Serre-Swan Theorem for Graded Vector Bundles

Jan Vysoký

44th Winter School Geometry and Physics Srní, 13-20 January 2024 Joint work with R. Šmolka

Motivation, hypothesis

Serre-Swan theorem

Fundamental relation of geometry and algebra:

Vector bundles over M correspond (almost one-to-one) to finitely generated projective modules over the algebra of functions on M.

- Serre (1955) for algebraic vector bundles over affine varieties;
- Swan (1962) (continuous) vector bundles over Hausdorff topological spaces;
- Nestruev (2003) The category of smooth vector bundles over a smooth manifold M and the category of finitely generated projective modules over $C^{\infty}(M)$ are equivalent.

Theorem (**Graded Serre–Swan**)

The category of \mathbb{Z} -graded vector bundles over a \mathbb{Z} -graded manifold \mathcal{M} and the category of finitely generated projective graded modules over $\mathcal{C}^\infty_{\mathcal{M}}(M)$ are equivalent.

Graded always means \mathbb{Z} -graded.

Projective graded modules

Definition (**Graded** A-module)

Let A be a graded commutative associative algebra. By a **graded** A-module P (over \mathbb{R}), we mean a graded real vector space P together with a degree zero linear map $\triangleright: A \otimes_{\mathbb{R}} P \to P$, such that

$$(a \cdot b) \triangleright p = a \triangleright (b \triangleright p), \quad 1 \triangleright p = p,$$

where we write simply $a \triangleright p = \triangleright (a \otimes p)$.

Example

Let K be graded vector space. Let $A[K] := A \otimes_{\mathbb{R}} K$ and set

$$a \triangleright (b \otimes k) := (a \cdot b) \otimes k, \ \forall a, b \in A, \ \forall k \in K.$$

Definition (Free graded A-modules)

We say that a graded A-module P is **free**, if it is isomorphic to A[K].

Definition (**Projective graded** *A***-modules**)

We say that a graded A-module P is **projective**, if there is a free graded A-module F and some graded A-module Q, such that

$$F = P \oplus Q$$
.

Definition (Finitely generated A-modules)

We say that P is a **finitely generated** A-**module**, if there is a finite collection $\{p_i\}_{i=1}^k \subseteq P$, such that every $p \in P$ can be written as $p = a^i \triangleright p_i$ for some (not necessarily unique) $a^i \in A$.

Remark

- Every projective graded A-module is free;
- We say that A has an **invariant graded rank property**, if $A[K] \cong A[K']$ implies $K \cong K'$. We suppose this is the case.
- A free graded A-module P is finitely generated, iff $P \cong A[K]$ for a finite dimensional K;
- A projective graded A-module is finitely generated, iff F can be chosen to be finitely generated.

Graded manifolds and vector bundles

Definition (Graded manifold)

A graded manifold ${\mathcal M}$ consists of the following data:

- second countable Hausdorff topological space M;
- $oldsymbol{0}$ (certain) sheaf $\mathcal{C}_{\mathcal{M}}^{\infty}$ of graded commutative associative algebras;
- ullet atlas $\mathcal A$ making $\mathcal C^\infty_{\mathcal M}$ locally isomorphic to a certain "model sheaf". It also makes M into a smooth manifold.

Example (The model space)

- Let $M = \mathbb{R}^n$ with coordinates (x^1, \dots, x^n)
- Suppose we have "purely graded coordinate functions" (ξ_1, \dots, ξ_m) , each of them assigned a **degree** $|\xi_\mu| \in \mathbb{Z} \{0\}$, such that

$$\xi_{\mu}\xi_{\nu}=(-1)^{|\xi_{\mu}||\xi_{\nu}|}\xi_{\nu}\xi_{\mu}.$$

• For each $U \in \mathbf{Op}(M)$, we declare $\mathcal{C}^{\infty}_{\mathcal{M}}(U)$ to be the graded algebra of formal power series in ξ 's with coefficients in $\mathcal{C}^{\infty}_{\mathbb{R}^n}(U)$.

Definition (Graded vector bundles)

A graded vector bundle $\mathcal E$ over a graded manifold $\mathcal M$ is a locally freely and finitely generated sheaf $\Gamma_{\mathcal E}$ (on M) of graded $\mathcal C^\infty_{\mathcal M}$ -modules of a constant graded rank.

