On 4D split-conformal structures with G₂-symmetric twistor distribution

Dennis The

Department of Mathematics & Statistics UiT The Arctic University of Norway

(Joint work in progress with Pawel Nurowski & Katja Sagerschnig)

January 18, 2024

A tale of three (parabolic) geometries

(2,3,5)-geometry (5D) D non-int. $(N^5; D)$

XXO-geometry (5D) (2,3 $(N^5 = \mathbb{T}^+(M); \ell, D)$ D non-int.

(oriented) split-conformal (4D) $(M^4; [g])$

A tale of three (parabolic) geometries

XXO-geometry (5D) (2,3,5)-geometry (5D) $(N^5 = \mathbb{T}^+(M); \ell, D)$ $\stackrel{D \text{ non-int.}}{\longrightarrow}$ $(N^5; D)$ (oriented) split-conformal (4D) $(M^4; [a])$

Q: Which [g] lead to D with maximal (G_2) symmetry?

A tale of three (parabolic) geometries

XXO-geometry (5D) (2,3,5)-geometry (5D) $(N^5 = \mathbb{T}^+(M); \ell, D)$ $\stackrel{D \text{ non-int.}}{\longrightarrow}$ $(N^5; D)$ (oriented) split-conformal (4D) $(M^4; [a])$

Q: Which [g] lead to D with maximal (G_2) symmetry?

Example (Rolling w/o twisting or slipping $\rightsquigarrow G_2$)

 $M = \Sigma_1 \times \Sigma_2$ with $g = g_1 \oplus (-g_2)$ for Riemannian surfaces (Σ_i, g_i) :

- Two 2-spheres with ratio of radii 1:3;
- An–Nurowski (2013): new examples (conf. hom & non-hom).

$(N^5, D \subset TN)$ is a (2, 3, 5)-geometry if

 $\operatorname{rank}(D)=2, \quad \operatorname{rank}([D,D])=3, \quad [D,[D,D]]=TN.$

 $(N^5, D \subset TN)$ is a (2, 3, 5)-geometry if

 $\operatorname{rank}(D) = 2, \quad \operatorname{rank}([D, D]) = 3, \quad [D, [D, D]] = TN.$

Goursat (1896): Locally, $D = D_f$ with D_f spanned by

 $\mathcal{D}_x := \partial_x + p\partial_y + q\partial_p + f(x, y, p, q, z)\partial_z, \qquad \partial_q.$

This is (2,3,5) iff $f_{qq} \neq 0$.

 $(N^5, D \subset TN)$ is a (2, 3, 5)-geometry if

rank(D) = 2, rank([D, D]) = 3, [D, [D, D]] = TN.

Goursat (1896): Locally, $D = D_f$ with D_f spanned by

$$\mathcal{D}_x := \partial_x + p \partial_y + q \partial_p + f(x, y, p, q, z) \partial_z, \qquad \partial_q$$

This is (2,3,5) iff $f_{qq} \neq 0$.

Theorem (Cartan 1910)

Any (2,3,5)-distribution has at most 14-dim symmetry. Locally, $\exists!$ maximally symmetric model, and this has G_2 -symmetry.

 $(N^5, D \subset TN)$ is a (2, 3, 5)-geometry if

rank(D) = 2, rank([D, D]) = 3, [D, [D, D]] = TN.

Goursat (1896): Locally, $D = D_f$ with D_f spanned by

$$\mathcal{D}_x := \partial_x + p \partial_y + q \partial_p + f(x, y, p, q, z) \partial_z, \qquad \partial_q$$

This is (2,3,5) iff $f_{qq} \neq 0$.

Theorem (Cartan 1910)

Any (2,3,5)-distribution has at most 14-dim symmetry. Locally, $\exists!$ maximally symmetric model, and this has G_2 -symmetry.

Example (Cartan 1896) D_{q^2} has G_2 -symmetry.

... consists of a 5-mfld N with rank 3 dist. $H \subset TN$ satisfying:

- [H,H] = TN and $H = \ell \oplus D$ (of ranks 1 and 2);
- $[D,D] \subseteq H$. >: [D,D] may have non-constant rank.

... consists of a 5-mfld N with rank 3 dist. $H \subset TN$ satisfying:

- [H,H] = TN and $H = \ell \oplus D$ (of ranks 1 and 2);
- $[D,D] \subseteq H$. >: [D,D] may have non-constant rank.

Model: $\operatorname{Flag}_{1,2}(\mathbb{R}^4)$ $(\operatorname{SL}_4/P_{1,2})$

/	0	1	2	2	١
	-1	0			
	-2	-1	0	0	
	-2	-1	0	0	Ì

... consists of a 5-mfld N with rank 3 dist. $H \subset TN$ satisfying:

- [H, H] = TN and $H = \ell \oplus D$ (of ranks 1 and 2);
- $[D,D] \subseteq H$. \bigcirc : [D,D] may have non-constant rank.

