neq 0$: get a list, but need to impose $Q \equiv 0$ to remove extraneous items. (This is cumbersome, especially for the 6D case.)
Strategy:
- Work inside $\mathfrak{g}=G_{2}$, filtered by the parabolic $P=P_{1}$;
- Build in $\mathcal{Q} \equiv 0$ and $\mathcal{I} \neq 0$ from the outset.

Here, the filtration is:

$$
\mathfrak{g}=\mathfrak{g}^{-3} \supset \ldots \supset \mathfrak{g}^{0}=\mathfrak{p} \supset \ldots \supset \mathfrak{g}^{3} .
$$

What should we classify?
Suppose we have a Lie-theoretic XXO model $\left(f, f^{0} ; \ell, D\right)$.
Dennis The on 40 s.spliconn. str: with c_{2}-sym. wistor distrib.
Suppose we have a Lie-theoretic XXO model $(f, f 0 ; \ell, D)$.

Suppose we have a Lie-theoretic XXO model $(f, f 0 ; \ell, D)$.

Suppose we have a Lie-theoretic XXO model $(f, f 0 ; \ell, D)$.
14

Suppose we have a Lie-theoretic XXO model $\left(\mathfrak{f}, \mathfrak{f}^{0} ; \ell, D\right)$.
\qquad

\qquad

What should we classify?

Suppose we have a Lie-theoretic XXO model $\left(\mathfrak{f}, \mathfrak{f}^{0} ; \ell, D\right)$. Assume D is non-int. \& $\mathcal{Q} \equiv 0$. Admissible $\left(f, f^{0} ; \ell, D\right)$:
(X.1) $\mathfrak{f} \hookrightarrow \mathfrak{g}=G_{2}$ as a filtered (wrt P) Lie subalgebra;

What should we classify?

Suppose we have a Lie-theoretic XXO model $\left(f, f^{0} ; \ell, D\right)$. Assume D is non-int. \& $Q \equiv 0$. Admissible $\left(f, f^{0} ; \ell, D\right)$:
(X.1) $\mathfrak{f} \hookrightarrow \mathfrak{g}=G_{2}$ as a filtered (wrt P) Lie subalgebra;
(X.2) $\operatorname{gr}_{-}(f)=\mathfrak{g}_{-} \& \operatorname{dim}\left(\mathfrak{f}^{0}\right) \geq 1$ ("multiply-transitive");

What should we classify?

Suppose we have a Lie-theoretic XXO model $\left(\mathfrak{f}, \mathfrak{f}^{0} ; \ell, D\right)$. Assume D is non-int. \& $\mathcal{Q} \equiv 0$. Admissible $\left(\mathfrak{f}, \mathfrak{f}^{0} ; \ell, D\right)$:
(X.1) $\mathfrak{f} \hookrightarrow \mathfrak{g}=G_{2}$ as a filtered (wrt P) Lie subalgebra;
(X.2) $\operatorname{gr}_{-}(\mathfrak{f})=\mathfrak{g}_{-} \& \operatorname{dim}\left(\mathfrak{f}^{0}\right) \geq 1$ ("multiply-transitive");
(X.3) On f / f^{0}, we have the data

$$
\mathfrak{f}^{-1} / \mathfrak{f}^{0}=D, \quad \mathfrak{f}^{-2} / \mathfrak{f}^{0}=\ell \oplus D ;
$$

What should we classify?

Suppose we have a Lie-theoretic XXO model $\left(\mathfrak{f}, \mathfrak{f}^{0} ; \ell, D\right)$. Assume D is non-int. \& $\mathcal{Q} \equiv 0$. Admissible $\left(f, f^{0} ; \ell, D\right)$:
(X.1) $\mathfrak{f} \hookrightarrow \mathfrak{g}=G_{2}$ as a filtered (wrt P) Lie subalgebra;
(X.2) $\operatorname{gr}_{-}(\mathfrak{f})=\mathfrak{g}_{-} \& \operatorname{dim}\left(\mathfrak{f}^{0}\right) \geq 1$ ("multiply-transitive");
(X.3) On f / f^{0}, we have the data

$$
\mathfrak{f}^{-1} / \mathfrak{f}^{0}=D, \quad \mathfrak{f}^{-2} / \mathfrak{f}^{0}=\ell \oplus D ;
$$

(X.4) $\mathcal{T} \equiv 0 ;$

What should we classify?

