Category of Quantum L_{∞} Algebras

w/ Branislav Jurčo, Ján Pulmann, arXiv:2401.06110

Srní 19.1.2024 Winter School of Geometry and Physics

Martin Zika Mathematical Institute of Charles University

Def: A (-1)-shifted symplectic vector space is a finite-dimensional real \mathbb{Z} -graded vector space with a non-degenerate, graded-antisymmetric bilinear form ω of degree -1.

Def: A (-1)-shifted symplectic vector space is a finite-dimensional real \mathbb{Z} -graded vector space with a non-degenerate, graded-antisymmetric bilinear form ω of degree -1.

• ω induces the **BV Laplacian**, for coordinates $\phi^i \in V^*$,

$$\Delta = \frac{1}{2} (-1)^{|i|} \omega^{ij} \frac{\partial^2}{\partial \phi^i \partial \phi^j}.$$

Def: A (-1)-shifted symplectic vector space is a finite-dimensional real \mathbb{Z} -graded vector space with a non-degenerate, graded-antisymmetric bilinear form ω of degree -1.

• ω induces the **BV Laplacian**, for coordinates $\phi^i \in V^*$,

$$\Delta = \frac{1}{2} (-1)^{|i|} \omega^{ij} \frac{\partial^2}{\partial \phi^i \partial \phi^j}.$$

Def[Zwiebach'92]: A quantum L_{∞} algebra on V is a formal series

$$S = \sum_{\substack{n \ge 1 \\ g \ge 0 \\ 2g+n \ge 1}} S_n^g \hbar^g \in \mathcal{F}V \equiv \widehat{\operatorname{Sym}}(V^*)((\hbar)), \quad \text{ st. } \quad \Delta e^{S/\hbar} = 0.$$

Def: A (-1)-shifted symplectic vector space is a finite-dimensional real \mathbb{Z} -graded vector space with a non-degenerate, graded-antisymmetric bilinear form ω of degree -1.

• ω induces the **BV Laplacian**, for coordinates $\phi^i \in V^*$,

$$\Delta = \frac{1}{2} (-1)^{|i|} \omega^{ij} \frac{\partial^2}{\partial \phi^i \partial \phi^j}.$$

Def[Zwiebach'92]: A quantum L_{∞} algebra on V is a formal series

$$S = \sum_{\substack{n \geq 1 \\ g \geq 0 \\ 2g+n \geq 1}} S_n^g \hbar^g \in \mathcal{F}V \equiv \widehat{\operatorname{Sym}}(V^*)((\hbar)), \quad \text{ st. } \quad \Delta e^{S/\hbar} = 0.$$

Equivalently, S is a Maurer-Cartan element of $(\mathcal{F}V, \{-.-\}, \hbar\Delta)$

Def: A (-1)-shifted symplectic vector space is a finite-dimensional real \mathbb{Z} -graded vector space with a non-degenerate, graded-antisymmetric bilinear form ω of degree -1.

• ω induces the **BV Laplacian**, for coordinates $\phi^i \in V^*$,

$$\Delta = \frac{1}{2} (-1)^{|i|} \omega^{ij} \frac{\partial^2}{\partial \phi^i \partial \phi^j}.$$

Def[Zwiebach'92]: A quantum L_{∞} algebra on V is a formal series

$$S = \sum_{\substack{n \ge 1 \\ g \ge 0 \\ 2g+n \ge 1}} S_n^g \hbar^g \in \mathcal{F}V \equiv \widehat{\operatorname{Sym}}(V^*)((\hbar)), \quad \text{ st. } \quad \Delta e^{S/\hbar} = 0.$$

Equivalently, S is a Maurer-Cartan element of $(\mathcal{F}V, \{-,-\}, \hbar\Delta)$ or the algebra over the twisted modular operad $\mathsf{F}(\mathsf{Mod}(Com))$ [Markl'97].

Def: A Lagrangian relation $L: U \to V$ is $L \subset \overline{U} \times V$ st. $L = L^{\perp}$.

Def: A Lagrangian relation $L: U \to V$ is $L \subset \overline{U} \times V$ st. $L = L^{\perp}$. A reduction is a surjective Lagrangian relation, eg. for $C \subset V$ coisotropic,

 $L: V \twoheadrightarrow C/C^{\perp}, \quad L = \{(c, \pi(c)) \mid c \in C\}.$

Def: A Lagrangian relation $L: U \to V$ is $L \subset \overline{U} \times V$ st. $L = L^{\perp}$. A reduction is a surjective Lagrangian relation, eg. for $C \subset V$ coisotropic,

 $L: V \twoheadrightarrow C/C^{\perp}, \quad L = \{(c, \pi(c)) \mid c \in C\}.$

Prop: Let U, V be (-1)-symplectic vector spaces.