Model: Flag_{1,2}(\mathbb{R}^4) (SL₄/ $P_{1,2}$)

1	0	1	2	2	Ì
	-1	0			
	-2	-1	0	0	
\setminus	-2	-1	0	0	

Example (Pairs of 2nd order ODE as integrable XXO-str.) $\begin{cases} \ddot{x} = F(t, x, y, \dot{x}, \dot{y}) \\ \ddot{y} = G(t, x, y, \dot{x}, \dot{y}) \end{cases} \begin{cases} N^5 : (t, x, y, \dot{x}, \dot{y}) \\ \ell = \langle \partial_t + \dot{x} \partial_x + \dot{y} \partial_y + F \partial_{\dot{x}} + G \partial_{\dot{y}} \rangle \\ D = \langle \partial_{\dot{x}}, \partial_{\dot{y}} \rangle \end{cases} (integrable: [D, D] = D)$

... consists of a 5-mfld N with rank 3 dist. $H \subset TN$ satisfying:

- [H, H] = TN and $H = \ell \oplus D$ (of ranks 1 and 2);
- $[D,D] \subseteq H$. (D,D] may have non-constant rank.

Model:

Example (Pairs of 2nd order ODE as integrable XXO-str.) $(N^5 \cdot (t \ r \ u \ \dot{r} \ \dot{u})$

$$\begin{cases} \ddot{x} = F(t, x, y, \dot{x}, \dot{y}) \\ \ddot{y} = G(t, x, y, \dot{x}, \dot{y}) \end{cases} \begin{cases} I = \langle \partial_t + \dot{x} \partial_x + \dot{y} \partial_y + F \partial_{\dot{x}} + G \partial_{\dot{y}} \rangle \\ \ell = \langle \partial_t + \dot{x} \partial_x + \dot{y} \partial_y + F \partial_{\dot{x}} + G \partial_{\dot{y}} \rangle \\ D = \langle \partial_{\dot{x}}, \partial_{\dot{y}} \rangle \end{cases} (integrable: [D, D] =$$

Example (Enhancing (2.3.5) to a non-integrable XXO-str.) For $D = D_{q^2} = \langle \mathcal{D}_x, \partial_q \rangle$, we have $[D, D]/D = \langle \partial_p + 2q\partial_z \rangle$. We can define an XXO geometry via a choice of ℓ : $\ell = \langle \partial_n + 2q\partial_z + A\mathcal{D}_x + B\partial_q \rangle$ (non-int: $[D, D] = H := \ell \oplus D$)

- Input: $(M^4, [g])$, with g a split-signature (2, 2)-metric.
- Output: On "circle-twistor bundle" $N = \mathbb{T}^+(M) \to M$ (fibres are SD totally null 2-planes), get XXO structure $H = \ell \oplus D$.

- Input: $(M^4, [g])$, with g a split-signature (2, 2)-metric.
- Output: On "circle-twistor bundle" $N = \mathbb{T}^+(M) \to M$ (fibres are SD totally null 2-planes), get XXO structure $H = \ell \oplus D$.

•
$$\ell = \ker(TN \to TM);$$

- Input: $(M^4, [g])$, with g a split-signature (2, 2)-metric.
- Output: On "circle-twistor bundle" $N = \mathbb{T}^+(M) \to M$ (fibres are SD totally null 2-planes), get XXO structure $H = \ell \oplus D$.
 - $\ell = \ker(TN \to TM);$
 - D = "twistor distribution": distinguished via the 1-dim kernel of $\bigwedge^2 H^* \to TN/H$.

- Input: $(M^4, [g])$, with g a split-signature (2, 2)-metric.
- Output: On "circle-twistor bundle" $N = \mathbb{T}^+(M) \to M$ (fibres are SD totally null 2-planes), get XXO structure $H = \ell \oplus D$.

•
$$\ell = \ker(TN \to TM);$$

- D = "twistor distribution": distinguished via the 1-dim kernel of $\bigwedge^2 H^* \to TN/H$.
- Locally, $g = \theta^1 \theta^2 + \theta^3 \theta^4$, $\operatorname{vol}_g = \theta^1 \wedge \theta^2 \wedge \theta^3 \wedge \theta^4$, SD totally null 2-planes look like $\langle e_1 + \xi e_3, e_4 \xi e_2 \rangle$.

- Input: $(M^4, [g])$, with g a split-signature (2, 2)-metric.
- Output: On "circle-twistor bundle" $N = \mathbb{T}^+(M) \to M$ (fibres are SD totally null 2-planes), get XXO structure $H = \ell \oplus D$.