Suppose we have a Lie-theoretic XXO model $\left(\mathfrak{f}, \mathfrak{f}^{0} ; \ell, D\right)$. Assume D is non-int. \& $\mathcal{Q} \equiv 0$. Admissible $\left(\mathfrak{f}, \mathfrak{f}^{0} ; \ell, D\right)$:
(X.1) $\mathfrak{f} \hookrightarrow \mathfrak{g}=G_{2}$ as a filtered (wrt P) Lie subalgebra;
(X.2) $\operatorname{gr}_{-}(\mathfrak{f})=\mathfrak{g}_{-} \& \operatorname{dim}\left(\mathfrak{f}^{0}\right) \geq 1$ ("multiply-transitive");
(X.3) On f / f^{0}, we have the data

$$
\mathfrak{f}^{-1} / \mathfrak{f}^{0}=D, \quad \mathfrak{f}^{-2} / \mathfrak{f}^{0}=\ell \oplus D ;
$$

(X.4) $\mathcal{T} \equiv 0$;
(X.5) maximal wrt natural partial order: $\mathfrak{f} \leq \tilde{f}$ iff $f \hookrightarrow \widetilde{f}$.

What should we classify?

Suppose we have a Lie-theoretic XXO model $\left(f, f^{0} ; \ell, D\right)$.
Assume D is non-int. \& $\mathcal{Q} \equiv 0$. Admissible $\left(\mathfrak{f}, \mathfrak{f}^{0} ; \ell, D\right)$:
(X.1) $f \hookrightarrow \mathfrak{g}=G_{2}$ as a filtered (wrt P) Lie subalgebra;
(X.2) $\operatorname{gr}_{-}(\mathfrak{f})=\mathfrak{g}_{-} \& \operatorname{dim}\left(\mathfrak{f}^{0}\right) \geq 1$ ("multiply-transitive");
(X.3) On f / f^{0}, we have the data

$$
\mathfrak{f}^{-1} / \mathfrak{f}^{0}=D, \quad \mathfrak{f}^{-2} / \mathfrak{f}^{0}=\ell \oplus D ;
$$

(X.4) $\mathcal{T} \equiv 0$;
(X.5) maximal wrt natural partial order: $\mathfrak{f} \leq \widetilde{\mathfrak{f}}$ iff $\mathfrak{f} \hookrightarrow \widetilde{\mathfrak{f}}$.

Classify admissible ($\mathfrak{f}, \mathfrak{f}^{0} ; \ell, D$) (up to the natural

Classification steps

(1) Classify complex admissible $\left(\mathfrak{f}, \mathfrak{f}^{0} ; \ell, D\right)+$ real forms.
2) Integrate structure eqns to get local coordinate models.

Check Petrov types.
3 Find "Cartan-theoretic" embeddings into $\left(\mathfrak{s l}_{4}, \mathfrak{p}_{1,2}\right)$. (This
also determines Petrov types, as well as holonomy.) also determines Petrov types, as well as holonomy.)
We'll sketch a few key ideas relating to the first step.)
-2

Examples

Let $Z_{1}, Z_{2} \in \mathfrak{h}$ be dual to the simple roots $\alpha_{1}, \alpha_{2} \in \mathfrak{h}^{*}$ of G_{2}. Grading element: Z_{1}. Define $H:=\left[e_{01}, f_{01}\right]=-Z_{1}+2 Z_{2}$.

Leading parts

The graded subalgebra $\mathfrak{s}:=\operatorname{gr}(\mathfrak{f}) \subset \mathfrak{g}$ determines leading parts
of f. (Also need to determine "tails".) Start with the isotropy f^{0}.
The graded subalgebra $\mathfrak{s}:=\operatorname{gr}(\mathfrak{f}) \subset \mathfrak{g}$ determines leading parts
of \mathfrak{f}. (Also need to determine "tails".) Start with the isotropy f^{0}.

