Category of Quantum L_{∞} Algebras

w/ Branislav Jurčo, Ján Pulmann, arXiv:2401.06110

Srní 19.1.2024
 Winter School of Geometry and Physics

Martin Zika
Mathematical Institute of Charles University

Def: A (-1)-shifted symplectic vector space is a finite-dimensional real \mathbb{Z}-graded vector space with a non-degenerate, graded-antisymmetric bilinear form ω of degree -1 .

Def: A (-1)-shifted symplectic vector space is a finite-dimensional real \mathbb{Z}-graded vector space with a non-degenerate, graded-antisymmetric bilinear form ω of degree -1 .

- ω induces the BV Laplacian, for coordinates $\phi^{i} \in V^{*}$,

$$
\Delta=\frac{1}{2}(-1)^{|i|} \omega^{i j} \frac{\partial^{2}}{\partial \phi^{i} \partial \phi^{j}}
$$

Def: A (-1)-shifted symplectic vector space is a finite-dimensional real \mathbb{Z}-graded vector space with a non-degenerate, graded-antisymmetric bilinear form ω of degree -1 .

- ω induces the BV Laplacian, for coordinates $\phi^{i} \in V^{*}$,

$$
\Delta=\frac{1}{2}(-1)^{|i|} \omega^{i j} \frac{\partial^{2}}{\partial \phi^{i} \partial \phi^{j}}
$$

Def[Zwiebach'92]: A quantum L_{∞} algebra on V is a formal series

$$
S=\sum_{\substack{n \geq 1 \\ g \geq 0 \\ 2 g+n \geq 1}} S_{n}^{g} \hbar^{g} \in \mathcal{F} V \equiv \widehat{\operatorname{Sym}}\left(V^{*}\right)((\hbar)), \quad \text { st. } \quad \Delta e^{S / \hbar}=0
$$

Def: A (-1)-shifted symplectic vector space is a finite-dimensional real \mathbb{Z}-graded vector space with a non-degenerate, graded-antisymmetric bilinear form ω of degree -1 .

- ω induces the BV Laplacian, for coordinates $\phi^{i} \in V^{*}$,

$$
\Delta=\frac{1}{2}(-1)^{|i|} \omega^{i j} \frac{\partial^{2}}{\partial \phi^{i} \partial \phi^{j}}
$$

Def[Zwiebach'92]: A quantum L_{∞} algebra on V is a formal series

$$
S=\sum_{\substack{n \geq 1 \\ g \geq 0 \\ 2 g+n \geq 1}} S_{n}^{g} \hbar^{g} \in \mathcal{F} V \equiv \widehat{\operatorname{Sym}}\left(V^{*}\right)((\hbar)), \quad \text { st. } \quad \Delta e^{S / \hbar}=0
$$

- Equivalently, S is a Maurer-Cartan element of $(\mathcal{F} V,\{-.-\}, \hbar \Delta)$

Def: A (-1)-shifted symplectic vector space is a finite-dimensional real \mathbb{Z}-graded vector space with a non-degenerate, graded-antisymmetric bilinear form ω of degree -1 .

- ω induces the BV Laplacian, for coordinates $\phi^{i} \in V^{*}$,

$$
\Delta=\frac{1}{2}(-1)^{|i|} \omega^{i j} \frac{\partial^{2}}{\partial \phi^{i} \partial \phi^{j}}
$$

Def[Zwiebach'92]: A quantum L_{∞} algebra on V is a formal series

$$
S=\sum_{\substack{n \geq 1 \\ g \geq 0 \\ 2 g+n \geq 1}} S_{n}^{g} \hbar^{g} \in \mathcal{F} V \equiv \widehat{\operatorname{Sym}}\left(V^{*}\right)((\hbar)), \quad \text { st. } \quad \Delta e^{S / \hbar}=0
$$

- Equivalently, S is a Maurer-Cartan element of $(\mathcal{F} V,\{-.-\}, \hbar \Delta)$ or the algebra over the twisted modular operad $\mathrm{F}(\operatorname{Mod}(C o m))$ [Markl'97].

Linear Lagrangian Relations

Def: A Lagrangian relation $L: U \rightarrow V$ is $L \subset \bar{U} \times V$ st. $L=L^{\perp}$.

Linear Lagrangian Relations

Def: A Lagrangian relation $L: U \rightarrow V$ is $L \subset \bar{U} \times V$ st. $L=L^{\perp}$. A reduction is a surjective Lagrangian relation, eg. for $C \subset V$ coisotropic,

$$
L: V \rightarrow C / C^{\perp}, \quad L=\{(c, \pi(c)) \mid c \in C\}
$$

Linear Lagrangian Relations

Def: A Lagrangian relation $L: U \rightarrow V$ is $L \subset \bar{U} \times V$ st. $L=L^{\perp}$. A reduction is a surjective Lagrangian relation, eg. for $C \subset V$ coisotropic,

$$
L: V \rightarrow C / C^{\perp}, \quad L=\{(c, \pi(c)) \mid c \in C\}
$$

Prop: Let U, V be (-1)-symplectic vector spaces.