•
$$\ell = \ker(TN \to TM);$$

- D = "twistor distribution": distinguished via the 1-dim kernel of $\bigwedge^2 H^* \to TN/H$.
- Locally, $g = \theta^1 \theta^2 + \theta^3 \theta^4$, $\operatorname{vol}_g = \theta^1 \wedge \theta^2 \wedge \theta^3 \wedge \theta^4$, SD totally null 2-planes look like $\langle e_1 + \xi e_3, e_4 \xi e_2 \rangle$. Lift to XXO:

$$L = \langle \partial_{\xi} \rangle, \quad D = \langle e_1 + \xi e_3 + A \partial_{\xi}, e_4 - \xi e_2 + B \partial_{\xi} \rangle.$$

General construction:

- Input: $(M^4, [g])$, with g a split-signature (2, 2)-metric.
- Output: On "circle-twistor bundle" $N = \mathbb{T}^+(M) \to M$ (fibres are SD totally null 2-planes), get XXO structure $H = \ell \oplus D$.

•
$$\ell = \ker(TN \to TM);$$

- D = "twistor distribution": distinguished via the 1-dim kernel of $\bigwedge^2 H^* \to TN/H$.
- Locally, $g = \theta^1 \theta^2 + \theta^3 \theta^4$, $\operatorname{vol}_g = \theta^1 \wedge \theta^2 \wedge \theta^3 \wedge \theta^4$, SD totally null 2-planes look like $\langle e_1 + \xi e_3, e_4 \xi e_2 \rangle$. Lift to XXO:

$$L = \langle \partial_{\xi} \rangle, \quad D = \langle e_1 + \xi e_3 + A \partial_{\xi}, e_4 - \xi e_2 + B \partial_{\xi} \rangle.$$

• Efficiently compute \mathcal{W}^+ via: $\bigwedge^2 D \xrightarrow{[\cdot,\cdot]} H = L \oplus D \xrightarrow{\operatorname{pr}_L} L$. (Locally, $\mathcal{W}^+(\xi)$ is a quartic polynomial in $\xi \rightsquigarrow$ Petrov type.)

- Input: $(M^4, [g])$, with g a split-signature (2, 2)-metric.
- Output: On "circle-twistor bundle" $N = \mathbb{T}^+(M) \to M$ (fibres are SD totally null 2-planes), get XXO structure $H = \ell \oplus D$.

•
$$\ell = \ker(TN \to TM);$$

- D = "twistor distribution": distinguished via the 1-dim kernel of $\bigwedge^2 H^* \to TN/H$.
- Locally, $g = \theta^1 \theta^2 + \theta^3 \theta^4$, $\operatorname{vol}_g = \theta^1 \wedge \theta^2 \wedge \theta^3 \wedge \theta^4$, SD totally null 2-planes look like $\langle e_1 + \xi e_3, e_4 \xi e_2 \rangle$. Lift to XXO:

$$L = \langle \partial_{\xi} \rangle, \quad D = \langle e_1 + \xi e_3 + A \partial_{\xi}, e_4 - \xi e_2 + B \partial_{\xi} \rangle.$$

- Efficiently compute \mathcal{W}^+ via: $\bigwedge^2 D \xrightarrow{[\cdot,\cdot]} H = L \oplus D \xrightarrow{\operatorname{pr}_L} L$. (Locally, $\mathcal{W}^+(\xi)$ is a quartic polynomial in $\xi \rightsquigarrow$ Petrov type.)
- D is (2,3,5) where $\mathcal{W}^+ \neq 0$.

General construction:

- Input: $(M^4, [g])$, with g a split-signature (2, 2)-metric.
- Output: On "circle-twistor bundle" $N = \mathbb{T}^+(M) \to M$ (fibres are SD totally null 2-planes), get XXO structure $H = \ell \oplus D$.

•
$$\ell = \ker(TN \to TM);$$

- D = "twistor distribution": distinguished via the 1-dim kernel of $\bigwedge^2 H^* \to TN/H$.
- Locally, $g = \theta^1 \theta^2 + \theta^3 \theta^4$, $\operatorname{vol}_g = \theta^1 \wedge \theta^2 \wedge \theta^3 \wedge \theta^4$, SD totally null 2-planes look like $\langle e_1 + \xi e_3, e_4 \xi e_2 \rangle$. Lift to XXO:

$$L = \langle \partial_{\xi} \rangle, \quad D = \langle e_1 + \xi e_3 + A \partial_{\xi}, e_4 - \xi e_2 + B \partial_{\xi} \rangle.$$

- Efficiently compute \mathcal{W}^+ via: $\bigwedge^2 D \xrightarrow{[\cdot,\cdot]} H = L \oplus D \xrightarrow{\operatorname{pr}_L} L$. (Locally, $\mathcal{W}^+(\xi)$ is a quartic polynomial in $\xi \rightsquigarrow$ Petrov type.)
- D is (2,3,5) where $\mathcal{W}^+ \neq 0$.