1.
$$\left\{ \begin{array}{c} \text{Lagrangian relations} \\ U \xrightarrow{L} V \end{array} \right\} \stackrel{\text{bij.}}{\simeq} \left\{ \begin{array}{c} \text{Cospans of reductions} \\ U & V \\ L_U & R \end{array} \right\} /(\text{iso of } R)$$

Def: A Lagrangian relation $L: U \to V$ is $L \subset \overline{U} \times V$ st. $L = L^{\perp}$. A reduction is a surjective Lagrangian relation, eg. for $C \subset V$ coisotropic,

 $L: V \twoheadrightarrow C/C^{\perp}, \quad L = \{(c, \pi(c)) \mid c \in C\}.$

Prop: Let U, V be (-1)-symplectic vector spaces.

1.
$$\begin{cases} \text{Lagrangian relations} \\ U \xrightarrow{L} V \end{cases} \stackrel{\text{bij.}}{\simeq} \begin{cases} \text{Cospans of reductions} \\ U & V \\ L_U & R & \swarrow L_V \end{cases} / (\text{iso of } R)$$

2. Ker $L_1^T \perp$ Ker $L_2 \iff$ the composition $L_2 \circ L_1$ coincides with composition of the cospans along pushouts in the category of reductions.

Theorem: Let $L: V \rightarrow R$ be a reduction and S a quantum L_{∞} algebra with the quadratic part $S_2^0 \equiv S_{\text{free}}$ non-degenerate on Ker L. Then there exists a unique (up to normalization) perturbative Gaussian integral

$$\int e^{S_2^0/\hbar} \colon \mathcal{F}V \otimes |V|^{\frac{1}{2}} \longrightarrow \mathcal{F}R \otimes |R|^{\frac{1}{2}}$$

See L

supported on $\text{Dom}L \subset V$ that satisfies $\int (\Delta \ldots) = 0$.

ł

Theorem: Let $L: V \rightarrow R$ be a reduction and S a quantum L_{∞} algebra with the quadratic part $S_2^0 \equiv S_{\text{free}}$ non-degenerate on Ker L. Then there exists a unique (up to normalization) perturbative Gaussian integral

$$\int e^{S_2^0/\hbar} \colon \mathcal{F}V \otimes |V|^{\frac{1}{2}} \longrightarrow \mathcal{F}R \otimes |R|^{\frac{1}{2}}$$

Ker L

supported on $\text{Dom}L \subset V$ that satisfies $\int (\Delta \ldots) = 0$.

Remark: It recovers:

▶ The Lebesgue-Berezin integral (if it exists)—used to fix normalization.

Theorem: Let $L: V \rightarrow R$ be a reduction and S a quantum L_{∞} algebra with the quadratic part $S_2^0 \equiv S_{\text{free}}$ non-degenerate on Ker L. Then there exists a unique (up to normalization) perturbative Gaussian integral

$$\int e^{S_2^0/\hbar} \colon \mathcal{F}V \otimes |V|^{\frac{1}{2}} \longrightarrow \mathcal{F}R \otimes |R|^{\frac{1}{2}}$$

Ker L

supported on $\text{Dom}L \subset V$ that satisfies $\int (\Delta \ldots) = 0$.

Remark: It recovers:

- ▶ The Lebesgue-Berezin integral (if it exists)—used to fix normalization.
- ▶ The prescription of Wick's lemma—used to prove uniqueness.

Theorem: Let $L: V \rightarrow R$ be a reduction and S a quantum L_{∞} algebra with the quadratic part $S_2^0 \equiv S_{\text{free}}$ non-degenerate on Ker L. Then there exists a unique (up to normalization) perturbative Gaussian integral

$$\int e^{S_2^0/\hbar} \colon \mathcal{F}V \otimes |V|^{\frac{1}{2}} \longrightarrow \mathcal{F}R \otimes |R|^{\frac{1}{2}}$$

Ker L

supported on $\text{Dom}L \subset V$ that satisfies $\int (\Delta \ldots) = 0$.

Remark: It recovers:

- ▶ The Lebesgue-Berezin integral (if it exists)—used to fix normalization.
- ▶ The prescription of Wick's lemma—used to prove uniqueness.
- ▶ The results of the homological perturbation lemma—used to prove existence.