1. $\left\{\begin{array}{c}\text { Lagrangian relations } \\ U \xrightarrow[L]{L} V\end{array}\right\} \stackrel{\text { bij. }}{\sim}\left\{\begin{array}{c}\text { Cospans of reductions } \\ U \\ L_{U} \geqslant R^{\swarrow} K_{L_{V}}\end{array}\right\} /($ iso of $R)$

Linear Lagrangian Relations

Def: A Lagrangian relation $L: U \rightarrow V$ is $L \subset \bar{U} \times V$ st. $L=L^{\perp}$.
A reduction is a surjective Lagrangian relation, eg. for $C \subset V$ coisotropic,

$$
L: V \rightarrow C / C^{\perp}, \quad L=\{(c, \pi(c)) \mid c \in C\}
$$

Prop: Let U, V be (-1)-symplectic vector spaces.

1. $\left\{\begin{array}{c}\text { Lagrangian relations } \\ U \xrightarrow[L]{L} V\end{array}\right\} \stackrel{\text { bij. }}{\sim}\left\{\begin{array}{c}\text { Cospans of reductions } \\ U \\ L_{U} \geqslant R^{\swarrow_{L_{V}}}\end{array}\right\} /($ iso of $R)$
2. $\operatorname{Ker} L_{1}^{T} \perp \operatorname{Ker} L_{2} \Longleftrightarrow$ the composition $L_{2} \circ L_{1}$ coincides with composition of the cospans along pushouts in the category of reductions.

Theorem: Let $L: V \rightarrow R$ be a reduction and S a quantum L_{∞} algebra with the quadratic part $S_{2}^{0} \equiv S_{\text {free }}$ non-degenerate on Ker L. Then there exists a unique (up to normalization) perturbative Gaussian integral

$$
\int_{\operatorname{Ker} L} e^{S_{2}^{0} / \hbar}: \mathcal{F} V \otimes|V|^{\frac{1}{2}} \longrightarrow \mathcal{F} R \otimes|R|^{\frac{1}{2}}
$$

supported on $\operatorname{Dom} L \subset V$ that satisfies $\int(\Delta \ldots)=0$.

Theorem: Let $L: V \rightarrow R$ be a reduction and S a quantum L_{∞} algebra with the quadratic part $S_{2}^{0} \equiv S_{\text {free }}$ non-degenerate on Ker L. Then there exists a unique (up to normalization) perturbative Gaussian integral

$$
\int_{\operatorname{Ker} L} e^{S_{2}^{0} / \hbar}: \mathcal{F} V \otimes|V|^{\frac{1}{2}} \longrightarrow \mathcal{F} R \otimes|R|^{\frac{1}{2}}
$$

supported on $\operatorname{Dom} L \subset V$ that satisfies $\int(\Delta \ldots)=0$.
Remark: It recovers:

- The Lebesgue-Berezin integral (if it exists)—used to fix normalization.

Theorem: Let $L: V \rightarrow R$ be a reduction and S a quantum L_{∞} algebra with the quadratic part $S_{2}^{0} \equiv S_{\text {free }}$ non-degenerate on Ker L. Then there exists a unique (up to normalization) perturbative Gaussian integral

$$
\int_{\operatorname{Ker} L} e^{S_{2}^{0} / \hbar}: \mathcal{F} V \otimes|V|^{\frac{1}{2}} \longrightarrow \mathcal{F} R \otimes|R|^{\frac{1}{2}}
$$

supported on $\operatorname{Dom} L \subset V$ that satisfies $\int(\Delta \ldots)=0$.
Remark: It recovers:

- The Lebesgue-Berezin integral (if it exists) - used to fix normalization.
- The prescription of Wick's lemma-used to prove uniqueness.

Theorem: Let $L: V \rightarrow R$ be a reduction and S a quantum L_{∞} algebra with the quadratic part $S_{2}^{0} \equiv S_{\text {free }}$ non-degenerate on Ker L. Then there exists a unique (up to normalization) perturbative Gaussian integral

$$
\int_{\text {Ker } L} e^{S_{2}^{0} / \hbar}: \mathcal{F} V \otimes|V|^{\frac{1}{2}} \longrightarrow \mathcal{F} R \otimes|R|^{\frac{1}{2}}
$$

supported on $\operatorname{Dom} L \subset V$ that satisfies $\int(\Delta \ldots)=0$.
Remark: It recovers:

- The Lebesgue-Berezin integral (if it exists) - used to fix normalization.
- The prescription of Wick's lemma-used to prove uniqueness.
- The results of the homological perturbation lemma-used to prove existence.

Linear Quantum (-1)-Symplectic Category

Idea: A Lagrangian relation L of (-1)-symplectic spaces should be thought of as δ_{L} ("distributional half-density"). [Ševera'04]

Linear Quantum (-1)-Symplectic Category

Idea: A Lagrangian relation L of (-1)-symplectic spaces should be thought of as δ_{L} ("distributional half-density"). [Ševera'04]

Def: Objects of the quantum linear (-1)-symplectic category are (-1)-symplectic vector spaces and

$$
\operatorname{Hom}(U, V):=\left\{\begin{array}{l}
C \subseteq \bar{U} \times V \text { coisotropic } \\
f \in \mathcal{F}\left(C / C^{\perp}\right) \otimes\left|C / C^{\perp}\right|^{\frac{1}{2}}
\end{array}\right.
$$

with composition defined on $\mathcal{F}(-)$ by perturbative BV integration.