Q: Which [g] lead to D with G_2 symmetry?

A classification theorem

Theorem (Nurowski–Sagerschnig–T. 2024) We have a complete classification of those locally homogeneous 4D split-conformal structures with:

- 1 multiply-transitive induced XXO-structure, and
- **2** G_2 -symmetric twistor distribution.

A classification theorem

Theorem (Nurowski–Sagerschnig–T. 2024) We have a complete classification of those locally homogeneous 4D split-conformal structures with:

- 1 multiply-transitive induced XXO-structure, and
- **2** G_2 -symmetric twistor distribution.

Complexified summary:

Label	Petrov type	Comments
M9	N.O	$\mathfrak{p}_1^{\mathrm{op}} \subset G_2$
M8	D.O	$\mathfrak{sl}(3,\mathbb{R}),\mathfrak{su}(1,2)\subset G_2$
M7 _a	$\begin{cases} N.N, & a^2 \neq \frac{4}{3}; \\ N.O, & a^2 = \frac{4}{3} \end{cases}$	$new: \mathbb{R}^2 \ltimes \mathfrak{heis}_5$
M6S	D.D	1:3 rolling spheres + variants
M6N	III.O	$new:\mathfrak{aff}(2)$

Plebanski: $g = dwdx + dydz - \Theta_{xx}dz^2 - \Theta_{yy}dw^2 + 2\Theta_{xy}dwdz$ $\rightsquigarrow \quad W^+(\xi) = (\partial_x + \xi\partial_y)^4\Theta.$

Plebanski: $g = dwdx + dydz - \Theta_{xx}dz^2 - \Theta_{yy}dw^2 + 2\Theta_{xy}dwdz$ $\rightsquigarrow \quad W^+(\xi) = (\partial_x + \xi \partial_y)^4 \Theta.$

Example

Plebanski: $g = dwdx + dydz - \Theta_{xx}dz^2 - \Theta_{yy}dw^2 + 2\Theta_{xy}dwdz$ $\rightsquigarrow \quad W^+(\xi) = (\partial_x + \xi \partial_y)^4 \Theta.$

Example

Let $\Theta = -\frac{y^4}{12}$. Then $g = y^2 dw^2 + dw dx + dy dz$ has 9 CKV's.

• Lift to XXO-geometry $\rightsquigarrow (\ell, D)$ admits 9-dim. sym. alg. f.

Plebanski: $g = dwdx + dydz - \Theta_{xx}dz^2 - \Theta_{yy}dw^2 + 2\Theta_{xy}dwdz$ $\rightsquigarrow \quad W^+(\xi) = (\partial_x + \xi \partial_y)^4 \Theta.$

Example

Let $\Theta = -\frac{y^4}{12}$. Then $g = y^2 dw^2 + dw dx + dy dz$ has 9 CKV's.

• Lift to XXO-geometry $\rightsquigarrow (\ell, D)$ admits 9-dim. sym. alg. f.

•
$$W^+ = -2\xi^4$$
, so *D* is $(2, 3, 5)$ when $\xi \neq 0$.

Plebanski: $g = dwdx + dydz - \Theta_{xx}dz^2 - \Theta_{yy}dw^2 + 2\Theta_{xy}dwdz$ $\rightsquigarrow \quad W^+(\xi) = (\partial_x + \xi \partial_y)^4 \Theta.$

Example

- Lift to XXO-geometry $\rightsquigarrow (\ell, D)$ admits 9-dim. sym. alg. f.
- $\mathcal{W}^+ = -2\xi^4$, so D is (2,3,5) when $\xi \neq 0$.
- Cartan (1910): Submax. sym. dim. for (2,3,5) is 7.

Plebanski: $g = dwdx + dydz - \Theta_{xx}dz^2 - \Theta_{yy}dw^2 + 2\Theta_{xy}dwdz$ $\rightsquigarrow \quad W^+(\xi) = (\partial_x + \xi \partial_y)^4 \Theta.$

Example

- Lift to XXO-geometry $\rightsquigarrow (\ell, D)$ admits 9-dim. sym. alg. f.
- $\mathcal{W}^+ = -2\xi^4$, so D is (2,3,5) when $\xi \neq 0$.
- Cartan (1910): Submax. sym. dim. for (2, 3, 5) is 7.
- Thus, $\mathfrak{f} \hookrightarrow G_2$. Indeed $\mathfrak{f} \cong \mathfrak{p}_1^{op} \subset G_2$.