Idea: A Lagrangian relation L of (-1)-symplectic spaces should be thought of as δ_L ("distributional half-density"). [Ševera'04]

Idea: A Lagrangian relation L of (-1)-symplectic spaces should be thought of as δ_L ("distributional half-density"). [Ševera'04]

Def: Objects of the quantum linear (-1)-symplectic category are (-1)-symplectic vector spaces and

$$\mathsf{Hom}(U,V) := \begin{cases} C \subseteq \overline{U} \times V \text{ coisotropic,} \\ f \in \mathcal{F}(C/C^{\perp}) \otimes |C/C^{\perp}|^{\frac{1}{2}}, \end{cases}$$

with composition defined on $\mathcal{F}(-)$ by perturbative BV integration.

Idea: A Lagrangian relation L of (-1)-symplectic spaces should be thought of as δ_L ("distributional half-density"). [Ševera'04]

Def: Objects of the quantum linear (-1)-symplectic category are (-1)-symplectic vector spaces and

 $\mathsf{Hom}(U,V) \coloneqq \begin{cases} C \subseteq \overline{U} \times V \text{ coisotropic,} \\ f \in \mathcal{F}(C/C^{\perp}) \otimes |C/C^{\perp}|^{\frac{1}{2}}, \end{cases}$

with composition defined on $\mathcal{F}(-)$ by perturbative BV integration.

Example: For C = L Lagrangian, $\mathcal{F}(C/C^{\perp}) = \mathcal{F}(*) = \mathbb{R}((\hbar))$. Lagrangian relations form a wide subcategory; $L \mapsto (L, 1)$.

Idea: A Lagrangian relation L of (-1)-symplectic spaces should be thought of as δ_L ("distributional half-density"). [Ševera'04]

Def: Objects of the quantum linear (-1)-symplectic category are (-1)-symplectic vector spaces and

 $\mathsf{Hom}(U,V) \coloneqq \begin{cases} C \subseteq \overline{U} \times V \text{ coisotropic,} \\ f \in \mathcal{F}(C/C^{\perp}) \otimes |C/C^{\perp}|^{\frac{1}{2}}, \end{cases}$

with composition defined on $\mathcal{F}(-)$ by perturbative BV integration.

Example: For C = L Lagrangian, $\mathcal{F}(C/C^{\perp}) = \mathcal{F}(*) = \mathbb{R}((\hbar))$. Lagrangian relations form a wide subcategory; $L \mapsto (L, 1)$.

Example: For $C = U \times V$, $\mathcal{F}(C/C^{\perp}) = \mathcal{F}(U \times V)$. Let U = *, then C = V, $\mathcal{F}(C/C^{\perp}) = \mathcal{F}(V)$ and a quantum L_{∞} algebra S defines a morphism by setting $f = e^{S/\hbar}$.

$$\ast \xrightarrow{(V,e^{S/\hbar})} V$$

Relations of Quantum L_{∞} Algebras

For a reduction $L: U \rightarrow V$, the triangle commutes iff $\int_{\operatorname{Ker} L} e^{S/\hbar} = e^{S'/\hbar}$.

Relations of Quantum L_{∞} Algebras For a reduction $L: U \twoheadrightarrow V$, the triangle commutes iff $\int_{\operatorname{Ker} L} e^{S/\hbar} = e^{S'/\hbar}$. $U \xrightarrow{(U, e^{S/\hbar})} V$

Example: The minimal model on cohomology $V = H^{\bullet}$ (of $d = \{S_2^0, -\}$) [Costello'07], [Doubek-Jurčo-Pulmann'19] and others.

6

Relations of Quantum L_{∞} Algebras

For a reduction $L: U \to V$, the triangle commutes iff $\int_{\text{Ker } L} e^{S/\hbar} = e^{S'/\hbar}$.

Example: The minimal model on cohomology $V = H^{\bullet}$ (of $d = \{S_2^0, -\}$) [Costello'07], [Doubek-Jurčo-Pulmann'19] and others.

Def: $L: U \to V$ is a relation of quantum L_{∞} algebras S and S' if the following square commutes.

Here, L_U, L_V is the cospan of reductions corresponding to L.

Relations of Quantum L_{∞} Algebras

For a reduction $L: U \to V$, the triangle commutes iff $\int_{\text{Ker } L} e^{S/\hbar} = e^{S'/\hbar}$.

Example: The minimal model on cohomology $V = H^{\bullet}$ (of $d = \{S_2^0, -\}$) [Costello'07], [Doubek-Jurčo-Pulmann'19] and others.

Def: $L: U \to V$ is a relation of quantum L_{∞} algebras S and S' if the following square commutes.

Here, L_U, L_V is the cospan of reductions corresponding to L.

Theorem: Relations L_1 , L_2 of quantum L_{∞} algebras can be composed if $\operatorname{Ker} L_1^T \perp \operatorname{Ker} L_2.$

Theorem: Relations L_1 , L_2 of quantum L_{∞} algebras can be composed if $\operatorname{Ker} L_1^T \perp \operatorname{Ker} L_2$.