Linear Quantum (-1)-Symplectic Category

Idea: A Lagrangian relation L of (-1)-symplectic spaces should be thought of as δ_{L} ("distributional half-density"). [Ševera'04]

Def: Objects of the quantum linear (-1)-symplectic category are (-1)-symplectic vector spaces and

$$
\operatorname{Hom}(U, V):=\left\{\begin{array}{l}
C \subseteq \bar{U} \times V \text { coisotropic } \\
f \in \mathcal{F}\left(C / C^{\perp}\right) \otimes\left|C / C^{\perp}\right|^{\frac{1}{2}}
\end{array}\right.
$$

with composition defined on $\mathcal{F}(-)$ by perturbative BV integration.
Example: For $C=L$ Lagrangian, $\mathcal{F}\left(C / C^{\perp}\right)=\mathcal{F}(*)=\mathbb{R}((\hbar))$. Lagrangian relations form a wide subcategory; $L \mapsto(L, 1)$.

Linear Quantum (-1)-Symplectic Category

Idea: A Lagrangian relation L of (-1)-symplectic spaces should be thought of as δ_{L} ("distributional half-density"). [Ševera'04]

Def: Objects of the quantum linear (-1)-symplectic category are (-1)-symplectic vector spaces and

$$
\operatorname{Hom}(U, V):=\left\{\begin{array}{l}
C \subseteq \bar{U} \times V \text { coisotropic } \\
f \in \mathcal{F}\left(C / C^{\perp}\right) \otimes\left|C / C^{\perp}\right|^{\frac{1}{2}}
\end{array}\right.
$$

with composition defined on $\mathcal{F}(-)$ by perturbative BV integration.
Example: For $C=L$ Lagrangian, $\mathcal{F}\left(C / C^{\perp}\right)=\mathcal{F}(*)=\mathbb{R}((\hbar))$. Lagrangian relations form a wide subcategory; $L \mapsto(L, 1)$.

Example: For $C=U \times V, \mathcal{F}\left(C / C^{\perp}\right)=\mathcal{F}(U \times V)$. Let $U=*$, then $C=V, \mathcal{F}\left(C / C^{\perp}\right)=\mathcal{F}(V)$ and a quantum L_{∞} algebra S defines a morphism by setting $f=e^{S / \hbar}$.

$$
* \xrightarrow{\left(V, e^{S / \hbar}\right)} V
$$

Relations of Quantum L_{∞} Algebras

For a reduction $L: U \rightarrow V$, the triangle commutes iff $\int_{\operatorname{Ker} L} e^{S / \hbar}=e^{S^{\prime} / \hbar}$.

Relations of Quantum L_{∞} Algebras

For a reduction $L: U \rightarrow V$, the triangle commutes iff $\int_{\operatorname{Ker} L} e^{S / \hbar}=e^{S^{\prime} / \hbar}$.

Example: The minimal model on cohomology $V=H^{\bullet}$ (of $\left.d=\left\{S_{2}^{0},-\right\}\right)$ [Costello'07], [Doubek-Jurčo-Pulmann'19] and others.

Relations of Quantum L_{∞} Algebras

For a reduction $L: U \rightarrow V$, the triangle commutes iff $\int_{\operatorname{Ker} L} e^{S / \hbar}=e^{S^{\prime} / \hbar}$.

Example: The minimal model on cohomology $V=H^{\bullet}$ (of $\left.d=\left\{S_{2}^{0},-\right\}\right)$ [Costello'07], [Doubek-Jurčo-Pulmann'19] and others.

Def: $L: U \rightarrow V$ is a relation of quantum L_{∞} algebras S and S^{\prime} if the following square commutes.

Here, L_{U}, L_{V} is the cospan of reductions corresponding to L.

For a reduction $L: U \rightarrow V$, the triangle commutes iff $\int_{\operatorname{Ker} L} e^{S / \hbar}=e^{S^{\prime} / \hbar}$.

Example: The minimal model on cohomology $V=H^{\bullet}\left(\right.$ of $\left.d=\left\{S_{2}^{0},-\right\}\right)$ [Costello'07], [Doubek-Jurčo-Pulmann'19] and others.
Def: $L: U \rightarrow V$ is a relation of quantum L_{∞} algebras S and S^{\prime} if the following square commutes.

Here, L_{U}, L_{V} is the cospan of reductions corresponding to L.
Theorem: Relations L_{1}, L_{2} of quantum L_{∞} algebras can be composed if

$$
\operatorname{Ker} L_{1}^{T} \perp \operatorname{Ker} L_{2}
$$

Relations of Quantum L_{∞} Algebras

Theorem: Relations L_{1}, L_{2} of quantum L_{∞} algebras can be composed if $\operatorname{Ker} L_{1}^{T} \perp \operatorname{Ker} L_{2}$.