Plebanski: $g = dwdx + dydz - \Theta_{xx}dz^2 - \Theta_{yy}dw^2 + 2\Theta_{xy}dwdz$ $\rightsquigarrow \quad W^+(\xi) = (\partial_x + \xi \partial_y)^4 \Theta.$

Example

- Lift to XXO-geometry $\rightsquigarrow (\ell, D)$ admits 9-dim. sym. alg. f.
- $\mathcal{W}^+ = -2\xi^4$, so D is (2,3,5) when $\xi \neq 0$.
- Cartan (1910): Submax. sym. dim. for (2, 3, 5) is 7.
- Thus, $\mathfrak{f} \hookrightarrow G_2$. Indeed $\mathfrak{f} \cong \mathfrak{p}_1^{op} \subset G_2$.

Harmonic curvatures

Structure	Hieroglyphic	Harmonic curvatures	Hom.
(2, 3, 5)	$\overset{-8}{\not\leftarrow}\overset{4}{\leftarrow}$	Cartan quartic: 🧕	+4
4D split-conf	$ \underbrace{ \begin{array}{ccc} 0 & -4 & 4 \\ \bullet & & \times & \bullet \end{array} } $	ASD Weyl: \mathcal{W}^-	+2
	$\underbrace{\begin{array}{ccc}4 & -4 & 0\\\bullet & \times & \bullet\end{array}}$	SD Weyl: \mathcal{W}^+	+2
XXO	$\overset{0}{\times} \overset{-4}{\times} \overset{4}{\times} \overset{4}{\times} \overset{6}{\times}$	8	+3
	$\xrightarrow{-4}$ 1 2 \times $\xrightarrow{-4}$	${\mathcal T}$	+2
	$\overset{4 -4 0}{\times \times \bullet}$		+1

Harmonic curvatures

Structure	Hieroglyphic	Harmonic curvatures	Hom.
(2, 3, 5)	$\overset{-8}{\bigstar}\overset{4}{\bigstar}$	Cartan quartic: 🧕	+4
4D split-conf	$ \underbrace{ \begin{array}{ccc} 0 & -4 & 4 \\ \bullet & & \times & \bullet \end{array} } $	ASD Weyl: \mathcal{W}^-	+2
	$\underbrace{\begin{array}{ccc}4 & -4 & 0\\\bullet & \overleftarrow{} & \bullet\end{array}}_{\bullet}$	SD Weyl: \mathcal{W}^+	+2
XXO	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	+3
	$\xrightarrow{-4}$ 1 2 $\xrightarrow{-4}$	${\mathcal T}$	+2
	$\begin{array}{cccc} 4 & -4 & 0 \\ \times & \times & \bullet \end{array}$		+1

Remarks:

- \mathcal{I} precisely obstructs integrability of D.
- Čap (2006) \rightsquigarrow 4D split-conf. \leftrightarrow XXO geometry with $T \equiv 0$.

• Via Lie algebras of vector fields: not sure how to start.

- Via Lie algebras of vector fields: not sure how to start.
- Cartan reduction on XXO with T = 0 and I ≠ 0: get a list, but need to impose Q = 0 to remove extraneous items. (This is cumbersome, especially for the 6D case.)

- Via Lie algebras of vector fields: not sure how to start.
- Cartan reduction on XXO with T = 0 and I ≠ 0: get a list, but need to impose Q = 0 to remove extraneous items. (This is cumbersome, especially for the 6D case.)

Strategy:

• Work inside $\mathfrak{g} = G_2$, filtered by the parabolic $P = P_1$;

- Via Lie algebras of vector fields: not sure how to start.
- Cartan reduction on XXO with T = 0 and I ≠ 0: get a list, but need to impose Q = 0 to remove extraneous items. (This is cumbersome, especially for the 6D case.)

Strategy:

- Work inside $\mathfrak{g} = G_2$, filtered by the parabolic $P = P_1$;
- Build in $Q \equiv 0$ and $\mathcal{I} \neq 0$ from the outset.

- Via Lie algebras of vector fields: not sure how to start.
- Cartan reduction on XXO with T = 0 and I ≠ 0: get a list, but need to impose Q = 0 to remove extraneous items. (This is cumbersome, especially for the 6D case.)

Strategy:

- Work inside $\mathfrak{g} = G_2$, filtered by the parabolic $P = P_1$;
- Build in $Q \equiv 0$ and $\mathcal{I} \neq 0$ from the outset.

Here, the filtration is:

Suppose we have a Lie-theoretic XXO model $(\mathfrak{f}, \mathfrak{f}^0; \ell, D)$.

Suppose we have a Lie-theoretic XXO model $(\mathfrak{f}, \mathfrak{f}^0; \ell, D)$.

Assume *D* is non-int. & $Q \equiv 0$.