Leading parts

The graded subalgebra $\mathfrak{s}:=\operatorname{gr}(\mathfrak{f}) \subset \mathfrak{g}$ determines leading parts
of \mathfrak{f}. (Also need to determine "tails".) Start with the isotropy \mathfrak{f}^{0}.
The graded subalgebra $\mathfrak{s}:=\operatorname{gr}(f) \subset \mathfrak{g}$ determines leading parts
of f. (Also need to determine "tails".) Start with the isotropy f^{0}.
(1) $f^{i}=0$ for $i \geq 1$
(2) $\operatorname{gr}\left(\mathfrak{f}^{0}\right) \subseteq \mathfrak{g}_{0} \cong \mathfrak{g l}\left(\mathfrak{g}_{-1}\right) \cong \mathfrak{g l}_{2}$, so $\operatorname{dim}\left(\mathfrak{f}^{0}\right) \leq 4$.

Lemma

Leading parts

The graded subalgebra $\mathfrak{s}:=\operatorname{gr}(\mathfrak{f}) \subset \mathfrak{g}$ determines leading parts of \mathfrak{f}. (Also need to determine "tails".) Start with the isotropy f^{0}.

Lemma

(1) $f^{i}=0$ for $i \geq 1$
(2) $\operatorname{gr}\left(f^{0}\right) \subseteq \mathfrak{g}_{0} \cong \mathfrak{g l}\left(\mathfrak{g}_{-1}\right) \cong \mathfrak{g l}_{2}$, so $\operatorname{dim}\left(f^{0}\right) \leq 4$.

P-action $\rightsquigarrow G_{0}$-action on $\mathfrak{s}_{0} \subseteq \mathfrak{g}_{0}$. Classification over \mathbb{C} :

dim	$\mathfrak{g l}_{2}$ subalgebra
4	$\mathfrak{g l}_{2}$
3	$\mathfrak{s l}_{2}$,
2	$\left\langle\left(\begin{array}{cc}* & 0 \\ * & *\end{array}\right)\right\rangle$
2	$\left\langle\left(\begin{array}{cc}* & 0 \\ 0 & *\end{array}\right)\right\rangle,\left\langle\left(\begin{array}{cc}\lambda_{1} & 0 \\ * & \lambda_{2}\end{array}\right)\right\rangle$
1	$\left\langle\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)\right\rangle,\left\langle\left(\begin{array}{cc}\lambda & 0 \\ 1 & \lambda\end{array}\right)\right\rangle$

(Here, identify $\mathrm{Z}_{1} \leftrightarrow-\mathrm{id}$ and $\mathrm{H} \leftrightarrow \operatorname{diag}(1,-1)$.)

Pup

Tails

- Suppose $\exists S \in \mathfrak{f}^{0}$ with $S_{0}=\operatorname{gr}_{0}(S) \in \mathfrak{s}_{0}$ semisimple.
- Try to use P-action to normalize tails so that $S=S_{0}$.

Tails

- Suppose $\exists S \in \mathfrak{f}^{0}$ with $S_{0}=\operatorname{gr}_{0}(S) \in \mathfrak{s}_{0}$ semisimple.
- Try to use P-action to normalize tails so that $S=S_{0}$.
- Pick S-invariant decomp. $\mathfrak{s} \oplus \mathfrak{s}^{\perp}=\mathfrak{g}$.

Tails

- Suppose $\exists S \in \mathfrak{f}^{0}$ with $S_{0}=\operatorname{gr}_{0}(S) \in \mathfrak{S}_{0}$ semisimple.
- Try to use P-action to normalize tails so that $S=S_{0}$.
- Pick S-invariant decomp. $\mathfrak{s} \oplus \mathfrak{s}^{\perp}=\mathfrak{g}$.
- Tails \rightsquigarrow deform. map $\partial \in\left(\mathfrak{s}^{*} \otimes \mathfrak{s}^{\perp}\right)+$ is highly constrained:

$$
S \cdot \mathfrak{d}=0 . \quad(\rightsquigarrow \text { eigenvalue restrictions! })
$$

Tails

- Suppose $\exists S \in \mathfrak{f}^{0}$ with $S_{0}=\operatorname{gr}_{0}(S) \in \mathfrak{N}_{0}$ semisimple.
- Try to use P-action to normalize tails so that $S=S_{0}$.
- Pick S-invariant decomp. $\mathfrak{s} \oplus \mathfrak{s}^{\perp}=\mathfrak{g}$.
- Tails \rightsquigarrow deform. map $0 \in\left(\mathfrak{s}^{*} \otimes \mathfrak{s}^{\perp}\right)+$ is highly constrained:

$$
S \cdot \mathfrak{o}=0 . \quad(\rightsquigarrow \text { eigenvalue restrictions! })
$$