Remark (Local frames)

Conditions on $\Gamma_{\mathcal{E}}$ are equivalent to the following: For each $m \in M$, there exists $U \in \mathbf{Op}_m(M)$ and $\{\Phi_{\lambda}\}_{\lambda=1}^r \subseteq \Gamma_{\mathcal{E}}(U)$, such that

- $|\Phi_{\lambda}| = |\vartheta_{\lambda}|$, where $(\vartheta_{\lambda})_{\lambda=1}^{r}$ is some fixed total basis of some fixed graded vector space K;
- For each $V \in \mathbf{Op}(U)$, $\{\Phi_{\lambda}|_{V}\}_{\lambda=1}^{r}$ freely generates $\Gamma_{\mathcal{E}}(V)$. $\{\Phi_{\lambda}\}_{\lambda=1}^{r}$ is called the **local frame for** \mathcal{E} **over** U.

Example (Tangent bundle)

By declaring $\Gamma_{\mathcal{TM}}=\mathfrak{X}_{\mathcal{M}},\,\mathfrak{X}_{\mathcal{M}}$ is a sheaf of vector fields (graded derivations of $\mathcal{C}_{\mathcal{M}}^{\infty}$), we define the **tangent bundle** \mathcal{TM} **of** \mathcal{M} . Local frame = cordinate vector fields.

$\Gamma_{\mathcal{E}}(M)$ is finitely generated projective

Statement 1: $\Gamma_{\mathcal{E}}(M)$ is a finitely generated graded $\mathcal{C}^{\infty}_{\mathcal{M}}(M)$ -module.

Proof (sketch): There is *finite* open cover $\{U_i\}_{i=1}^k$ of M with a local frame $\{\Phi_{\lambda}^{(i)}\}_{\lambda=1}^r$ for \mathcal{E} over U_i . Let $\{\rho_i\}_{i=1}^k\subseteq\mathcal{C}_{\mathcal{M}}^{\infty}(M)$ be a partition of unity. Then the following collection generates $\Gamma_{\mathcal{E}}(M)$:

$$\{\{\rho_i\cdot\Phi_{\lambda}^{(i)}\}_{\lambda=1}^r\}_{i=1}^k\subseteq\Gamma_{\mathcal{E}}(M)$$

Statement 2: $\Gamma_{\mathcal{E}}(M)$ is a projective graded $\mathcal{C}^{\infty}_{\mathcal{M}}(M)$ -module.

Proof (sketch): Let $\{\Phi_i\}_{i=1}^k\subseteq \Gamma_{\mathcal{E}}(M)$ be the finite generating set. Let $\mathcal{E}'=\mathcal{M}\times K$ be the trivial vector bundle, where $K=\mathbb{R}\{\Phi_i\}_{i=1}^k$. $\Gamma_{\mathcal{E}'}(M)$ is free and one constructs an epimorphism $F:\Gamma_{\mathcal{E}'}(M)\to\Gamma_{\mathcal{E}}(M)$. Short exact sequences of *graded vector bundles* split, so $\Gamma_{\mathcal{E}'}(M)\cong\Gamma_{\mathcal{E}}(M)\oplus\ker(F)$.

The converse statement

The issue: Graded vector bundles are not determined by their fibers.

Step 1: For any sheaf \mathcal{F} of graded $\mathcal{C}^{\infty}_{\mathcal{M}}(M)$ -modules and any finitely generated graded submodule $P\subseteq \mathcal{F}(M)$, there is a unique sheaf \mathcal{P} of $\mathcal{C}^{\infty}_{\mathcal{M}}$ -submodules, such that $\mathcal{P}(M)=P$.

Proof (sketch): For each $U \in \mathbf{Op}(M)$, the submodule $\mathcal{P}(U) \subseteq \mathcal{F}(U)$ is defined by the property:

$$\psi \in \mathcal{P}(U) \Leftrightarrow (\forall m \in U)(\exists V \in \mathbf{Op}_m(U))(\exists \psi' \in P)(\psi|_V = \psi'|_V).$$

 $\mathcal P$ always forms a sheaf of $\mathcal C^\infty_{\mathcal M}$ -submodules, such that $P\subseteq \mathcal P(M)$. The converse inclusion requires P to be closed under "locally finite sums", i.e. sums of possibly infinite collections of elements of P, whose supports form a locally finite set (and hence the sums are well-defined). Finitely generated P have this property.

One can also show that $\mathcal{P}(U)$ is finitely generated for any $U \in \mathbf{Op}(M)$.

Step 2: If P is a finitely generated projective $\mathcal{C}^{\infty}_{\mathcal{M}}(M)$ -module, there exists a trivial vector bundle $\mathcal{E}=\mathcal{M}\times K$ and its sheaves \mathcal{P},\mathcal{Q} of graded $\mathcal{C}^{\infty}_{\mathcal{M}}$ -submodules, such that $\Gamma_{\mathcal{E}}=\mathcal{P}\oplus\mathcal{Q}$, and $P\cong\mathcal{P}(M)$.