Suppose we have a Lie-theoretic XXO model $(\mathfrak{f}, \mathfrak{f}^0; \ell, D)$. Assume *D* is non-int. & $\mathcal{Q} \equiv 0$. Admissible $(\mathfrak{f}, \mathfrak{f}^0; \ell, D)$:

(X.1) $\mathfrak{f} \hookrightarrow \mathfrak{g} = G_2$ as a filtered (wrt *P*) Lie subalgebra;

Suppose we have a Lie-theoretic XXO model $(\mathfrak{f}, \mathfrak{f}^0; \ell, D)$. Assume *D* is non-int. & $\mathcal{Q} \equiv 0$. Admissible $(\mathfrak{f}, \mathfrak{f}^0; \ell, D)$: (X.1) $\mathfrak{f} \hookrightarrow \mathfrak{g} = G_2$ as a filtered (wrt *P*) Lie subalgebra; (X.2) $\operatorname{gr}_{}(\mathfrak{f}) = \mathfrak{g}_{} \& \dim(\mathfrak{f}^0) \ge 1$ ("multiply-transitive");

Suppose we have a Lie-theoretic XXO model $(\mathfrak{f}, \mathfrak{f}^0; \ell, D)$. Assume *D* is non-int. & $\mathcal{Q} \equiv 0$. Admissible $(\mathfrak{f}, \mathfrak{f}^0; \ell, D)$: (X.1) $\mathfrak{f} \hookrightarrow \mathfrak{g} = G_2$ as a filtered (wrt *P*) Lie subalgebra; (X.2) $\operatorname{gr}_{-}(\mathfrak{f}) = \mathfrak{g}_{-} \& \operatorname{dim}(\mathfrak{f}^0) \ge 1$ ("multiply-transitive"); (X.3) On $\mathfrak{f}/\mathfrak{f}^0$, we have the data

$$\mathfrak{f}^{-1}/\mathfrak{f}^0 = D, \quad \mathfrak{f}^{-2}/\mathfrak{f}^0 = \ell \oplus D;$$

Suppose we have a Lie-theoretic XXO model $(\mathfrak{f}, \mathfrak{f}^0; \ell, D)$. Assume *D* is non-int. & $\mathcal{Q} \equiv 0$. Admissible $(\mathfrak{f}, \mathfrak{f}^0; \ell, D)$: (X.1) $\mathfrak{f} \hookrightarrow \mathfrak{g} = G_2$ as a filtered (wrt *P*) Lie subalgebra; (X.2) $\operatorname{gr}_{-}(\mathfrak{f}) = \mathfrak{g}_{-} \& \operatorname{dim}(\mathfrak{f}^0) \ge 1$ ("multiply-transitive"); (X.3) On $\mathfrak{f}/\mathfrak{f}^0$, we have the data

$$\mathfrak{f}^{-1}/\mathfrak{f}^0 = D, \quad \mathfrak{f}^{-2}/\mathfrak{f}^0 = \ell \oplus D;$$

 $(X.4) \ \mathcal{T} \equiv 0;$

Suppose we have a Lie-theoretic XXO model $(\mathfrak{f}, \mathfrak{f}^0; \ell, D)$. Assume *D* is non-int. & $\mathcal{Q} \equiv 0$. Admissible $(\mathfrak{f}, \mathfrak{f}^0; \ell, D)$: (X.1) $\mathfrak{f} \hookrightarrow \mathfrak{g} = G_2$ as a filtered (wrt *P*) Lie subalgebra; (X.2) $\operatorname{gr}_{-}(\mathfrak{f}) = \mathfrak{g}_{-} \& \dim(\mathfrak{f}^0) \ge 1$ ("multiply-transitive"); (X.3) On $\mathfrak{f}/\mathfrak{f}^0$, we have the data

$$\mathfrak{f}^{-1}/\mathfrak{f}^0 = D, \quad \mathfrak{f}^{-2}/\mathfrak{f}^0 = \ell \oplus D;$$

(X.4) $\mathcal{T} \equiv 0$; (X.5) maximal wrt natural partial order: $\mathfrak{f} \leq \widetilde{\mathfrak{f}}$ iff $\mathfrak{f} \hookrightarrow \widetilde{\mathfrak{f}}$.