All cases with such semisimple elements in (normalized) \mathfrak{s}_{0} :

$S_{0} \in \mathfrak{s}_{0}$	Constraints	Admissible models
Z_{1}	-	M 9
H	$\mathrm{Z}_{1} \notin \mathfrak{s}_{0}$	$\mathrm{M} 8 \& \mathrm{M} 6 \mathrm{~S}$
$\mathrm{Z}_{1}+c \mathrm{H}$	$c \neq 0$,	$c \neq 1:$ none
	$\mathfrak{s}_{0} \subseteq\left\langle\mathrm{Z}_{1}+c \mathrm{H}, f_{01}\right\rangle$	$c=1: \mathrm{M} 7_{a}$

Tails

- Suppose $\exists S \in f^{0}$ with $S_{0}=\operatorname{gr}_{0}(S) \in \mathfrak{F}_{0}$ semisimple.
- Try to use P-action to normalize tails so that $S=S_{0}$.
- Pick S-invariant decomp. $\mathfrak{s} \oplus \mathfrak{s}^{\perp}=\mathfrak{g}$.
- Tails \rightsquigarrow deform. map $0 \in\left(\mathfrak{s}^{*} \otimes \mathfrak{s}^{\perp}\right)+$ is highly constrained:

$$
S \cdot \mathfrak{d}=0 . \quad(\rightsquigarrow \text { eigenvalue restrictions! })
$$

All cases with such semisimple elements in (normalized) \mathfrak{s}_{0} :

$S_{0} \in \mathfrak{s}_{0}$	Constraints	Admissible models
Z_{1}	-	M 9
H	$\mathrm{Z}_{1} \notin \mathfrak{s}_{0}$	$\mathrm{M} 8 \& \mathrm{M} 6 \mathrm{~S}$
$\mathrm{Z}_{1}+c \mathrm{H}$	$c \neq 0$,	$c \neq 1:$ none
	$\mathfrak{s}_{0} \subseteq\left\langle\mathrm{Z}_{1}+c \mathrm{H}, f_{01}\right\rangle$	$c=1: \mathrm{M} 7_{a}$

Remaining cases with no such: $\mathfrak{s}_{0}=\left\langle f_{01}+r Z_{1}\right\rangle$ (Jordan case).

- $r \neq 0$: No admissible model. (Easy.)

Tails

- Suppose $\exists S \in f^{0}$ with $S_{0}=\operatorname{gr}_{0}(S) \in \mathfrak{F}_{0}$ semisimple.
- Try to use P-action to normalize tails so that $S=S_{0}$.
- Pick S-invariant decomp. $\mathfrak{s} \oplus \mathfrak{s}^{\perp}=\mathfrak{g}$.
- Tails \rightsquigarrow deform. map $0 \in\left(\mathfrak{s}^{*} \otimes \mathfrak{s}^{\perp}\right)+$ is highly constrained:

$$
S \cdot \mathfrak{d}=0 . \quad(\rightsquigarrow \text { eigenvalue restrictions! })
$$

All cases with such semisimple elements in (normalized) \mathfrak{s}_{0} :

$S_{0} \in \mathfrak{s}_{0}$	Constraints	Admissible models
Z_{1}	-	M 9
H	$\mathrm{Z}_{1} \notin \mathfrak{s}_{0}$	$\mathrm{M} 8 \& \mathrm{M} 6 \mathrm{~S}$
$\mathrm{Z}_{1}+c \mathrm{H}$	$c \neq 0$,	$c \neq 1:$ none
	$\mathfrak{s}_{0} \subseteq\left\langle\mathrm{Z}_{1}+c \mathrm{H}, f_{01}\right\rangle$	$c=1: \mathrm{M} 7_{a}$

Remaining cases with no such: $\mathfrak{s}_{0}=\left\langle f_{01}+r Z_{1}\right\rangle$ (Jordan case).

- $r \neq 0$: No admissible model. (Easy.)
- $r=0$: M6N. (Most challenging case; $\mathcal{T} \equiv 0$ is essential.)