Proof (sketch): We have $F = P \oplus Q$ for F free and finitely generated. But $F \cong \mathcal{C}^{\infty}_{\mathcal{M}}(M)[K] \equiv \Gamma_{\mathcal{E}}(M)$ for $\mathcal{E} = \mathcal{M} \times K$. Hence we can assume

$$\Gamma_{\mathcal{E}}(M) = P \oplus Q.$$

 $Q \cong \Gamma_{\mathcal{E}}(M)/P$ is also finitely generated. By Step 1, there are $\mathcal{P}, \mathcal{Q} \subseteq \Gamma_{\mathcal{E}}$ with $P = \mathcal{P}(M)$ and $Q = \mathcal{Q}(M)$. Using partitions uf unity, one shows

$$\Gamma_{\mathcal{E}}(U) = \mathcal{P}(U) + \mathcal{Q}(U).$$

Since $\mathcal{P} \cap \mathcal{Q}$ is a sheaf of submodules having the property $(\mathcal{P} \cap \mathcal{Q})(M) = P \cap Q = 0$, we have $\mathcal{P} \cap \mathcal{Q} = 0$, so the sum is direct.

Step 3: Let \mathcal{E} be any graded vector bundle. Suppose M is connected. Let $\mathcal{P}, \mathcal{Q} \subseteq \Gamma_{\mathcal{E}}$ be two sheaves of $\mathcal{C}_{\mathcal{M}}^{\infty}$ -submodules, such that

$$\Gamma_{\mathcal{E}} = \mathcal{P} \oplus \mathcal{Q}$$
.

Then both \mathcal{P} and \mathcal{Q} are sheaves of sections of subbundles of \mathcal{E} , hence sheaves of sections of graded vector bundles.

Proof (sketch): For each $m \in M$, there is a finite-dimensional graded vector space \mathcal{E}_m called the **fiber of** \mathcal{E} **at** m, defined as a quotient

$$\mathcal{E}_m = \Gamma_{\mathcal{E}}(M)/(\mathcal{J}_{\mathcal{M}}^m(M) \triangleright \Gamma_{\mathcal{E}}(M)),$$

where $\mathcal{J}_{\mathcal{M}}^{m}(M)=\{f\in\mathcal{C}_{\mathcal{M}}^{\infty}(M)\mid f(m)=0\}$. By $\psi\mapsto\psi|_{m}$ we denote the quotient map. One can then define the subspace

$$\mathcal{P}_{(m)} := \{ \psi |_m \mid \psi \in \mathcal{P}(M) \} \subseteq \mathcal{E}_m.$$

 $\mathcal{Q}_{(m)}$ is defined analogously. The assumptions ensure that

$$\mathcal{E}_m = \mathcal{P}_{(m)} \oplus \mathcal{Q}_{(m)}$$
.

Now comes the hard bit. One has to show the following two facts:

- The graded dimension of $\mathcal{P}_{(m)}$ is constant in $m \in M$.
- The total basis of \mathcal{E}_m adapted to the decomposition can be extended to a local frame for \mathcal{E} over U adapted to the decomposition $\mathcal{P} \oplus \mathcal{Q}$.

This can be used to construct local frames for \mathcal{P} and \mathcal{Q} .

Theorem

To any finitely generated projective graded $\mathcal{C}^{\infty}_{\mathcal{M}}(M)$ -module P, there exists a graded vector bundle \mathcal{F} over \mathcal{M} , such that $P \cong \Gamma_{\mathcal{F}}(M)$.

Proof: By Step 2, we can construct a trivial vector bundle \mathcal{E} and a sheaf of submodules $\mathcal{P} \subseteq \Gamma_{\mathcal{E}}$ satisfying $\mathcal{P}(M) \cong P$.

By Step 3, we have $\mathcal{P} = \Gamma_{\mathcal{F}}$ for a graded vector bundle \mathcal{F} . Rather tautologically, one has $P \cong \Gamma_{\mathcal{F}}(M)$.

Theorem (graded Serre-Swan theorem)

The functor $\mathcal{E} \mapsto \Gamma_{\mathcal{E}}(M)$ is fully faithful and essentially surjective functor from the category of graded vector bundles over \mathcal{M} to the category of finitely generated projective graded $\mathcal{C}^{\infty}_{\mathcal{M}}(M)$ -modules.

- The proof works flawlessly for ordinary manifolds, supermanifolds, \mathbb{Z}_2^n -manifolds, etc.
- Morye (2009) proved Serre–Swan for a huge class of locally ringed spaces (X, \mathcal{O}_X) , where "vector bundles" are locally free sheaves of \mathcal{O}_X -modules of a bounded rank.
- I claimed for two years that Serre–Swan does not work. Counterexample involves carefully constructed complicated arguments starting from $\tau:T\mathcal{M}\to T\mathcal{M}$ having the property $\tau^2=1$, which is "easy to see". Except τ has no such property.

Thank you for your attention!