Suppose we have a Lie-theoretic XXO model $(\mathfrak{f}, \mathfrak{f}^0; \ell, D)$. Assume *D* is non-int. & $\mathcal{Q} \equiv 0$. Admissible $(\mathfrak{f}, \mathfrak{f}^0; \ell, D)$: (X.1) $\mathfrak{f} \hookrightarrow \mathfrak{g} = G_2$ as a filtered (wrt *P*) Lie subalgebra; (X.2) $\operatorname{gr}_{-}(\mathfrak{f}) = \mathfrak{g}_{-} \& \dim(\mathfrak{f}^0) \ge 1$ ("multiply-transitive"); (X.3) On $\mathfrak{f}/\mathfrak{f}^0$, we have the data

$$\mathfrak{f}^{-1}/\mathfrak{f}^0 = D, \quad \mathfrak{f}^{-2}/\mathfrak{f}^0 = \ell \oplus D;$$

(X.4) $\mathcal{T} \equiv 0$; (X.5) maximal wrt natural partial order: $\mathfrak{f} \leq \widetilde{\mathfrak{f}}$ iff $\mathfrak{f} \hookrightarrow \widetilde{\mathfrak{f}}$.

Classify admissible $(\mathfrak{f}, \mathfrak{f}^0; \ell, D)$ (up to the natural *P*-action).

- **1** Classify complex admissible $(\mathfrak{f}, \mathfrak{f}^0; \ell, D)$ + real forms.
- Integrate structure eqns to get local coordinate models. Check Petrov types.
- S Find "Cartan-theoretic" embeddings into (sl₄, p_{1,2}). (This also determines Petrov types, as well as holonomy.)

We'll sketch a few key ideas relating to the first step.

Let $Z_1, Z_2 \in \mathfrak{h}$ be dual to the simple roots $\alpha_1, \alpha_2 \in \mathfrak{h}^*$ of G_2 . Grading element: Z₁. Define $H := [e_{01}, f_{01}] = -Z_1 + 2Z_2$.

		M9	M6S
e_{01} e_{11} e_{21} e_{31}	\mathfrak{f}^0	f_{01}, Z_1, H, e_{01}	Н
Z_1, Z_2	$D = \mathfrak{f}^{-1}/\mathfrak{f}^0$	f_{10}	$f_{10} + e_{11}$
f_{10} • e_{10}		f_{11}	$f_{11} + e_{10}$
	$\mathfrak{f}^{-2}/\mathfrak{f}^{-1}$	f_{21}	$f_{21} + e_{21}$
f_{31} f_{24} f_{11} f_{01}	$\mathfrak{f}^{-3}/\mathfrak{f}^{-2}$	f_{31}	$f_{31} + e_{32}$
fao		f_{32}	$f_{32} + e_{31}$
J_{32}	ℓ	f_{21}	$f_{21} + e_{21}$

Leading parts

The graded subalgebra $\mathfrak{s} := \operatorname{gr}(\mathfrak{f}) \subset \mathfrak{g}$ determines leading parts of \mathfrak{f} . (Also need to determine "tails".) Start with the isotropy \mathfrak{f}^0 .

Leading parts

The graded subalgebra $\mathfrak{s} := \operatorname{gr}(\mathfrak{f}) \subset \mathfrak{g}$ determines leading parts of \mathfrak{f} . (Also need to determine "tails".) Start with the isotropy \mathfrak{f}^0 .

Lemma

- 1 $\mathfrak{f}^i = 0$ for $i \ge 1$
- 2 $\operatorname{gr}(\mathfrak{f}^0) \subseteq \overline{\mathfrak{g}_0 \cong \mathfrak{gl}(\mathfrak{g}_{-1}) \cong \mathfrak{gl}_2}$, so $\operatorname{dim}(\mathfrak{f}^0) \leq 4$.

Leading parts

The graded subalgebra $\mathfrak{s} := \operatorname{gr}(\mathfrak{f}) \subset \mathfrak{g}$ determines leading parts of \mathfrak{f} . (Also need to determine "tails".) Start with the isotropy \mathfrak{f}^0 .

Lemma

1
$$\mathfrak{f}^i = 0$$
 for $i \ge 1$

2 $\operatorname{gr}(\mathfrak{f}^0) \subseteq \mathfrak{g}_0 \cong \mathfrak{gl}(\mathfrak{g}_{-1}) \cong \mathfrak{gl}_2$, so $\operatorname{dim}(\mathfrak{f}^0) \leq 4$.

P-action \rightsquigarrow G_0 -action on $\mathfrak{s}_0 \subseteq \mathfrak{g}_0$. Classification over \mathbb{C} :

(Here, identify $Z_1 \leftrightarrow -id$ and $H \leftrightarrow diag(1, -1)$.)

• Suppose $\exists S \in \mathfrak{f}^0$ with $S_0 = \operatorname{gr}_0(S) \in \mathfrak{s}_0$ semisimple.

- Suppose $\exists S \in \mathfrak{f}^0$ with $S_0 = \operatorname{gr}_0(S) \in \mathfrak{s}_0$ semisimple.
- Try to use *P*-action to normalize tails so that $S = S_0$.

- Suppose $\exists S \in \mathfrak{f}^0$ with $S_0 = \operatorname{gr}_0(S) \in \mathfrak{s}_0$ semisimple.
- Try to use *P*-action to normalize tails so that $S = S_0$.
- Pick *S*-invariant decomp. $\mathfrak{s} \oplus \mathfrak{s}^{\perp} = \mathfrak{g}$.

- Suppose $\exists S \in \mathfrak{f}^0$ with $S_0 = \operatorname{gr}_0(S) \in \mathfrak{s}_0$ semisimple.
- Try to use *P*-action to normalize tails so that $S = S_0$.
- Pick S-invariant decomp. 𝔅 ⊕ 𝔅[⊥] = 𝔅.
- Tails \rightsquigarrow deform. map $\mathfrak{d} \in (\mathfrak{s}^* \otimes \mathfrak{s}^{\perp})_+$ is highly constrained:

 $S \cdot \mathfrak{d} = 0.$ (\rightsquigarrow eigenvalue restrictions!)

- Suppose $\exists S \in \mathfrak{f}^0$ with $S_0 = \operatorname{gr}_0(S) \in \mathfrak{s}_0$ semisimple.
- Try to use *P*-action to normalize tails so that $S = S_0$.
- Pick S-invariant decomp. 𝔅 ⊕ 𝔅[⊥] = 𝔅.
- Tails \rightsquigarrow deform. map $\mathbf{0} \in (\mathbf{s}^* \otimes \mathbf{s}^{\perp})_+$ is highly constrained:

 $S \cdot \mathfrak{d} = 0.$ (\rightsquigarrow eigenvalue restrictions!)

All cases with such semisimple elements in (normalized) \mathfrak{s}_0 :

$S_0 \in \mathfrak{s}_0$	Constraints	Admissible models
Z_1	—	M9
Н	$Z_1 \not\in \mathfrak{s}_0$	M8 & M6S
$Z_1 + cH$	$c \neq 0,$	$c \neq 1$: none
	$\mathfrak{s}_0 \subseteq \langle Z_1 + cH, f_{01} \rangle$	$c = 1: M7_a$

- Suppose $\exists S \in \mathfrak{f}^0$ with $S_0 = \operatorname{gr}_0(S) \in \mathfrak{s}_0$ semisimple.
- Try to use *P*-action to normalize tails so that $S = S_0$.
- Pick S-invariant decomp. s ⊕ s[⊥] = g.
- Tails \rightsquigarrow deform. map $\mathfrak{d} \in (\mathfrak{s}^* \otimes \mathfrak{s}^{\perp})_+$ is highly constrained:

 $S \cdot \mathfrak{d} = 0.$ (\rightsquigarrow eigenvalue restrictions!)

All cases with such semisimple elements in (normalized) \mathfrak{s}_0 :

$S_0 \in \mathfrak{s}_0$	Constraints	Admissible models
Z ₁	—	M9
Н	$Z_1 \not\in \mathfrak{s}_0$	M8 & M6S
$Z_1 + cH$	$c \neq 0,$	$c \neq 1$: none
	$\mathfrak{s}_0 \subseteq \langle Z_1 + cH, f_{01} \rangle$	$c = 1: M7_a$

Remaining cases with no such: $\mathfrak{s}_0 = \langle f_{01} + r Z_1 \rangle$ (Jordan case).

• $r \neq 0$: No admissible model. (Easy.)

- Suppose $\exists S \in \mathfrak{f}^0$ with $S_0 = \operatorname{gr}_0(S) \in \mathfrak{s}_0$ semisimple.
- Try to use *P*-action to normalize tails so that $S = S_0$.
- Pick *S*-invariant decomp. $\mathfrak{s} \oplus \mathfrak{s}^{\perp} = \mathfrak{g}$.
- Tails \rightsquigarrow deform. map $\mathfrak{d} \in (\mathfrak{s}^* \otimes \mathfrak{s}^{\perp})_+$ is highly constrained:

 $S \cdot \mathfrak{d} = 0.$ (\rightsquigarrow eigenvalue restrictions!)

All cases with such semisimple elements in (normalized) \mathfrak{s}_0 :

$S_0 \in \mathfrak{s}_0$	Constraints	Admissible models
Z_1	—	M9
Н	$Z_1 \not\in \mathfrak{s}_0$	M8 & M6S
$Z_1 + cH$	$c \neq 0,$	$c \neq 1$: none
	$\mathfrak{s}_0 \subseteq \langle Z_1 + cH, f_{01} \rangle$	$c = 1: M7_a$

Remaining cases with no such: $\mathfrak{s}_0 = \langle f_{01} + r Z_1 \rangle$ (Jordan case).

- $r \neq 0$: No admissible model. (Easy.)
- r = 0: M6N. (Most challenging case; $T \equiv 0$ is essential.)